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Abstract

The objective of this thesis is to develop probabilistic graphical models for analyzing human interac-

tion in meetings based on multimodel cues. We use meeting as a study case of human interactions

since research shows that high complexity information is mostly exchanged through face-to-face

interactions.

Modeling human interaction provides several challenging research issues for the machine learn-

ing community. In meetings, each participant is a multimodal data stream. Modeling human in-

teraction involves simultaneous recording and analysis of multiple multimodal streams. These

streams may be asynchronous, have different frame rates, exhibit different stationarity properties,

and carry complementary (or correlated) information.

In this thesis, we developed three probabilistic graphical models for human interaction analysis.

The proposed models use the “probabilistic graphical model” formalism, a formalism that exploits

the conjoined capabilities of graph theory and probability theory to build complex models out of

simpler pieces.

We first introduce the multi-layer framework, in which the first layer models typical individual

activity from low-level audio-visual features, and the second layer models the interactions. The two

layers are linked by a set of posterior probability-based features.

Next, we describe the team-player influence model, which learns the influence of interact-

ing Markov chains within a team. The team-player influence model has a two-level structure:

individual-level and group-level. Individual level models actions of each player, and the group-level

models actions of the team as a whole. The influence of each player on the team is jointly learned

with the rest of the model parameters in a principled manner using the Expectation-Maximization

(EM) algorithm.
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Finally, we describe the semi-supervised adapted HMMs for unusual event detection. Unusual

events are characterized by a number of features (rarity, unexpectedness, and relevance) that limit

the application of traditional supervised model-based approaches. We propose a semi-supervised

adapted Hidden Markov Model (HMM) framework, in which usual event models are first learned

from a large amount of (commonly available) training data, while unusual event models are learned

by Bayesian adaptation in an unsupervised manner.



Version abrégée

L’objectif de cette thèse est le développement de modèles graphiques probabilistes pour l’ana-

lyse des interactions entre personnes durant les réunions, en se basant sur des caractéristiques

multimodales. Nous considérons les meetings comme base de notre recherche, car les informations

complexes sont principalement échangées au travers d’interactions face-à-face.

La modélisation des interactions entre personnes représente plusieurs challenge pour la re-

cherche en apprentissage machine. Chaque participant d’une réunion est une source de données

multimodales. La modélisation des interactions entre personnes nécessite donc l’enregistrement et

l’analyse simultanés de plusieurs sources de données multimodales. Ces sources peuvent tre asyn-

chrones, avoir différents taux d’échantillonnage, présenter des propriétés stationnaires différentes,

et comporter de l’information complémentaire (ou corrélée).

Dans cette thèse, nous avons développé trois modèles graphiques probabilistes pour l’analyse

des interactions humaines. Les modèles proposés utilisent le formalisme des ’modèles graphiques

probabilistes’, qui exploite les possibilités conjointes de la théorie des graphes et des probabilités

afin de créer des modèles complexes à partir de pièces plus simples.

Nous introduisons tout d’abord le système multi-couche, dont la première couche modélise des

activités individuelles typiques à partir de caractéristiques audiovisuelles bas-niveau, et la seconde

couche modélise les interactions. Les deux couches sont reliées par un ensemble de caractéristiques

basées sur des probabilités postérieures.

Ensuite, nous décrivons le modèle de l’influence du joueur d’une équipe, qui apprend l’influence

de chaı̂nes de Markov cachées au sein d’une équipe. Le modèle a une structure à deux niveaux :

une couche individuelle et une couche de groupe. La couche individuelle modélise les actions de

chaque joueur, et la couche de groupe modélise les actions de l’équipe comme un tout. L’influence de
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chaque joueur est apprise de manière conjointe avec le reste des paramètres du modèle en utilisant

un algorithme de maximisation d’espérance.

Finalement, nous décrivons les modèles de Markov cachés adaptés de manière semi-supervisée

pour la détection d’événements inhabituels. Les événements inhabituels présentent un nombre de

caractéristiques spécifiques (rareté, imprévu, et pertinence) qui ne permettent pas l’application

d’approches semi-supervisées traditionnelles. Nous proposons un modèle de Markov caché adapté

de manière non-supervisée, où les modèles d’événements habituels sont tout d’abord entraı̂nés à

partir d’un grand nombre de données, tandis que les modèles d’événements inhabituels sont adaptés

de manière Bayesienne non-supervisée.
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Chapter 1

Introduction

1.1 Motivations

Given the increasing capacity to acquire data from various sensors (camera, microphones, and

mobile phones, etc.), together with ever cheaper, and ever increasing processing speed, storage, and

bandwidth, there is a growing interest in several areas – computer vision, machine learning, social

network analysis and wearable computing – to analyze human actions and interactions. Modeling

human interactions from sensor information using machine learning techniques is the

goal of this thesis.

This is the result of the convergence of some trends observed in a number of research areas.

The first trend is the growing interest of the computer vision and signal processing

communities in the analysis of human actions and interactions. Recognition of human

activities is important for many applications, such as surveillance [98, 53], helping people with

disabilities [120], and human-machine interaction [104]. Over the last decade, a lot of work has

been done on analysis of human behavior from low- or/and middle-level sensor information. These

systems typically consist of a low- or mid-level computer vision system to detect and segment an

object – human, for example – and a higher level interpretation module that classifies the motion

into ‘atomic’ behaviors such as, for example, a smile, or a pointing gesture. Moving beyond the

person-centered paradigm, recent work has started to explore multi-person scenarios, where not

only individual but also group actions or interactions become relevant [44, 59, 99, 10].

1
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The second trend followed by this thesis aligns with recent developments in the field

of statistical machine learning, namely probabilistic graphical models. In the last decade,

probabilistic graphical models have become one of the most popular tools to structure uncertain

knowledge about high-dimensional domains in order to make reasoning in such domains feasible

[38]. Many of the problems in artificial intelligence, statistics, computer systems, computer vision,

natural language processing, and computational biology, among many other fields, can be viewed

as the search for a coherent global conclusion from local information. The probabilistic graphical

model framework provides a unified view for this wide range of problems, as it combines a natural

mechanism for expressing contextual knowledge with the power of efficient algorithms for statisti-

cal learning and inference.

The third trend is the increasing interest in social network analysis. A social network

is a social structure made of nodes which are generally individuals or organizations. Social network

analysis has emerged as a key technique in modern sociology, anthropology, social psychology, in-

formation science, and organizational studies, as well as a popular topic of speculation and study.

Research in a number of academic fields has demonstrated that social networks operate on many

levels, from families up to the level of nations, and play a critical role in determining the way prob-

lems are solved, organizations are run, and the degree to which individuals succeed in achieving

their goals. Online social networks are becoming increasingly popular, which helps connect friends,

business partners, or other individuals together using a variety of tools, such as emails and instant

messengers. There are all instances of human interactions.

The fourth trend is that wearable computing becomes more and more integrated into

our daily life. Wearable computing aims at assisting people in various everyday activities (e.g.,

life saving, security, health monitoring, mobile web services) by using small devices such as cam-

eras, microphones (e.g., recording all what one sees and all what one hears), and multiple extra

sensors (e.g., recording diverse physiological signals, etc..). This provides the opportunity to use ap-

propriate sensors to capture information about how groups of people interact over period of weeks,

months and even years. For example, in [25], wearable devices and methods have been designed for

automatically and unobtrusively learning the structure of face-to-face interactions within groups

based on wearable sensors. Another project, called Reality Mining [37], introduced a system to rec-

ognize social patterns in daily user activity, infer relationships, and model organizational rhythms



1.2. RESEARCH OBJECTIVES 3

using data collected from one hundred mobile phones over the course of six months (approximately

500,000 hours of data on users’ location, communication and device usage behavior).

Finally, there is a long history of work in social sciences aiming at understanding the

interactions between individuals and how interactions influence their behaviors. In the

psychology community, there are many instances of work studying the above effects [83, 40]. In

almost any social and work situation, our decision-making is influenced by the actions of others

around us. Who are the people we talk to? For how long and how often? How actively do we

participate in conversations we have? While modeling human interactions is a recent research

domain, a large body of literature on group interactions exists in the field of social psychology.

This literature gives valuable insight into the nature and value of information present in human

interactions.

One of the goals of this thesis is to make connections and build upon previous work in these

research areas.

1.2 Research Objectives

In this thesis, we have four objectives.

The first objective is to develop statistical models for probabilistic inference of group

interaction patterns using multi-sensor data.

Viewed as a whole, a group in a meeting shares information, engages in discussions, and makes

decisions, proceeding through diverse communication phases both in single meetings and during

the course of long-term collaborative work. We attempt to structure a meeting as a continuous

sequence of exclusive events taken from the set of N group actions: V = {v1,v2, . . . ,vN}.

In the first place, we need to define a set of relevant group actions. Different action lexicons

give us different view of meetings, as shown in Figure 1.1. In this thesis, we defined a set of group

actions based on location-based turn-taking.

As documented in psychology literature, turn-taking provides a rich basis for analyzing how

people interact in group discussions. At its simplest level, segmenting a meeting into speaker turns

is useful for structuring speech transcripts for browsing and retrieval. Analysis of speaker turns

can also provide insights about the participants, such as their inherent latency in responding and
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Figure 1.1. Joint segmentation and classification of sequences of human interactions in meetings.

degree of ‘talkativeness’, their role within a group, or their interest in particular topics [82, 101,

109].

Moving beyond simple speaker turns, turn-taking may be analyzed at a higher-level by defining

actions that may span several individual speaker turns, such as distinguishing between a series

of monologues and a group discussion. Turns not based purely on speech, such as presentations,

white-board usage or group note-taking, could also be defined if visual cues such as gaze and ges-

tures were taken into account.

In this thesis, an illustrative set of group actions based on location-based turn-taking was de-

fined as { discussion, monologue, monologue + note-taking, note-taking, presentation, presentation

+ note-taking, whiteboard, whiteboard + note-taking } . These are all natural actions in which

participants play and exchange similar, opposite, or complementary roles. For example, during a

monologue, one person speaks to the group, while the other participants listen and direct their gaze

towards the speaker or to their notes. During a discussion, multiple participants take relatively

short turns at speaking, and more movement could be expected. In this set of actions, we define

note-taking as a group event, in which the majority of participants take notes concurrently. Intu-

itively, it is expected that such an action would indicate periods where important information has

been conveyed.

In a similar manner, other lexicon of group actions could be defined to provide alternative views

of a meeting. While actions should be non-overlapping within a given set of meeting actions, rich

multi-layer views of meetings could be built by applying parallel sets of meeting actions to the

same meeting. For example further lexicon could be based on tasks (brainstorming, information
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sharing, decision making, etc), and the interest level of the group (high, neutral, low). Recent

research in recognizing emotion from speech [73, 61], recognizing interest level from posture [90],

recognizing hot-spots (regions of high involvement or emphasis) in meetings [132, 131, 66], and

detecting agreement and disagreement in meetings [56], suggests that the automatic recognition of

such high-level concepts may become feasible.

The second objective is to develop statistical models of automatically detecting par-

ticipant’s influence levels in meetings.

During the course of a meeting, some people seem particularly capable of driving the conver-

sation and dominating its outcome. These people, skilled at establishing the leadership, have the

largest influence on a meeting, and often shift its focus when they speak. Can we tell who the

most influential participant is? Can we quantify this amount of influence? How does the behavior

of each individual affect the group decision-making? A computational model that addresses these

questions involves challenges for the following reasons,

- To build a model that can determine influence among meeting participants, we need to extract

relevant features, with the assumption that influence can indeed be inferred from a set of low-

level observations. In this sense, a large range of audio, visual and language features could be

used. How to determine the most discriminative features is a non-trivial task.

- The task might be hard to evaluate. The manual annotation of influence of meeting partici-

pants is to some degree a subjective task since a unique ground-truth does not exist.

- To model a significant number of interacting people, a naive model may require an exponential

number of parameters in the number of persons, which might make learning and inference

intractable. This motivates the development of simplified models that at the same time retain

representation power.

The third objective is to develop statistical models of automatically detecting unusual

events in meetings.

Unusual events, such as “laughter” in meetings, are characterized by a number of features –

rarity, unexpectedness, and relevance – that limit the application of traditional supervised model-

based approaches. It is clear from such a definition that unusual event detection entails a number

of challenges.
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- The rarity of an unusual event means that collecting sufficient training data for supervised

learning will often be infeasible, necessitating methods for learning from small numbers of

examples.

- In addition, more than one type of unusual event may occur in a given data sequence, where

the event types can be expected to differ markedly from one another. This implies that training

a single model to capture all unusual events will generally be infeasible, further exacerbating

the problem of learning from limited data.

- As well as such modeling problems due to rarity, the unexpectedness of unusual events means

that defining a complete event lexicon will not be possible in general, especially considering

the genre- and task-dependent nature of event relevance.

Finally, from a machine learning perspective, one objective of this thesis is to develop

statistical models for handling multiple interacting streams.

In meetings, each participant can be seen as a multimodal data stream. Modeling human inter-

action in meetings thus involves simultaneous recording and analysis of multiple streams. These

streams may be asynchronous, have different frame rates, exhibit different stationarity proper-

ties, and carry complementary (or correlated) information. Some of these problems can already be

tackled by one of the many existing statistical approaches of sequence modeling. However, several

challenging research issues are still open, such as taking into account asynchrony and correlation

between multiple interacting streams, or handling the underlying growing complexity.

1.3 Contributions

The three problems we address and models we propose in this thesis are shown in Figure 1.2, and

the contributions of this thesis can be enlisted as follows,

I. Theory

The main contributions of this thesis from a theoretical perspective are three novel dynamic

Bayesian networks (DNBs) for handling multiple interacting streams.



1.3. CONTRIBUTIONS 7

     Models     Tasks

Group Action 
Modeling

Dominance
Modeling

Unusual Event
Detection

Multi-layer 
HMM

Team-player
Influence model

Semi-supervised 
Adapted HMM

 Audio-visual 
 datasets 
(meetings)

Figure 1.2. The three problems we address and the three models we propose in this thesis.

1. The Two-layer Hidden Markov Model

We proposed a two-layer framework, shown in Figure 1.3, which decomposes the problem of

human interaction modeling into individual action and group action stages, thus simplifies

the complexity of the task. By defining a proper set of individual actions, group actions can

be modeled as a two-layer process, one that models basic individual activities from low-level

audio-visual features, and another one that models the interactions. We proposed a two-layer

framework that implements such concept in a principled manner, and that has advantages

over previous works. First, by decomposing the problem hierarchically, learning is performed

on low-dimensional observation spaces, which results in simpler models. Second, our frame-

work is easier to interpret, as both individual and group actions have a clear meaning, and

thus easier to improve. Third, different models can be used in each layer to better reflect the

nature of each subproblem. This framework is general and extensible, and experiments and

comparison with a single-layer HMMs baseline system showed its validity.

2. The Team-player Influence Model

We proposed a model, shown in Figure 1.4, that learns the influence of interacting Markov

chains within a team. The proposed model is a dynamic Bayesian network (DBN) with a

two-level structure: individual-level and group-level. Individual level models actions of each

player, and the group-level models actions of the team as a whole. Unlike existing multi-

stream models, the influence of each player on the team, which can also be interpreted as

reliability in the case of data fusion, is jointly learned with the rest of the model parameters



8 CHAPTER 1. INTRODUCTION

Microphones

Cameras

Person 1 AV Features

Person N AV Features

Group AV Features

Person 2 AV Features

I-HMM 1

I-HMM 2

I-HMM N

G-HMM

Figure 1.3. The two-layer Hidden Markov Model: the lower layer recognizes individual actions of participants using
low-level audio-visual (AV) features. The output of this layer provides the input to the second layer, which models
interactions. Individual actions naturally constitute the link between the low-level audio-visual features and high-level
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Figure 1.4. The team-player Influence Model: (a) Markov Model for individual player. (b) The team-player influence
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t and Si
t denote the observation and hidden states of the ith participant

(player) at time t; SG
t denotes the group state, and Q is the switching parent.

in a principled manner using the Expectation-Maximization (EM) algorithm. Experiments on

twi different applications: synthetic multi-player game and multi-party meetings showed the

effectiveness of the proposed model.

3. The semi-supervised adapted HMMs

We proposed a semi-supervised adapted HMMs, shown in Figure 1.5, for unusual event de-

tection. Unusual events are characterized by a number of features (rarity, unexpectedness,

and relevance) that limit the application of traditional supervised model-based approaches.

We proposed a semi-supervised adapted Hidden Markov Model (HMM) framework, in which

usual event models are first learned from a large amount of (commonly available) training

data, while unusual event models are learned by Bayesian adaptation in an unsupervised

manner. The proposed framework has an iterative structure, which adapts a new unusual

event model at each iteration. We showed that such a framework can address problems due to
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Figure 1.5. The semi-supervised adapted HMMs: At each iteration, two leaf nodes, one representing usual events and
the other one representing unusual events, are split from the parent usual event node; A leaf node representing an
unusual event is also adapted from the parent unusual event node.

the scarcity of training data and the difficulty in pre-defining unusual events. Experiments on

audio, visual, and audio-visual data streams illustrate its effectiveness, compared with both

supervised and unsupervised baseline methods.

II. Application

1. Applications in meetings

Meetings are an integral part of our working lives. Recent developments in recording and

storage techniques have made multimodal meeting recordings readily available, and while it

is straightforward to play back such recordings, it is much more laborious for users to browse

them. Our work can be useful for meeting browsing and retrieval. IDIAP developed a meeting

browser, JFerret [129], which enables people to access meeting information. Some snapshots

are shown in Figure 1.6 and Figure 1.7. In Figure 1.6, meeting actions are indicated with

different colors. In Figure 1.7, the influence level of each meeting participant is shown over

the meeting depicted by a graph. The application allows for live tracking of the influence

levels. Occurrences for each of the features, such as interruptions, are observed and further

processed by the model responsible for producing the final value.

2. Other applications

The proposed models are general, and can be easily applied to other applications besides

meetings. (i) For the first model, the multi-layer HMMs, it essentially tries to decomposes a
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Figure 1.6. JFerret: meeting browser and retrieval system, taken from [129].

Figure 1.7. Visualization of participants’ influence level, taken from [112].
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complex problem (group action recognition) into stages. The basic idea of this model coincides

very well with TANDEM-based automatic speech recognition (ASR) [55]. The same framework

has been applied to automatic speech recognition with improved performance [67]. (ii) For

the second model, the team-player influence model, it tries to learn the reliability of each

individual stream among several interacting streams, and thus suitable to many multi-stream

applications.

1.4 Plan of the Thesis

This thesis is organized as follows:

• In Chapter 2, we present an overview of research tasks in meetings. This is followed by dis-

cussing related work on the three problems we address in this thesis: group action modeling,

dominance modeling, and unusual event modeling.

• In Chapter 3, we give a simplified tutorial of representation, inference and learning for proba-

bilistic graphical models. We also present various directed and undirected graphical models.

We discuss connections between various models that had previously been considered quite

different, thus promoting the viewpoint that probabilistic graphical models provide a unified

and useful framework for a large class of problems involving probabilistic inference.

• In Chapter 4 – 5, we address the problem of group action modeling using the multi-layer

framework, which decomposes the problem of human interaction modeling into individual

action and group action two states, thus simplifying the complexity of the task. We apply the

framework to group action recognition (Chapter 4), and group action clustering (Chapter 5).

• In Chapter 6, we address the problem of dominance modeling in meetings using the team-

player influence model. The proposed model is a dynamic Bayesian network (DBN) with a

two-level structure: individual-level and group-level. The individual level models actions of

each player, and the group-level models actions of the team as a whole. We applied the model

to both synthetic multi-player game, and multi-party meetings.

• In Chapter 7, we present a semi-supervised adapted HMM framework for unusual event de-

tection, in which usual event models are first learned from a large amount of (commonly



12 CHAPTER 1. INTRODUCTION

available) training data, while unusual event models are learned by Bayesian adaptation in

an unsupervised manner. The proposed framework has an iterative structure, which adapts

a new unusual event model at each iteration. We showed that such a framework can address

problems due to the scarcity of training data and the difficulty in pre-defining unusual events.

• We conclude the thesis with Chapter 8, which summarizes the contributions and comments

on the directions to explore.



Chapter 2

Research Tasks in Meetings and

Related Work

A continued exponential decline in the cost of both communications and information technology

would seem to enable a large and diverse array of services for enhancing human-to-human in-

tearction [27]. This motivates several projects, such as IM2 (Interactive Multimodal Information

Management), M4 (Multimodal Meeting Manager), and AMI (Augmented Multi-party Interaction),

dedicated to the research and development of technology that will augment communications be-

tween individuals and groups of people in meetings.

The following section outlines research tasks in meetings. This is followed by discussing related

work on the three problems we will address in this thesis – group action modeling, dominance

modeling and unusual event modeling.

2.1 Research Tasks in Meetings

The automatic analysis of meetings has recently attracted attention in a number of fields, includ-

ing audio and speech processing, computer vision, human-computer interaction, and information

retrieval [126, 87, 28, 80, 56, 131, 33]. Analyzing meetings poses many technical challenges, and

also opens doors to a number of relevant applications. A number of groups are investigating the ap-

plication of speech, video, and natural language processing techniques to the meeting domain. Some

13
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Table 2.1. Research topics in the context of meetings and the potentially involved modalities

Topic Audio Video Text White-board

Keyword spotting
√

Speaker Identification
√

Speaker Clustering
√

Syntax
√

Prosody
√

Gaze tracking
√

Face detection
√

Face recognition
√

Facial expression
√

Gesture recognition
√

Posture recognition
√

Lip tracking
√

Handwriting recognition
√ √ √

Diagram analysis
√ √ √

Document retrieval
√

Topic clustering
√ √

Tracking
√ √

Person identification
√ √

Speech recognition
√ √

Action / Interaction recognition
√ √ √ √

· · · · · · · · · · · · · · ·

meeting projects are summarized as followings. The meeting project at ICSI [87] focuses primarily

on the challenging problem of automatic recognition of natural conversational speech in meetings.

In CMU meeting project, researchers worked on speech transcription and summarization, devel-

opment of the meeting browser [126], and tracking the focus of attention in meetings [122]. The

meeting project at Microsoft developed a distributed meeting system that supports live broadcast

of audio and video meeting data [28]. The CHIL (Computers In the Human Interaction Loop)

project (http://chil.server.de/servlet/is/101/) develops systems that gather all relevant

information (speech, faces, people, writing, emotion, etc.), and model and interpret human activity,

behavior, and actions to better serve what a human really needs within indoor environments. The

goal of the VACE (Video Analysis and Content Extraction) project is to answer questions such as

“who was at the meeting?”, “what is the relationship between participants?”, and “what events took

place?”, using both visual and audio cues. The IDIAP smart meeting room related projects (IM2,

M4, AMI) are investigating how information from meetings can be captured, stored, structured,

queried, and browsed using multimodal sensors, human interaction analysis, and development of

user interfaces [86].

Meetings can be characterized by their multimodal nature. In the context of meetings, research
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tasks related with speech, the main modality in meetings, such as speech recognition, speaker

segmentation and clustering, topic detection, and dialogue modelling, are being actively researched

[70, 87, 126, 109]. Research tasks based on visual processing, such as face detection, tracking and

recognition, and focus of attention detection, have also been examined in [127, 28]. Besides these

research topics, text analysis, gestures recognition, and facial expressions recognition, as well as

many other audio-only, visual-only and audio-visual research tasks can be identified in the meeting

scenario. Some research topics in meetings are summarized in Table 2.1.

2.2 Related Work

Research shows that high complexity information is mostly exchanged through face-to-face inter-

actions [4]. In this thesis, we use meeting as a study case of human interactions. In particular, we

focus on the following three tasks: group action modeling, dominance modeling, and unusual event

modeling. Next, we describe related work on the three tasks separately.

2.2.1 Related Work: Group Action Modeling

Learning-based approaches for the automatic interpretation of human activities in videos have

been used for the past ten years. Most works have focused on supervised learning methods, which

define models for specific activities that suit the goal in a particular domain, and use statistical

methods for recognition. Predominately, the recognition of individual actions [120], or interaction

involving few people [99, 59] has been investigated using visual features [46, 59, 99, 120, 133],

although some work in the speech community can also be categorized as interaction recognition [56,

131]. In [56], recognition of a specific kind of interaction in meetings (agreement vs. disagreement)

has been addressed using both word-based features (such as the total number of words, and the

number of “positive” and “negative” keywords), as well as prosodic cues (such as pause, frequency

and duration). In [131], the relationship between “hot spots” (defined in terms of participants

highly involved in the discussion) and dialogue acts has been examined using contextual features

(such as speaker identity or type of the meeting), and lexical features (such as utterance length and

perplexity).

Regarding statistical models, most of the existing work has used Hidden Markov Models (HMMs)
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[106], and extensions, including coupled HMMs, input-output HMMs, multi-stream HMMs, and

asynchronous HMMs (see Chapter 3 for a review of models). Although the basic HMM, a discrete

state-space model with an efficient learning algorithm, works well for temporally correlated se-

quential data, it is challenged by a large number of parameters, and the risk of over-fitting when

learned from limited data [97]. This situation might occur in the case of multimodal group action

recognition where, in the simplest case, possibly large vectors of audio-visual features from each

participant are concatenated to define the observation space [80, 81].

The above problem is general, and has been addressed using hierarchical representations [134,

33, 97]. In [134], an approach for unsupervised discovery of multi-level video structures using hi-

erarchical HMMs was proposed, in the context of sports videos. In this model, the higher-level

structure elements usually correspond to semantic events, while the lower-level states represent

variations occurring within the same event. In [33], two methods for meeting structuring from

audio were presented, using multilevel DBNs. The first DBN model decomposes group actions

in meetings as sequences of sub-actions which have no explicit meanings, and obtained from the

training process. The second DBN model processes independently features of different nature, and

integrates them at a higher level. In both [134, 33], the low-level actions have no obvious interpre-

tation, and the number of low-level actions is a model parameter learned during training, or set

by hand, which makes the structure of the models difficult to interpret. In [97], a layered HMMs

were proposed to model multimodal office activities involving only mainly one person at various

time granularities. The lowest layer captures one video and two audio channels, plus keyboard

and mouse activity features; the middle layer classifies audio-visual features into basic events like

“speech”,“music”, “one person”, “nobody” , etc. Finally, the highest layer uses the outputs of previous

layers to recognize office activities with longer temporal extent. In this way, actions at different

semantic levels and with different time granularities have been modeled with a cascade pyramid of

HMMs. This hierarchical representation has been tested in SEER, a real-time system for recogniz-

ing typical office activities, and produced improvement over a simple baseline HMM.

In the meeting scenario, there is recently a large body of work of automatically segmentation

and recognition of group meeting actions using dynamic Bayesian network (DBN) and artificial

neural networks (ANN) [130, 29, 142, 1, 108]. In chapter 4 and 5, we present our own work on

group action recognition and clustering.
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2.2.2 Related Work: Dominance Modeling

According to Merriam-Webster Online (www.m-w.com), influence is ‘the power to direct the thinking

or behavior of others’, and dominance is ‘controlling power or influence over others’. Obviously, these

two words are closely related. Social psychology has studied the concepts of influence and domi-

nance arising from group discussions for several years. One theory is called Status Characteristics

and Expectation states theory [14]. According to it, if members of a group are either observable

or known to be differentiated with respect to social status (occupation, age, race, or gender), the

group’s influence ranking will be correlated with variations in social status. The theory assumes

that in the course of problem solution seeking, solutions offered by those of higher social status are

most likely to be correct. Another theory is called Two Process Theory [96]. This theory assumes

that variations in demeanor are correlated with influence. Variations in assertiveness and other

components of demeanor explain attainment of positions in the eventual rankings. Finally, social

psychologists also found that the unequal distribution of amounts of verbal participation, the direc-

tionality of initiation of speech exchanges and the rates of addressing the group as a whole are also

correlated with influence [8, 51].

Although the literature on modelling and understanding the concepts of dominance and in-

fluence in multi-party interaction is abundant, very few attempts to automatically estimate such

quantities in real discussions have been made so far [9, 111, 140]. Regarding influence, exist-

ing approaches assume that (1) this high-level concept can potentially be deduced from low and

mid-level signal observations [107], and (2) such observations present regularities (patterns) that

models for recognition and discovery are able to extract. Basu et al. [9] described an approach for

automatic discovery of influence, in a multi-sensor lounge room where people played interactive

debating games, using the influence model. This model is a Dynamic Bayesian Network (DBN)

which regards group interactions as a group of Markov chains, each of which influences the others’

state transitions. Although this model is a tractable option, it has the limitation that it only models

influence between pairs of players, and does not explicitly model the group as such.

In another work, Rienks et al. [111] recently proposed a supervised learning approach. The

method was based on the formulation of the problem as a three-class classification task in which,

through manually annotated data, meeting participants are labelled as having high, normal or low

dominance, using a Support Vector Machine (SVM). A number of features related to speaker-turns
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and their content were extracted for each participant from speaker-turn segmentations, speech

transcriptions, and addressing labels, all of which were manually produced.

In Chapter 6, we propose the team-player influence model to quantitatively investigate the in-

fluence of individual players on their team. In the proposed model, the player level represents the

actions of individual players. The team level represents group-level actions. The explicit hierarchy

in the model allows for the estimation of the influence of each of the players on the team state, and

the distribution of player-to-team influence is automatically learned from data in an unsupervised

fashion.

2.2.3 Related Work: Unusual Event Modeling

In some event detection applications, events of interest occur over a relatively small proportion of

the total time: e.g. alarm generation in surveillance systems, and extractive summarization of raw

video events. The automatic detection of temporal events that are relevant, but whose occurrence

rate is either expected to be very low or cannot be anticipated at all, constitutes a problem which

has recently attracted attention in computer vision and multimodal processing under an umbrella

of names (abnormal, unusual, or rare events) [121, 141, 21]. In this thesis, we employ the term un-

usual event, which we define as events with the following properties: (1) they seldom occur (rarity);

(2) they may not have been thought of in advance (unexpectedness); and (3) they are relevant for a

particular task (relevance).

There is a large amount of work on event detection. Most works have been centered on the

detection of predefined events in particular conditions using supervised statistical learning meth-

ods, such as HMMs [99, 22, 128], and other graphical models [19, 84, 58, 52]. In particular, some

recent work has attempted to recognize highlights in videos, e.g., sports [113, 22, 128]. In our view,

this concept is related but not identical to unusual event detection. On one hand, typical high-

light events in most sports can be well defined from the sports grammar and, although rare, are

predictable (e.g., goals in football, home-runs in baseball, etc). On the other hand, truly unusual

events (e.g. a blackout in the stadium) could certainly be part of a highlight.

Fully supervised model-based approaches are appropriate if unusual events are well-defined

and enough training samples are available. However, such conditions often do not hold for unusual

events, which render fully supervised approaches ineffective and unrealistic. To deal with the
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problem, an HMM approach was proposed in [21] to detect unusual events in aerial videos. Without

any models for usual activities, and with only one training sample, unusual event models are hand-

coded using a set of predefined spatial semantic primitives (e.g. “close” or “adjacent”). Although

unusual event models can be created with intuitive primitives for simple cases, it is infeasible for

complex events, in which primitives are difficult to define.

As an alternative, unsupervised approaches for unusual event detection have also been proposed

[121, 141]. In a far-field surveillance setting, the use of co-occurrence statistics derived from motion-

based features was proposed in [121] to create a binary-tree representation of common patterns.

Unusual events were then detected by measuring aspects of how usual each observation sequence

was. The work in [141] proposed an unsupervised technique to detect unusual human activity

events in a surveillance setting, using analysis of co-occurrence between video clips and motion /

color features of moving objects, without the need to build models for usual activities.

In Chapter 7, we propose a semi-supervised adapted HMM framework for unusual event model-

ing. Our work attempts to combine the complementary advantages of supervised and unsupervised

learning in a probabilistic setting. On one hand, we learn a general usual event model exploit-

ing the common availability of training data for such an event type. On the other hand, we use

Bayesian adaptation techniques to create models for unusual events in an iterative, data-driven

fashion, thus addressing the problem of lack of training samples for unusual events, without rely-

ing on pre-defined unusual event sets.

2.3 Summary

In this chapter, we presented a summary of research tasks in meetings. We also described some

related work on the three problems: group action modeling, dominance modeling and unusual event

modeling.

Now that the problems and related work have been introduced, we will focus in the next chapters

on computational models. In the next chapter, we will introduce probabilistic graphical models.
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Chapter 3

Probabilistic Graphical Models

3.1 Introduction

The following quotation, from the preface of [38], provides a very concise introduction to graphical

models.

Graphical models are a marriage between probability theory and graph theory. They

provide a natural tool for dealing with two problems that occur throughout applied math-

ematics and engineering – uncertainty and complexity – and in particular they are play-

ing an increasingly important role in the design and analysis of machine learning algo-

rithms. Fundamental to the idea of a graphical model is the notion of modularity – a

complex system is built by combining simpler parts. Probability theory provides the glue

whereby the parts are combined, ensuring that the system as a whole is consistent, and

providing ways to interface models to data. The graph theoretic side of graphical mod-

els provides both an intuitively appealing interface by which humans can model highly-

interacting sets of variables as well as a data structure that lends itself naturally to the

design of efficient general-purpose algorithms.

Many of the classical multivariate probabilistic systems studied in fields such as

statistics, systems engineering, information theory, pattern recognition and statistical

mechanics are special cases of the general graphical model formalism – examples in-

clude mixture models, factor analysis, hidden Markov models, Kalman filters and Ising

21
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models. The graphical model framework provides a way to view all of these systems as

instances of a common underlying formalism. This view has many advantages – in par-

ticular, specialized techniques that have been developed in one field can be transferred

between research communities and exploited more widely. Moreover, the graphical model

formalism provides a natural framework for the design of new systems.

The primary goal of this chapter is to present a coarse introduction to graphical models, and

to point the reader to the relevant literature on the topic, with an emphasis on various dynamic

Bayesian networks (DBNs) and their connections.

This chapter is organized as follows. Section 3.2 describes directed graphical models (i.e. Bayesian

networks). From Section 3.2.1 to Section 3.2.12, we describe various dynamic Bayesian networks.

We sum up the relationships of various DBN models in Section 3.2.13. We then describe their ad-

vantages in Section 3.2.14. Section 3.3 introduces undirected graphical models, and Section 3.4

briefly describes computations, i.e. inference, decoding and learning, in graphical models. Conclu-

sions are drawn in Section 3.5.

3.2 Directed Graphical Models

A basic concept in probability theory is that a physical domain can be completely characterized

by the joint probability distribution function (PDF) of all the random variables in the domain. A

directed graphical model (i.e. a Bayesian network) of a physical domain represents the causal rela-

tionship between random variables, i.e., it explicitly “factorizes” the random variables set, in terms

of conditional probability distributions, to simplify the computation of joint PDFs. In a directed

graphical model, each node represents a variable, and the arc from one node A to another node B

indicates statistical dependence, and can be informally interpreted as indicating that A “causes” B.

The lack of possible arcs in the model encode conditional independencies. In particular, given the

model structure, the joint probability distribution is given by

p(x1, ..., xn) =

n∏

i=1

p(xi|pa(xi)) (3.1)

where xi denotes the variable node, and pa(xi) denotes the parent of node xi.



3.2. DIRECTED GRAPHICAL MODELS 23

W

YX

Z

Figure 3.1. A BN represent the joint distribution of four variables: {W, X, Y, Z}. W and X are independent variables, Y
only depends on W , and Z depends on both X and Y . The joint PDF is P (W, X, Y, Z) = P (W )P (X)P (Y |W )P (Z|X,Y ).

For example, Figure 3.1 shows a Bayesian network (BN) representing a physical domain with

four variables: {W, X, Y, Z}. We can see that W and X are independent variables, Y only depends

on W , and Z depends on both X and Y . The joint PDF is given by

P (W, X, Y, Z) = P (W )P (X)P (Y |W )P (Z|X, Y ). (3.2)

A dynamic Bayesian network (DBN) is a Bayesian network with the same structure unrolled

in the time axis as shown in Figure 3.2. The DBNs themselves are still Bayesian networks in

nature, but they are generally considered as state-space representations which model the system

state dynamics by observed variables, though it is not necessarily required that the system states

be modeled explicitly as “hidden nodes” (Hidden nodes are nodes whose values are not known).

Their periodic structure can be taken advantage of to simplify the computation. Hidden Markov

models (HMMs) and Kalman filters can be considered as special types of DBNs. They both have

system states represented explicitly as hidden nodes. HMMs are DBNs with discrete state nodes,

while Kalman filters are DBNs with continuous state and observation nodes.

Although we will focus on temporal domain DBNs in this thesis, BNs can in fact also be unrolled

in the spatial domain and other domains. It is also possible to change the structure of the Bayesian

network at each time slice, which is called dynamic Bayesian multi-nets as discussed in [16].

Next, we will briefly describe various DBN examples proposed to address specific applications

and to overcome certain limitations of the traditional HMM. Table 3.1 summarizes these DBN
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Figure 3.2. A dynamic Bayesian network (DBN) representation by unrolling a Bayesian network (BN) in the temporal
domain.

Table 3.1. Comparison of various dynamic Bayesian networks (DBN) with respect to representation, inference and
learning (Note that the columns of ‘state’ and ‘observation’ indicate the number of state and observation sequences
respectively. Note: 1Ascent, rather than descent, since we are trying to maximize log-likelihood. 2The Junction tree
algorithm is equivalent to the classic Forward-Backward algorithm for HMMs.

Representation Inference
Model

state observation exact approximate
Learning

HMM 1 1

Multi-observation HMM 1 > 2 Boyen-Koller algorithm Expectation

Hierarchical HMM > 2 1 Factored Frontier algorithm -Maximization

Input-output HMM 1 2 Loopy belief propagation (EM)

Asynchronous HMM 1 > 2 Variational methods

Multi-stream HMM > 2 1 Junction Particle Filtering Gradient

Factorial HMM > 2 1 tree Markov Chain ascent1

Coupled HMM > 2 > 2 algorithm2 Monte Carlo (MCMC)

Influence Model > 2 > 2

Dynamic Bayesian Multi-net > 2 > 2

Mixed-memory Markov Model > 2 > 2

Dynamical System Trees > 2 > 2
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models concerned with representation, inference and learning. Our descriptions are mainly focused

on model semantics. We then describe the general graphical model learning and inference in Section

3.4.

To facilitate description, we first define the following notations:

• N : the total number of sequences.

• O
(i)
t : the observation of the ith sequence at time t.

• O
a
t : the observation of the audio sequence at time t.

• O
v
t : the observation of the video sequence at time t.

• S
(i)
t : the hidden state of the ith sequence at time t.

• X: the input sequence (used in input-out HMMs, see Section 3.2.4).

• θ: the model parameters.

3.2.1 Hidden Markov Models

HMMs [106], as shown in Figure 3.3, are the simplest case of DBNs, with one observation variable

(in black) and one hidden variable (in white). As in all BNs, the joint probability of observation and

hidden variables is defined by P (xi|pa(xi)), which in the case correspond to the so-called transition

and emission probabilities of HMMs, given by







P (St|St−1)

P (Ot|St).
(3.3)

HMMs have been widely used in modeling time series, including speech recognition [105], natu-

ral language processing [92], traffic surveillance [42], protein modeling [30], musical analysis/synthesis

[34], visual gesture recognition [135], and numerous others.

3.2.2 Multi-Observation Hidden Markov Models

Multi-Observation HMMs, as shown in Figure 3.4, can be used to factorize the observation space,

i.e., different observations for different sequences. If these observation sequences are independent
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Figure 3.3. Hidden Markov Model: one observation variable and one hidden variable at each time slice. Black nodes
indicate observation variables, while white nodes indicate hidden variables.

Figure 3.4. Multi-Observation Hidden Markov Model: multiple observation variables and one hidden variable at each
time slice.

of each other, the observation probability can be expressed as a product of individual observation

probabilities. Hence, while the transition probabilities are the same as HMMs, the emission prob-

abilities are modeled as a factorized distribution, that is,







P (St|St−1)

P (Ot|St) =
∏N

i=1 P (O
(i)
t |St).

(3.4)

3.2.3 Hierarchical Hidden Markov Models

The Hierarchical HMMs [41], as shown in Figure 3.5, are designed to model domains with hier-

archical structure and/or dependencies at multiple length/time scales. Hierarchical HMMs have

multiple “levels” of states which describe input sequences at different levels of granularity. For ex-

ample, for the task of text information retrieval, the top level of the HMMs represent sentences at

the level of phrases, and the lower level of the HMMs represent sentences at the level of individual

words.

Hierarchical HMMs have been used for text information retrieval [118] and video content anal-

ysis [134].
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Level 1

Level 2

Level 3

Figure 3.5. Hierarchical Hidden Markov Model (a three level case), multiple levels of states which describe input se-
quences at different levels of granularity. Note that this graph should not be confused with the other dynamic Bayesian
models we introduce in this chapter. Other models are represented as slices evolving over time.

Figure 3.6. Input-Output Hidden Markov Model, modeling the input-output sequence pair.

3.2.4 Input-Output Hidden Markov Models

Input-output HMMs [13], as shown in Figure 3.6, model the input-output sequence pair. The ad-

vantages of input-output HMMs over HMMs mainly lie in two aspects [13]: (i) When the output

sequence is discrete, the training criterion is discriminant, since input-output HMMs use the max-

imum a posteriori criterion. (ii) We expect long-term dependencies to be more easily learned in

input-output HMMs than in HMMs, because the transition probabilities are less ergodic (i.e., the

state variable does not “mix” and forget past contexts as quickly).

The emission and transition probabilities of input-output HMMs are given by







P (St|St−1, Xt)

P (Ot|St, Xt),
(3.5)
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Stream 1

Stream 2

A B C

A B C

Figure 3.7. Asynchrony between streams: stream 1 and stream 2 describe the same sequence of three states A−B−C,
but there is some asynchrony between them.

where O is the output (observations), and X is the input observed as well as output O. Input-output

HMMs are a probabilistic mapping from inputs, X1:T , to outputs, O1:T .

Input-output HMMs have been used for hand gesture recognition [64], EEG rhythms modeling

[23], and synthesizing facial animation from an input audio sequence [76].

3.2.5 Asynchronous Hidden Markov Models

Asynchronous HMMs [11] were proposed to handle the possible asynchrony between observation

streams. For instance, assume there are two streams (taking audio and video as example) describ-

ing the same sequence of three events A − B − C, as shown in Figure 3.7. There is asynchrony

between them because the best piecewise stationary alignment of each stream to the sequence

A − B − C do not coincide temporally with each other.

Asynchronous HMMs [11] combine two streams by learning the joint distribution of pairs of

sequences when these sequences are not synchronized and are not of the same length or rate. The

asynchronous HMMs model the joint distribution of the two streams by maximizing the likelihood

of L observation sequences as follows (taking audio-visual streams as an example),

θ∗ = arg max
θ

L∏

l=1

P (Oa
l ,Ov

l , τt|θ). (3.6)

The additional hidden synchronization variable τt can be seen as alignment between sequences O
a
l

and O
v
l . With the hidden variable τt and using several reasonable independence assumptions, the

model in [11] can factor the joint likelihood of the data and the hidden variables into several simple

conditional distributions, which makes the model tractable using the EM algorithm. The Viterbi

algorithm can be used to obtain the optimal state sequence as well as the alignment between the

two sequences.

Asynchronous HMMs have been used for audio-visual speech recognition and the task of multi-
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Figure 3.8. Factorial Hidden Markov Model, linking multiple Markov chains through a common output emission stream.

modal authentication [11].

3.2.6 Multi-stream Hidden Markov Models

Multi-stream HMMs combine several sequences where each stream is modeled independently.

Multi-stream HMMs have been widely used in audio-visual speech recognition [36, 89].

We take audio and video streams as an example. Let θ∗ = (θ∗a, θ∗v) be the best model parameters

to maximize the likelihood of audio-only and visual-only sequences respectively, trained based on,

θ∗a = arg max
θa

L∏

l=1

P (Oa
l |θa). (3.7)

θ∗v = argmax
θv

L∏

l=1

P (Ov
l |θv). (3.8)

The final classification is based on the fusion of the outputs of the two sequences by estimating

their joint occurrence as follows:

P (Oa+v
l |St) = P (Oa

l |St, θa)ωP (Ov
l |St, θv)

(1−ω), (3.9)

where the weighting factor ω(0 ≤ ω ≤ 1), which represents the relative reliability of one of the two

streams, is often chosen manually based on expert knowledge.
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Figure 3.9. Coupled Hidden Markov Model, directly linking hidden states of multiple interacting processes.

3.2.7 Factorial Hidden Markov Models

Factorial HMMs [47], as shown in Figure 3.8, enrich the representation power of hidden states by

indirectly linking multiple Markov chains through a common output emission stream. Factorial

HMMs are used to model one sequence in a complicated way, rather than explore the interaction or

dependency between two sequences. The emission and transition probabilities of factorial HMMs

are given by







P (St|St−1) =
∏N

i=1 P (S
(i)
t |S(i)

t−1)

P (Ot|S(1)
t , S

(2)
t ...S

(K)
t ) =

∏N
i=1 P (Ot|S(i)

t )
(3.10)

Factorial HMMs have been successfully applied to the visual tracking problem [43].

3.2.8 Coupled Hidden Markov Models

Coupled HMMs, as shown in Figure 3.9, directly link hidden states of multiple interacting processes

that have Markovian temporal dynamics which generate different output emission streams. The

state of one model at time t depends on the states of all models (including itself) at time t − 1. This

is probably a natural structure one can come up with. For N individual HMMs coupled together,



3.2. DIRECTED GRAPHICAL MODELS 31

the state transition probability and emission probability is given by,







P (S
(i)
t |S(1)

t−1, S
(2)
t−1, ..., S

(N)
t−1), for i = 1, ..., N

P (O
(i)
t |S(i)

t ), for i = 1, ..., N.
(3.11)

Therefore, the state transition probability is described by a N + 1 dimensional matrix and the

number of free parameters for this transition probability matrix is M (N+1) (where M is the number

of states for each individual HMMs, and assume the number of hidden states M is the same for all

models), which is exponential in the number of models coupled together. Obviously, this is not a

desirable feature because it makes accurate parameter learning very difficult.

Coupled HMMs directly link hidden Markov chains together so they can influence each other in

time. But, unlike simpler models, this involves untractable inference and may require sampling or

other approximation methods.

Murphy [72, 94] has used coupled HMMs for two different applications: freeway traffic modeling,

and audio-visual speech recognition (AVSR). Oliver [98] applied coupled HMM to Tai-Chi gesture

recognition (two-hand gesture interactions).

3.2.9 The Influence Model

Coupled HMMs become intractable for more than two streams. The Influence model [5, 9, 24]

simplifies the joint probability of coupled HMMs into a combination of pairwise conditional proba-

bilities,







P (S
(i)
t |S(1)

t−1, S
(2)
t−1, ..., S

(N)
t−1) =

∑N
j=1 αjiP (S

(i)
t |S(j)

t−1), , for i = 1, ..., N

P (O
(i)
t |S(i)

t ), , for i = 1, ..., N.
(3.12)

In [9, 24], the influence model was used to analyze speaking turn-taking patterns in order to

determine how much influence one participant has on the others. In other words, αji is regarded

as the influence of the jth participant on the ith participant. In [5], the influence model has been

applied to complex control systems, such as power stations.
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3.2.10 Dynamic Bayesian Multi-nets

Dynamic Bayesian multi-nets [16] are motivated by model structure learning. Although a fully-

connected graphical model can represent any probability distribution representable by a sparsely

structured one, a graphical model should represent a dependence between two random variables

only when necessary, where “necessary” depends on the problem domain. There are many reasons

for not using such a fully connected model: (i) there are fewer computational and memory require-

ments for sparse network structures than the fully-connected structure; and (ii) learning a sparse

network needs less training examples and less prone to over-fitting; and (iii) the resulting struc-

ture might be easier to interpret, thus reveal high-level knowledge about the underlying problem

domain.

A dynamic Bayesian multi-net can be thought of as a network where edges can appear or dis-

appear depending on the values of certain nodes in the graph. Dynamic Bayesian multi-nets can

be implemented by the use of “switching parents”. The basic idea of switching parents is as fol-

lows: a variable, SG in this case, has a set of parents {Q, S1 · · ·SN}. Q is the switching parent that

determines what other parents should change (or switch) conditioned on the current value of the

switching parent. Figure 3.10 shows the case where variable Q switches the parents of SG among

{S1 · · ·SN}, corresponding to the probability distribution,

P (SG|S1 · · ·SN ) =

N∑

i=1

P (SG, Q = i|S1 · · ·SN) (3.13)

=

N∑

i=1

P (Q = i|S1 · · ·SN )P (SG|Si · · ·SN , Q = i) (3.14)

=

N∑

i=1

P (Q = i)P (SG
t |Si

t) (3.15)

From Equation 3.14 to Equation 3.15, we made the following two assumptions: (i) Q is indepen-

dent of {S1 · · ·SN}, and (ii) when Q = i, SG
t only depends on Si

t.

3.2.11 Mixed-Memory Markov Models

Mixed-memory models [115] are motivated to decompose a complex model into simpler ones. For

example, a mixed-memory model could decompose a higher-order Markov model (assuming the
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Figure 3.10. Switching parents: when Q = 1, S1 is the only parent of SG; when Q = 2, S2 is the only parent of SG. Q is
called a switching parent of SG, and {S1 · · ·SN} are conditional parents of SG.

Figure 3.11. Dynamical System Trees, describing multiple processes that interact via a hierarchy of aggregating pro-
cesses.

current state depends only on the K preceding states), say, K-order, into mixtures of first-order

Markov models, i.e., P (St|St−1St−2 · · ·St−K) =
∑K

i=1 αiP (St|St−i).

We can see that the mixed-memory Markov model and the influence model use the same strategy

to reduce complex models with large state spaces into a combination of simpler ones with smaller

state spaces. Mixed-memory Markov models have been used for automatic language identification

[68].

3.2.12 Dynamical System Trees

Dynamical system trees (DSTs), as illustrated in Figure 3.11, were proposed in [60] as a flexible

model for describing multiple processes that interact via a hierarchy of aggregating processes. DSTs

extend nonlinear dynamical systems to the scenario of an interacting group. Various individual

processes interact as communities and sub-communities in a tree structure that is unrolled in time.
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[60] provides tractable inference and learning algorithms for arbitrary DSTs topologies via an

efficient structured mean-field algorithm. The diverse applicability of DSTs is demonstrated on two

data sets: gene expression data and a data set of group behavior in the setting of an American

football game.

3.2.13 Relationships Between Various DBNs

Above, we described various DBN examples. Although these DBNs are quite different in terms of

model structure, there are strong relationships among them, summarized as follows.

First, complex DBN models can be constructed from simple DBN models by adding more nodes

(representing random variables) and edges between nodes (denoting direct dependencies between

the corresponding variables). For example, we can add more observation variables (assuming inde-

pendence from each other) in a hidden Markov model in order to form a multi-observation hidden

Markov model.

Second, training of complex DBN models can be performed on simple DBN models, and these

simple models can then be used to construct complex models in which learning and inference are

performed. That is, we can often break down the task of training a complex DBN model into a

number of simpler subproblems, which is called ‘divide and conquer’.

Finally, we also notice that there are similarities among some of the above DBN models. For

example, coupled HMMs, influence models, mixed-memory models and dynamic Bayesian multi-

nets have a similar representation, but have been independently reported in the literature [16,

115, 68, 98, 5, 9, 24]. The relationships between these DBN models are summarized as follows:

(i) Dynamic Bayesian multi-nets were motivated by the model selection, i.e., learning the model

structure from the data; (ii) a dynamic Bayesian multi-net can be thought of as a network where

edges can appear or disappear depending on the values of certain nodes in the graph; (iii) there-

fore, dynamic Bayesian multi-nets are more general. Mixed-memory models, the influence models,

coupled HMMs can be viewed as special cases of dynamic Bayesian multi-nets.
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3.2.14 Advantages of DBNs

Dynamic Bayesian networks (DBNs) are attractive modeling tools for many applications because

they combine a natural mechanism for expressing contextual knowledge with the power of efficient

algorithms for statistical learning and inference.

We list some advantages of DBNs over the standard HMM, a special and simplest case of DBNs.

• Flexibility of the model structure: In comparison to HMMs which only allow one hidden

node and one observation node at each time slice, general DBNs allow arbitrary structures

at each time slice: (i) At each time slice, there could be more than one observation node. (ii)

Similarly, unlike the one-hidden-node requirement as in the HMM, there can be more than

one hidden nodes representing the corresponding state of the physical world in a DBN. All

the nodes of a DBN can be directly mapped from corresponding interpretations. Although this

flexibility of model structure will introduce a larger computational complexity, it makes DBNs

applicable to many situations.

• Easy incorporation of expert knowledge: The causal relations of nodes in DBNs can be

encoded using expert knowledge. In this case, the nodes are not necessarily fully connected:

unlink nodes are independent of each other. This simplifies the computation of the joint prob-

ability distribution of a complex system with many variables.

• Easy interpretation of hidden variables: For many applications, hidden variables of

DBNs represent semantic concepts, thus may have physical interpretations.

Now we see that, using DBNs, we are able to represent, and hence learn much more complex

models of sequential data. At the same time, we need to keep in mind that the price of using

complex models is the increased algorithmic and computational complexity.

3.3 Undirected Graphical Models

Graphical models can be divided into two types: those based on directed graphs, and those based

on undirected graphs. Up to now, we have discussed directed graphical model only. Next, we will

describe undirected graphical model.
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Figure 3.12. Examples of undirected graphical models.

An undirected graphical model, as shown in Figure 3.12, also known as Markov random field, is

a pair (φ, G), where G is an undirected graph, and φ is a set of factors corresponding to the cliques

in G. A clique C is a subset C ⊆ V such that (i, j) ∈ E for all i, j ∈ C. A clique is maximal if it is not

contained within any other clique. For example, in Figure 3.12 (B), (1) {4, 5} is a maximal-clique;

(2) {4} is a clique; (3) {1, 2} is a clique; (4) {1, 2, 3} is a maximal-clique. Since we construct the graph

to reflect the structure of the factors in φ, graph separation implies independence and vice versa.

The graphical structure of a Markov random field may be used to factorize the joint distribution

elements of φ into a normalized product of strictly positive, real-valued potential functions, derived

from the notion of conditional independence. Each potential function operates in a subset of the

random variables represented by vertices in G. The joint distribution of a Markov random field is

defined by,

p(x) =
1

Z

∏

c∈C

ϕC(xC) (3.16)

where C is the set of maximal cliques in the graph. ϕC(xC) is a potential function (a positive,

but otherwise arbitrary, real-valued function) on the clique xC , and Z is the normalization factor,

defined as:

Z =
∑

x

∏

c∈C

ϕC(xC). (3.17)

In theory the structure of graph G may be arbitrary, provided it represents the conditional

independencies in the label sequences being modeled. However, when modeling sequences, the
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Figure 3.13. Conditional Random Fields: the hidden nodes can depend on observations at any time step, thus relaxing
the independence assumptions required by HMMs.

simplest and most common graph structure encountered is that in which the nodes corresponding

to elements form a simple first-order chain, as illustrated in Figure 3.13, that is called linear-chain

conditional random fields (CRFs). Next, we will focus our discussion on CRFs and their extensions.

3.3.1 Conditional Random Fields and Extensions

As a specific case of undirected graphical models, conditional random fields (CRFs), shown in Fig-

ure 3.13, were introduced originally by [74] for modeling sequences. Recently, there has been an

explosion of interest in CRFs, with successful applications including text processing [124, 103, 117],

bio-informatics [114, 77], and computer vision [71, 54].

The underlying idea of CRFs is that of defining a conditional probability distribution over la-

bel sequences given a particular observation sequence, rather than a joint distribution over both

label and observation sequences in HMMs. The primary advantage of CRFs over hidden Markov

models is their conditional nature, resulting in the relaxation of the independence assumptions

required by HMMs in order to ensure tractable inference. Additionally, CRFs avoid the label bias

problem: the transitions leaving a given state compete only against each other, rather than against

all other transitions in the model [74] – a weakness exhibited by maximum entropy Markov models

(MEMMs) and other conditional Markov models based on directed graphical models.

Let X = {x1, x2, ...xT } be the observed input data sequence. Let Y be a set of states, each of

which associated with a label and {y1, y2, ...yT } be a sequence of states. Linear-chain CRFs thus

define the conditional probability of a state sequence given an input sequence to be

P (Y |X) =
1

Zo

exp(
T∑

t=1

Fθ(yt, yt−1, X)), (3.18)

where Zo is a normalization factor over all state sequences. CRFs are thus a function of exponenti-
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Figure 3.14. Dynamic Conditional Random Fields, which has linear chains of labels with connections between co-
temporal labels. Note that the dashed line indicates that the hidden nodes can depend on observations at any time
step.

Figure 3.15. Hidden Random Fields (HRF), an undirected version of the IOHMM. The Markov assumption is made regard-
ing the latent nodes and each label node is conditionally independent of all other nodes given its associated latent
node. Note that the dashed line indicates that the hidden nodes can depend on observations at any time step.

ated feature functions Fθ, computed in terms of weighted sums over the features of the cliques. In

particular, it is often decomposed as follows,

Fθ(yt, yt−1, X) =
∑

j

λjtj(yt−1, yt, X, t) +
∑

k

µksk(yt, X, t)), (3.19)

where tj(yt−1, yt, X, t) is a transition feature function of the entire observation sequence and the

labels at positions t and t−1 in the label sequence; sk(yt, X, t) is a state feature function of the label

at position t and the observation sequence; and λj and µk are parameters to be estimated from

training data.

The form of a CRF, as given in Equation 3.18, is heavily motivated by the principle of maxi-

mum entropy – a framework for estimating probability distributions from a set of training data.
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Figure 3.16. Graphical model representation of restricted Boltzmann machines - Conditional Random Fields (RBM-
CRF). The local classifier maps image regions to label variables, while the hidden variables corresponding to regional
and global features form an undirected model with the label variables. Note that features and labels are fully inter-
connected, with no intra-layer connections (restricted Boltzmann machine). This figure is from [54].

The entropy of a probability distribution is a measure of uncertainty and is maximized when the

distribution in question is as uniform as possible. The principle of maximum entropy asserts that

the only probability distribution that can justifiably be constructed from incomplete information,

such as finite training data, is that which has maximum entropy subject to a set of constraints rep-

resenting the information available. Any other distribution will involve unwarranted assumptions

[62].

Several special cases of conditional random fields are of particular interest.

First, dynamic conditional random fields (D-CRF) [123], shown in Figure 3.14, are sequence

models which allow multiple labels at each time step, rather than single label as in linear-chain

CRFs.

Second, relational Markov networks [124] is a type of general CRFs in which the graphical struc-

ture and parameter typing are determined by an SQL-like (Structured Query Language) syntax.

Third, hidden random fields (HRF), shown in Figure 3.15, was introduced by Kakade, Teh and

Roweis [65], and can be viewed as an undirected version of the Input-output HMM. The Markov

assumption is made regarding the latent nodes and each label node is conditionally independent of

all other nodes given its associated latent node.

Last, restricted Boltzmann machines - Conditional Random Fields (RBM-CRF), as shown in

Figure 3.16, which uses restricted Boltzmann machines (RBMs) [119] to represent the features,

was proposed by He, Zemel and Carreira-Perpinan [54] in the context of multi-scale CRFs for image
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labeling.

3.4 Graphical Model Computations

The three problems for standard HMMs also play central roles in the computation concerning gen-

eral graphical models.

• Problem 1 – Likelihood computation: Given the graphical model M parameterized by θ,

how do we compute the likelihood of a sequence:

P (OT
1 |θ), (3.20)

where OT
1 = {o1, o2, · · · , oT }. It can be solved by inference algorithms: exact inference, such

as the junction tree algorithm, and approximation inference, such as variational methods [48]

and Markov Chain Monte Carlo (MCMC) methods [50].

• Problem 2 – Decoding: Given the graphical model M parameterized by θ, how do we choose

a state sequence S = {s1, s2, · · · , sT } so that P (O, S|θ) is maximized.

S∗ = arg max
S

P (O, S|θ). (3.21)

This is essentially an optimization problem, which can be solved by dynamic programming

Viterbi algorithm [125].

• Problem 3 – Parameter learning: Given the graphical model M parameterized by θ, in-

cluding the model structure, how do we best estimate the parameters θ, so that P (O|θ) is

optimized given observation sequences O:

θ∗ = argmax
θ

N∏

i=1

P (O(i)|θ). (3.22)

where N is the number of observation sequences. It can be solved using gradient ascent [117],

Expectation-Maximization (EM) [31], or generalized Expectation-Maximization (GEM) [93]

algorithms.
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The algorithmic solutions to those three problems constitute a great amount of research in the

field of machine learning. The detailed discussion of the computation for general graphical models

is beyond the scope of this thesis. Readers could refer to contents in [38].

3.5 Summary

This chapter briefly reviewed the theory of probabilistic graphical models, and presented various

directed and undirected graphical models. We discussed connections between various models that

had previously been considered quite different, thus promoting the viewpoint that graphical mod-

els provide a unified and useful framework for a large class of problems involving probabilistic

inference.

In the next chapters, we will focus on how to develop probabilistic graphical models to solve our

three problems – group action modeling, dominance modeling, unusual event modeling. We first

introduce the multi-layer framework for group action recognition.
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Chapter 4

Group Action Modeling:

Recognition

In this chapter, we address the problem of recognizing sequences of human interaction patterns in

meetings, with the goal of structuring them in semantic terms. The investigated patterns are inher-

ently group-based (defined by the individual activities of meeting participants, and their interplay),

and multimodal (as captured by cameras and microphones). By defining a proper set of individ-

ual actions, group actions can be modeled as a two-layer process, one that models basic individual

activities from low-level audio-visual features, and another one that models the interactions. We

propose a two-layer Hidden Markov Model (HMM) framework that implements such concept in a

principled manner, and that has advantages over previous works. First, by decomposing the prob-

lem hierarchically, learning is performed on low-dimensional observation spaces, which results in

simpler models. Second, our framework is easier to interpret, as both individual and group actions

have a clear meaning, and thus easier to improve. Third, different HMM models can be used in each

layer, to better reflect the nature of each subproblem. Our framework is general and extensible, and

we illustrate it with a set of 14 group actions, using a public five-hour meeting corpus. Experiments

and comparison with a single-layer HMM baseline system show its validity.

43
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4.1 Introduction

Devising computational frameworks to automatically infer human behavior from sensors consti-

tutes an open problem in many domains. Moving beyond the person-centered paradigm [120],

recent work has started to explore multi-person scenarios, where not only individual but also group

actions or interactions become relevant [44, 59, 99, 10].

Group activity plays a key role in meetings [126, 87], and this is documented by a significant

amount of work in social psychology [83]. Viewed as a whole, a group shares information, engages

in discussions, and makes decisions, proceeding through diverse communication phases both in

single meetings and during the course of a long-term teamwork [83]. Recognizing group actions is

therefore useful for browsing and retrieval purposes [126, 80], e.g., to structure a meeting into a

sequence of high-level items.

Interaction in meetings is inherently group-based [83] and multimodal [69]. In the first place,

we can view a meeting as a continuous sequence of mutually exclusive group actions taken from an

exhaustive set [80, 33]. Each of these group actions involves multiple simultaneous participants,

and is thus implicitly constrained by the actions of the individuals. In the second place, as the prin-

cipal modality in meetings, speech has recently been studied in the context of interaction modeling

[56, 131, 33]. However, work analyzing the benefits of modeling individual and group actions using

multiple modalities has been limited [10, 80, 81, 100], despite the fact that actions in meetings,

both at the individual (e.g., note-taking or talking), and at the group level (e.g. dictating) are often

defined by the joint occurrence of specific audio and visual patterns.

In this chapter, we present a two-layer HMM framework for group action recognition in meet-

ings. The fundamental idea is that, by defining an adequate set of individual actions, we can

decompose the group action recognition problem into two levels, from individual to group actions.

Both layers use HMMs or extensions. The goal of the lower layer is to recognize individual actions

of participants using low-level audio-visual (AV) features. The output of this layer provides the in-

put to the second layer, which models interactions. Individual actions naturally constitute the link

between the low-level audio-visual features and high-level group actions. Similarly to continuous

automatic speech recognition, we perform group action recognition directly on the data sequence,

deriving the segmentation of group actions in the process. Our approach is general, extensible, and
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brings improvement over previous work, which reflects on the results obtained on a public meeting

corpus, for a set of 14 group actions based on multimodal turn-taking patterns.

This chapter is organized as follows. Section 4.2 introduces the multi-layer framework. Sec-

tions 4.3 and 4.4 describe the meeting data, and the feature extraction process. Experiments and

discussion are presented in Section 4.5. Conclusions are drawn in Section 4.6.

4.2 Group Action Recognition

In this section, we first introduce our computational framework. We then apply it to a specific set

of individual and group actions. Finally, we describe some specific details.

4.2.1 Framework Overview

Our framework is based on the use of Hidden Markov Models (HMMs) and some of their exten-

sions. HMMs have been used with success for numerous sequence recognition tasks, including

speech recognition [106]. HMMs introduce a hidden state variable and factorize the joint distribu-

tion of a sequence of observations and the state using two simpler distributions, namely emission

and transition distributions. Such factorization yields efficient training algorithms such as the

Expectation-Maximization algorithm (EM) [31] which can be used to select the set of parameters to

maximize the likelihood of several observation sequences. In our work, we use Gaussian Mixture

Models (GMMs) to represent the emission distribution.

The success of HMMs applied to sequences of actions is based on a careful design of sub-models

(distributions) corresponding to lexical units (phonemes, words, letters, actions). Given a training

set of observation sequences representing meetings for which we know the corresponding labeling

(but not necessarily the precise alignment), we create a new HMM for each sequence as the con-

catenation of sub-model HMMs corresponding to the sequence of actions. This new HMM can then

be trained using EM and will have the effect of adapting each sub-model HMM accordingly. When

a new sequence of observation features of a meeting becomes available, the objective is to obtain

the optimal sequence of sub-model HMMs (representing actions) that could have generated the

given observation sequence. An approximation of this can be done efficiently using the well-known

Viterbi algorithm [125]. This process therefore leads to the recognition of actions directly on the
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Figure 4.1. The two-layer framework applied to meeting action recognition: the lower layer recognizes individual
actions of participants using low-level audio-visual (AV) features. The output of this layer provides the input to the
second layer, which models interactions. Individual actions naturally constitute the link between the low-level audio-
visual features and high-level group actions.

data sequence, generating the action boundaries in the process.

In our framework, we distinguish group actions (which belong to the whole set of participants)

from individual actions (belonging to specific persons). Our ultimate goal is the recognition of group

activity, and so individual actions should act as the bridge between group actions and low-level

features, thus decomposing the problem in stages. The definition of both action sets is thus clearly

intertwined.

Let I-HMM denote the lower recognition layer (individual action), and G-HMM denote the up-

per layer (group action). I-HMM receives as input AV features extracted from each participant,

and outputs recognition results, either as soft or hard decisions (Section 4.2.4). In turn, G-HMM

receives as input the output from I-HMM, and a set of group features, directly extracted from the

raw streams, which are not associated to any particular individual. In our framework, each layer

is trained independently, and can be substituted by any of the HMM variants that might capture

better the characteristics of the data, more specifically asynchrony [11], or different noise condi-

tions [36] between the audio and visual streams. Our approach is summarized in Figure 4.1. The

training procedure is described in later sections.

Compared with a single-layer HMM, the layered approach has the following advantages, some

of which were previously pointed out by [97]: (1) a single-layer HMM is defined on a possibly large

observation space, which might face the problem of over-fitting with limited training data. It is im-

portant to notice that the amount of training data becomes an issue in meetings where data label-

ing is not a cheap task. In contrast, the layers in our approach are defined over small-dimensional

observation spaces, resulting in more stable performance in cases of limited amount of training

data. (2) The I-HMMs are person-independent, and in practice can be trained with much more data
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from different persons, as each meeting provides multiple individual streams of training data. Bet-

ter generalization performance can then be expected. (3) The G-HMMs are less sensitive to slight

changes in the low-level features because their observations are the outputs of the individual action

recognizers, which are expected to be well trained. (4) The two layers are trained independently.

Thus, we can explore different HMM combination systems. In particular, we can replace the base-

line I-HMMs with models that are more suitable for multi-modal asynchronous data sequences,

with the goal of gaining understanding of the nature of the data (Section 4.2.3). The framework

thus becomes simpler to understand, and amenable to improvements at each separate level. (5)

The framework is general and extensible to recognize new group actions defined in the future.

4.2.2 Definition of Actions

As an implementation of the proposed framework, we define a set of group actions and individual

actions in this section. On one hand, a set of group actions is defined based on multi-modal turn-

taking patterns [81]. A solid body of work in social psychology has confirmed that, in the context of

group discussions, speaker turn patterns convey a rich amount of information about the dynamics

of the group and the individual behaviour of its members, including trends of influence, dominance,

and interest [83, 102, 40]. While speaking turns are obviously described mainly by audio informa-

tion, significant information also exists in non-verbal cues. Work in the literature has studied how

participants coordinate speaking turns via an ensemble of multimodal cues, such as gaze, speech

back-channels, changes in posture, etc. [102, 95]. From a different perspective, recognizing multi-

modal group turn-taking is also useful for meeting structuring, for access and retrieval purposes.

The list of group actions is defined in Table 4.1. Note that we consider a “monologue” or a

“presentation” as a group action, because we define it as the joint occurrence of several individ-

ual patterns (e.g., one person speaks while the others listen to her). For meeting browsing and

indexing, it might be also desirable to know which specific participant is doing a monologue in the

meeting. Therefore, we further divide the “monologue” action into “monologue1”, “monologue2”,

etc., according to the number of participants. In a similar way, we divide the “monologue+note-

taking” action into “monolgue1+note-taking”, “monologue2+note-taking”, and so on. Thus, for a

four-participant meeting, a set of NG = 14 group actions has been defined as: NG = { discussion,

monologue1, monologue1 + note-taking, monologue2, monologue2 + note-taking, monologue3, mono-
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Table 4.1. Description of group actions

Discussion most participants engaged in conversations

one participant speaking
Monologue

continuously without interruption

Monologue+ one participant speaking continuously

Note-taking others taking notes

Note-taking most participants taking notes

one participant presenting
Presentation

using the projector screen

Presentation+ one participant presenting using

Note-taking projector screen, others taking notes

one participant speaking
White-board

using the white-board

White-board+ one participant speaking using

Note-taking white-board, others taking notes

logue3 + note-taking, monologue4, monologue4 + note-taking, note-taking, presentation, presentation

+ note-taking, whiteboard, whiteboard + note-taking } . These group actions are multimodal, and

commonly found in meetings. For modeling purposes, they are assumed to define a partition (i.e.,

the action set is non-overlapping and exhaustive). This set is richer compared to the one that we de-

fined in [81], as it includes simultaneous occurrence of actions, like “monologue+note-taking” which

could occur during real situations, like dictating or minute-taking. The group actions we defined

here can be easily described by combinations of a proper set of individual actions defined in the

following. Our framework is general, and other type of group actions could be defined. Note that

high-level group actions in semantic terms (e.g. agreement / disagreement) would certainly require

language-based features [56].

On the other hand, we define a small set of NI = 3 multimodal individual actions which, as

stated earlier, will help bridge the gap between group actions and low-level AV features. The list

appears in Table 4.2. While the list of potentially interesting individual actions in meetings is large,

our ultimate goal is recognition of the group-level actions defined in Table 4.1. It is interesting to

note that, although at first glance one would not think of “speaking” or “writing” as multimodal,

joint sound and visual patterns do occur in these cases and are useful in recognition, as the results

in later sections confirm.

Finally, meeting rooms can be equipped with white-boards or projector screens which are shared

by the group. Extracting features from these group devices also helps recognize group actions. They

constitute the group features described in the previous subsection. Their detailed description will
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Table 4.2. Description of individual actions

Speaking one participant speaking

Writing one participant taking notes

Idle one participant neither speaking nor writing

Table 4.3. Relationships between group actions, individual actions and group features. Symbol “⋆′′ indicates that the
white-board or projector screen are in use when the corresponding group action takes place. Symbol “/′′ indicates
that the number of participants for the corresponding action is not certain. The numbers (0,1,...) indicate the number
of involved meeting participants in the group action

Individual Actions Group Features
Group Actions

speakingwriting idle white-boardprojector

discussion >2 / /

monologue 1 0 /

monologue+note-taking 1 >=1 /

note-taking 0 >2 0

presentation 1 0 / ⋆

presentation+note-taking 1 >=1 / ⋆

white-board 1 0 / ⋆

white-board+note-taking 1 >=1 / ⋆

be presented in section 4.4.

The logical relations between individual actions, group actions, and group features are summa-

rized in Table 4.3. The group actions can be seen as combinations of individual actions plus states

of group devices. For example, “presentation + note-taking” can be decomposed into “speaking” by

one individual, with more than one “writing” participant, while the group device of projector screen

is in use. Needless to say, our approach is not rule-based, but Table 4.3 is useful to conceptually

relate the two layers.

In the next sections, we present some details about the architecture of our framework. To facili-

tate description, we first define the following symbols:

• O
a: a sequence of audio-only feature vectors.

• O
v: a sequence of visual-only feature vectors.

• O
a+v: a sequence of concatenated audio-visual feature vectors.

• o1:t , o1,o2, ...,ot: a sequence (audio, visual, or audio-visual stream) up to time t.

• qt: the HMM state at time t



50 CHAPTER 4. GROUP ACTION MODELING: RECOGNITION

4.2.3 Individual Action Models

We investigate three models for the lower-layer I-HMM, each of which attempts to model specific

properties of the data. The investigated models are:

Early Integration HMM (Early Int.), where a basic HMM [106] is trained on combined AV

features. This method involves aligning and synchronizing the AV features to form one concate-

nated set of features which is then treated as a single stream of data. The concatenation simply

defines the audio-visual feature space as the cartesian product of the audio and video feature spaces,

creating vectors which first contain the components of the audio feature vector, followed by the com-

ponents of the video feature vector. Early integration selects the set of parameters θ∗i of the model

corresponding to action i that maximizes the likelihood of L audio-visual observation sequences as

follows:

θ∗i = arg max
θi

L∏

l=1

P (Oa+v
l |θi). (4.1)

Audio-visual Multi-Stream HMM (MS-HMM), which combines the audio-only and visual-

only streams. Each stream is modeled independently. θ∗i = (θ∗i,a, θ∗i,v) are the best model parameters

for action i to maximize the likelihood of audio-only and visual-only sequences respectively.

θ∗i,a = arg max
θi,a

L∏

l=1

P (Oa
l |θi,a). (4.2)

θ∗i,v = arg max
θi,v

L∏

l=1

P (Ov
l |θi,v). (4.3)

For testing, we create a special HMM by recombing all the single-stream HMM likelihoods at

various specific temporal points. Depending on these recombination points, various solutions ap-

pear. When the models are recombined after each state, the underlying system is equivalent to

making the hypothesis that all streams are state-synchronous and independent of each other given

the state. A more powerful recombination strategy enables some form asynchrony between the

states of each stream: one could consider an HMM in which states could include all possible combi-

nations of the single-stream HMM states. However, this strategy quickly becomes intractable since
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the total number of states of this model would be exponential in the number of streams. We use the

first combination strategy in our experiments.

The final classification is based on the fusion of the outputs of both modalities by estimating

their joint occurrence [36], as follows:

P (Oa+v
l |qt) = P (Oa

l |qt, θi,a)ωP (Ov
l |qt, θi,v)(1−ω), (4.4)

where the weighting factor ω(0 ≤ ω ≤ 1) represents the relative reliability of the two modalities.

Audio-visual Asynchronous HMM (A-HMM), which also combines audio-only and visual-

only streams, by learning the joint distribution of pairs of sequences when these sequences are not

synchronized and are not of the same length or rate [11]. This situation could occur in the meeting

scenario at the group level when, for instance, an individual starts playing her role before the rest

of the group. A similar situation could happen at the individual level between the audio and visual

streams. For instance, it is known that the movements of the face are not synchronized with the

actually uttered speech of a person [79]. Furthermore, in a conversational setting, a person tends to

move before taking a turn, and often stops gesticulating before finishing speaking as a turn-yielding

signal [35]. Being able to stretch some streams with respect to others at specific points could thus

yield performance improvement The A-HMM for action i models the joint distribution of the two

streams by maximizing the likelihood of L observation sequences as follows:

θ∗i = arg max
θi

L∏

l=1

P (Oa
l ,Ov

l |θi). (4.5)

Furthermore, while normal HMM optimization techniques integrate the likelihood of the data

over all possible values of the hidden variable (which is the value of the state at each time step),

asynchronous HMMs also integrate this likelihood over all possible alignments between observa-

tion sequences, adding a new hidden variable τt = s meaning that observation o
a
t is aligned with

observation o
v
s . With the hidden variable τt and using several reasonable independence assump-

tions, [11] can factor the joint likelihood of the data and the hidden variables into several simple

conditional distributions, which makes the model tractable using the EM algorithm. The Viterbi

algorithm can be used to obtain the optimal state sequence as well as the alignment between the

two sequences.
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4.2.4 Linking the Two Layers

Obviously, a mechanism to link the two HMM layers has to be specified. There are two approaches

to do so, based on different I-HMM outputs. Let at = (at
1, ..., a

t
NI

) ∈ IRNI denote a vector in a

continuous space of dimension equal to the number of individual actions, which indicates the degree

of confidence in the recognition of each individual action at time t for a sequence o1:t.

The first approach directly outputs the probability P t
k for each individual action model Mk, k =

1, ..., NI , as input feature vector to G-HMM, at
k = P t

k for all k. We refer to it as soft decision.

In soft decision, we define P t
k as the posterior probability of model Mk given a sequence o1:t. It

can be computed in two steps. In the first step, we compute the probability of having generated

the sequence and being in the state i at time t. We denote this probability as ρ(i, t). For different

I-HMMs, the probability ρ(i, t) is computed in different ways.

• Early integration normal HMM:

ρ(i, t) = P (o1:t, qt = i), (4.6)

which is equivalent to the forward variable α(i, t) , P (o1:t, qt = i) in the standard Baum-Welch

algorithm [106]. o1:t could be audio-only, visual-only or audio-visual stream.

• Multi-stream HMM: ρ(i, t) is calculated as follows,

ρ(i, t) = P (oa
1:t,o

v
1:t, qt = i) (4.7)

(4.8)

which is estimated in the multi-stream context by

ρ(i, t) = P (oa
1:t, qt = i)ωP (ov

1:t, qt = i)1−ω, (4.9)

where o
a
1:t is the audio-only sequence and o

v
1:t is the visual-only sequence. ω is the weighting

factor defined in Equation (4.4).
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• Asynchronous HMM: ρ(i, t) is calculated as follows,

ρ(i, t) =

t+△t
∑

s=t−△t

P (oa
1:t,o

v
1:s, qt = i, τt = s), (4.10)

where △t is the size of a sliding window centered at current time t. The variable τt = s can be

seen as the alignment between sequence o
a
1:t (audio-only stream) and o

v
1:s (visual-only stream).

In the second step, we normalize the probability ρ(i, t) for all states of all the models in order to

obtain the posterior for each model. The probability P (qt = i|o1:t) of state i given a sequence o1:t is

P (qt = i|o1:t) =
P (qt = i,o1:t)

P (o1:t)
(4.11)

=
P (qt = i,o1:t)

∑NS

j=1 P (qt = j,o1:t)
(4.12)

=
ρ(i, t)

∑NS

j=1 ρ(j, t)
, (4.13)

where Ns is the number of all states for all models.

With this, the probability P t
k of model Mk given a sequence o1:t is then computed as

P t
k =

∑

i∈Mk

P (qt = i|o1:t) (4.14)

=
∑

i∈Mk

ρ(i, t)
∑NS

j=1 ρ(j, t)
, (4.15)

where i is the state in model Mk, which is a subset of the states of all models. The probability P t
k of

model Mk is the sum of the probabilities of all states in model Mk.

In the second approach, the individual action model with the highest probability outputs a value

of 1, while all other models output a zero value. The vector at generated in this way is used as input

to G-HMM. We refer to it as hard decision.

We concatenate the individual recognition vectors from all participants, together with the group-

level features, into a (NI ×NP + NGF )-dimensional vector (where NP is the number of participants,

and NGF is the dimension of the group features) as observations to G-HMM for group action recog-

nition.
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4.2.5 Group Action Models

We investigate two models for the group action layer: one is the standard HMM, and another is

conditional random fields (CRFs). We have described basic ideas of conditional random fields in

Section 3.3.1.

Recently, there has been an explosion of interest in conditional random fields, as a successful

alternative to HMMs. Conditional random fields are theoretically more powerful, and have the

following advantages over HMMs:

• An HMM is a generative model, assigning a joint probability to paired observation and label

(or hidden state) sequences. Thus, the HMM parameters are typically trained to maximize the

joint likelihood of training samples. CRF is a conditional model that is trained to maximum

the posterior probability of the label sequence given the observation sequence.

• HMMs must make very strict independence assumptions on the observations given the cur-

rent state for computational tractability. CRFs relax such assumption. CRFs have the great

flexibility to include a wide variety of arbitrary, non-independent features as input.

4.3 Meeting Database

We used the publicly available meeting corpus first described in [80], which was collected in a meet-

ing room equipped with synchronized multi-channel audio and video recorders (publicly available

at http://mmm.idiap.ch/). The sensors include three fixed cameras and twelve microphones

[86]. Two cameras have an upper-body, frontal view of two participants including part of the table.

A third wide-view camera captures the projector screen and white-board. Audio was recorded us-

ing lapel microphones for all participants, and an eight-microphone array placed in the center of

the table. The complex nature of the audio-visual information present in meetings will be better

appreciated by looking directly at the above website. A snapshot of the three camera views, and

the visual feature extraction is shown in Figure 4.2. The corpus consists of 59 short meetings of

five-minute average duration, with four participants per meeting. The group action structure was

scripted before recording, so part of the group actions labels we define were already available as

part of the corpus. However, we needed to relabel the rest of the group actions (e.g. monologues into
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Figure 4.2. Multi-camera meeting room and visual feature extraction

either monologues or monologues+note-taking), and to label the entire corpus in terms of individ-

ual actions. All ground-truth was produced using Anvil, a publicly available video annotation tool

(http://www.dfki.de/∼kipp/anvil/).

4.4 Feature Extraction

In this section, we describe the process to extract the two types of AV features: person-specific AV

features and group-level AV features. The former are extracted from individual participants. The

latter are extracted from the whiteboard and projector screen regions.

4.4.1 Person-Specific AV Features

Person-specific visual features were extracted from the cameras that have a close view of the partic-

ipants. Person-specific audio features were extracted from the lapel microphones attached to each

person, and from the microphone array. The complete set of features is listed in Table 4.4.

Person-specific visual features. For each video frame, the raw image is converted to a skin-

color likelihood image, using a 5-component skin-color Gaussian mixture model (GMM). We use

the chromatic color space, known to be less variant to the skin color of different people [136]. The

chromatic colors are defined by a normalization process: r = R
R+G+B

, g = G
R+G+B

. Skin pixels

were then classified based on thresholding of the skin likelihood. A morphological postprocessing

step was performed to remove noise. The skin-color likelihood image is the input to a connected-
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component algorithm (flood filling) that extracts blobs. All blobs whose areas are smaller than

a given threshold were removed. We use 2-D blob features to represent each participant in the

meeting, assuming that the extracted blobs correspond to human faces and hands. First, we use

a multi-view face detector to verify blobs corresponding to the face. The blob with the highest

confidence output by the face detector is recognized as the face. Among the remaining blobs, the

one that has the rightmost centroid horizontal position is identified as the right hand (we only

extracted features from the right hands since the participants in the corpus are predominately

right-handed). For each person, the detected face blob is represented by its vertical centroid position

and eccentricity [120]. The hand blob is represented by its horizontal centroid position, eccentricity,

and angle. Additionally, the motion magnitude for head and right hand are also extracted and

summed into one single feature.

Person-specific audio features. Using the microphone array and the lapels, we extracted two

types of person-specific audio features. On one hand, speech activity was estimated at four seated

locations, from the microphone array waveforms. The seated locations are expressed as 3-D vec-

tors in Cartesian coordinates, measured with respect to the microphone array in our meeting room.

These vectors correspond to the location where people are typically seated. One measure was com-

puted per seat location. The speech activity measure coming from each seated location was the

SRP-PHAT (Steered Response Power-Phase Transform) measure, an increasingly popular tech-

nique used for acoustic source localization due to its suitability for reverberant environments [32].

SRP-PHAT is a continuous value that indicates the speech activity at a particular location. On the

other hand, three acoustic features were estimated from each lapel waveform: energy, pitch and

speaking rate. We computed these features on speech segments, setting a value of zero on silence

segments. Speech segments were detected using the microphone array, because it is well suited

for multiparty speech. We used the SIFT algorithm [78] to extract pitch, and a combination of

estimators [88] to extract speaking rate.

4.4.2 Group AV Features

Group AV features were extracted from the white-board and projector screen regions. Given the

constrained topology of a real meeting room, most people will naturally tend to occupy the same

regions when making a presentation or using the whiteboard. The features are listed in Table 4.4.
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Table 4.4. Audio-visual feature list
Description

SRP-PHAT from each seat

Audio speech relative pitch

speech energy

Person- speech rate

Specific head vertical centroid
Features head eccentricity

right hand horizontal centroid
Visual

right hand angle

right hand eccentricity

head and hand motion

SRP-PHAT from white-board

Group
Audio

SRP-PHAT from projector screen

Features mean difference from white-board
Visual

mean difference from projector screen

Group visual features. These were extracted from the camera that looks towards the white-

board and projector screen area. We first get difference images between a reference background

image and the image at each time, in the white-board and projector screen regions (Figure 4.2). On

these difference images, we use the average intensity over a grid of 16 × 16 blocks as features.

Group audio features. These are SRP-PHAT features extracted using the microphone array from

two locations corresponding to the white-board and projector screen.

4.5 Experiments

In this section, we first describe the measures used to evaluate our results, and then present results

for both individual action recognition and group action recognition.

4.5.1 Performance Measures

We use the action error rate (AER) and the frame error rate (FER) as measures to evaluate the

results of group action recognition and individual action recognition, respectively.

AER is equivalent to the word error rate widely used in speech recognition, and is defined

as the minimum sum of insertions (Ins: symbols that were not present in a ground truth se-

quence, but were decoded in the recognized sequence), deletions (Del: symbols that were present

in a ground truth sequence, but were not decoded in the recognized sequence), and substitution

(Sub: symbols that were present in a ground truth sequence, but were decoded as a different

symbol in the recognized sequence), divided by the total number of actions in the ground-truth,
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Ground-truth

Recognized Actions     

          Action1          Action2          Action1          Action2

          Action1       Action2          Action1                    Action2

Figure 4.3. AER is not a meaningful assessment for small number of actions.

AER = Sub+Del+Ins
total actions

× 100%. This is obtained by applying a dynamic programming technique

comparing the obtained sequence of labels with the expected one. It is also often called the “edit

distance” or the “Levenshtein distance”.

For group action recognition, we have NG = 14 possible actions which in many cases have no

clear-cut temporal boundaries. Furthermore, at least five actions occur in each meeting in the

corpus. We believe that AER is thus a good measure to evaluate group action recognition, as we

are more interested in the recognition of the correct action sequence rather than the precise time

alignment of the recognized action segments.

However, AER overlooks the time alignment between recognized and target action segments.

For individual action recognition, there are only NI = 3 possible actions. Furthermore, some

streams (participants) in the corpus consist of only two individual actions (e.g., a person who talks

only once during the course of a meeting). AER might not provide a meaningful assessment in such

cases. As shown in Figure 4.3, AER equals zero because the recognized actions and the ground-

truth actions have the same sequential order. But obviously, the result in Figure 4.3 is not perfect.

Therefore, it is necessary to verify that the temporal alignment of the recognized actions with an-

other measure, especially for the case in which the total number of actions is small.

In this view, we adopt FER as the performance measure for individual action recognition. FER is

defined as one minus the ratio between the number of correctly recognized frames and the number

of total frames, FER = (1 − correct frames
total frames

) × 100%. This measure reflects well the accuracy of the

boundaries (begin and end time) of the recognized actions, compared to manually labeled action

boundaries.

With limited number of training and testing actions, results are likely to vary due to the random

initialization of the training procedure (based on Expectation-Maximization [106]). For this reason,

and to assess consistency in the results, we report the mean and standard deviation (STD) for AER
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and FER, computed over 10 runs with random initialization of the EM procedure.

Finally, we also use confusion matrices, whose rows and columns index the recognized and

ground-truth actions, respectively. The element cij of the confusion matrix corresponds to either

the percentage (for individual actions) or the instances (for group actions) of action j recognized as

action i. The confusion matrix for group actions is based on AER, so there are substitution, inser-

tion, and deletion errors. For individual actions, there are neither insertions nor deletions because

the performance measure is FER.

4.5.2 Experimental Protocol

For both individual and group action recognition, we use 6-fold cross-validation on the training set

to select the values of the model parameters that are not estimated as part of the EM algorithm.

In a HMM/GMM architecture, these include the number of states per action, and the number of

components (Gaussians) per state. In 6-fold cross-validation, we divided the data into 6 subsets of

approximately equal size. We then train the models six times with different parameter configura-

tions, each time leaving out one of the subsets from training, and using only the omitted subset

to compute the corresponding performance measure (FER for individual actions, AER for group ac-

tions). The parameters resulting in the best overall performance were selected, and used to re-train

the models on the whole training set.

For group actions, as described in [80], two disjoint sets of eight people each, whose identities

were known, were used to construct the training and test sets. Each meeting was recorded using a

randomly chosen 4-person combination within each of the sets. With this choice, no person appears

in both the training and the test set. For individual actions, the original 8-people set in the training

set was further split into two disjoint subsets at each time during the cross-validation procedure.

One of these subsets was used to extract the streams belonging to the training set. The other subset

was used to create the validation set. With this choice, we ensure that the data extracted from the

same person is not used to both train and validate the individual action models.

From the 59 meetings, 30 are used as training data, and the remaining 29 are used for testing.

The number of frames (NF ) and number of actions (NA) for individual action and group action in

the different data sets are summarized in Table 4.5. The number of individual actions is much

larger than that of group actions. There are two reasons. First, for individual action recognition,
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Table 4.5. Number of frames (NF ) and number of actions (NA) in different data sets.
train test

Individual Actions
NF NA NF NA

speaking 35028 1088 33747 897

writing 15803 363 27365 390

idle 127569 1426 112488 1349

total 178400 2877 173600 2636

train test
Group Actions

NF NA NF NA

discussion 17760 48 14450 49

monologue 7615 26 7585 26

monologue + note-taking 6260 17 6695 23

note-taking 640 6 320 3

presentation 3170 6 3345 9
presentation + note-taking 3455 5 3865 9

white-board 2155 5 265 1

white-board + note-taking 3545 11 6875 19

total 44600 124 43400 139

there are four participants for each meeting. Therefore, there are 30 × 4 = 120 streams for training

and 29 × 4 = 116 streams for testing. Second, the duration of individual actions is typically shorter

than that of group actions.

4.5.3 Individual Action Recognition

The three methods described in Section 4.2.3 were tested for individual action recognition.

• Early integration (Early Int.), trained on three feature sets: audio-only, visual-only. and

audio-visual.

• Audio-visual multi-stream HMM (MS-HMM), combining individual audio and visual streams.

Audio and visual streams are modeled independently. The final classification is based on the

fusion of the outputs of both modalities by estimating their joint occurrence (Section 4.2.3).

• Audio-visual asynchronous HMM (A-HMM), combining individual audio and visual streams

by learning the joint distribution of pairs of sequences when these sequences are not synchro-

nized (Section 4.2.3).

Multi-stream HMMs allow us to give different weights to different modalities (see Equation

4.4). Following the discussion presented in [81], we use (0.8,0.2) to weight the audio and visual

modalities, respectively. For asynchronous HMM, the allowed asynchrony ranges from ±2.2s using

simple reasonable a priori knowledge.
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Table 4.6. Results of individual action recognition
Method Features FER (%) STD

Visual 34.17 3.64

Early Int. Audio 23.48 2.70
Audio-visual 9.98 2.65

MS-HMM Audio-visual 8.58 1.76

A-HMM Audio-visual 7.42 1.13

The summary of the results for all the individual action recognition models is presented in Table

4.6, in terms of FER mean and standard deviation, obtained over 10 runs (as described earlier, each

run starts with a random initialization of the EM training procedure).

From Table 4.6, we observe that all methods using AV features produced less than 10% FER,

which is about 15% absolute improvement over using audio-only features, and about 25% absolute

improvement over using visual-only features. Asynchronous HMM produced the best result. Given

that the total number of frames is over 43, 000, the improvement using asynchronous HMM over the

other HMM methods is statistically significant with a confidence level above 99%, using a standard

proportion test [49]. The improvement suggests that there exist asynchronous effects between the

audio and visual modalities. Additionally, we tested the MS-HMM system with an equal-weight

scheme (0.5, 0.5). The performance decreased compared to the MS-HMM with larger weight on

audio (0.8 and 0.2, see earlier discussion). This is not surprising given the predominant role of

audio in the defined actions.

The confusion matrices for visual-only, audio-only, and audio-visual streams, corresponding to

a randomly chosen single run, are shown in Tables 4.7, 4.8, and 4.9, respectively. We can see

that “speaking” is well detected using audio-only features, and that “writing” is well detected using

visual-only features. Using audio-visual features, both “speaking” and “writing” are generally well

detected. Using AV features, “writing” tends to get confused with “idle”, which in turn is the action

with the highest FER. This is likely due to the catch-all role that this action plays. In practice, “idle”

includes all other possible AV patterns, (e.g. pointing, laughing, etc.), which makes its modeling

more difficult, compared with the other two well-defined actions.

In order to empirically investigate asynchronous effects in the individual actions, we performed

forced alignment decoding on the audio-only and visual-only streams independently. A similar ap-

proach was taken to establish empirical evidence for asynchrony in multi-band automatic speech

recognition in [85]. The decoder in each stream was constrained by the ground-truth individual



62 CHAPTER 4. GROUP ACTION MODELING: RECOGNITION

Table 4.7. Confusion matrix of recognized individual actions (using visual-only features) Rows: recognized actions.
Columns: ground-truth

Speaking Writing Idle

Speaking 51.92% 3.00% 8.22%

Writing 45.87% 85.93% 34.65%

Idle 2.21% 11.07% 57.13%

Table 4.8. Confusion matrix of recognized individual actions (using audio-only features) Rows: recognized actions.
Columns: ground-truth

Speaking Writing Idle

Speaking 91.74% 1.26% 1.78%

Writing 1.16% 35.23% 22.10%

Idle 7.10% 63.51% 76.12%

action sequence, and so the output action sequences differ only in their temporal boundaries. We

calculated the time misalignment (start-time difference of corresponding actions ) between the two

sequences. Actions having absolute misalignments larger than 5s were discarded, as the misalign-

ments were more likely caused by recognition errors, rather than asynchronous effects. Figure 4.5.3

shows the resulting histogram of misalignments, assumed due to asynchronous effects, for these in-

dividual actions. The histogram can be approximated by a Gaussian distribution, with a mean of

−0.13s (effectively zero, as misalignments happened in both directions) and a standard deviation of

2.05. More than 80% of the individual actions are distributed in the range of ±2.2s (defined at the

beginning of this section), while there are 17% individual actions without any asynchronous effects

(P (t = 0) = 17%). This suggests that, for most individual actions having evidence in both streams,

allowing asynchrony between streams should more accurately model the data.

4.5.4 Group Action Recognition

Using the outputs from I-HMM and the group-level features, concatenated as described in Section

4.2.4, we investigated a number of cases for recognition of group actions listed as follows.

Table 4.9. Confusion matrix of recognized individual actions (using AV features) Rows: recognized actions. Columns:
ground-truth

Speaking Writing Idle

Speaking 94.23% 2.12% 4.73%

Writing 1.03% 89.60% 10.89%

Idle 4.74% 8.28% 84.38%
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Figure 4.4. Histogram of asynchronous effects of individual actions

• Early integration, visual-only, soft decision. A normal HMM is trained using the com-

bination of the results of the I-HMM trained on visual-only features, and the visual group

features. The soft decision criteria is used.

• Early integration, audio-only, soft decision. Same as above, but replacing visual-only by

audio-only information.

• Early integration, AV, hard decision. Same as above, but replacing visual-only by audio-

visual information. The hard decision criteria is used.

• Early integration, AV, soft decision. Same as above, but changing the criteria to link two

HMM layers.

• Multi-stream, AV, hard decision, using the multi-stream HMM approach as I-HMM. The

hard decision criteria is used.

• Multi-stream, AV, soft decision. Same as above, but changing the criteria to link two HMM

layers.

• Asynchronous HMM, AV, hard decision. We use the asynchronous HMM for individual

action layer and audio-visual features. The hard decision criteria is used.

• Asynchronous HMM, AV, soft decision. Same as above, but changing the criteria to link

two HMM layers.
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Table 4.10. Results of group action recognition
Method AER (%) STD

Visual 48.20 3.78

Single-layer HMM Audio 36.70 4.12

Audio-visual 23.74 2.97

Visual 42.45 2.85

Audio 32.37 2.10

hard 17.98 2.75
Early Int.

soft 16.55 1.40

Multi-layer HMM hard 17.27 2.01
MS-HMM

soft 15.83 1.61

hard 17.85 2.87
A-HMM

soft 15.11 1.48

HMM + CRFs 15.01 1.43

• Early integration HMM, AV, hard decision, conditional random fields. We use early

integration HMM trained on audio-visual features as individual action layer. The output

state sequence resulting from Viterbi decoding serves as the input to the group action layer

implemented by conditional random fields (CRFs).

As baseline methods for comparison, we tested single-layer HMMs, using low-level audio-only,

visual-only, and AV features as observations [80], and trained by cross-validation following the

same experimental protocol. The results appear in Table 4.10, in terms of AER mean and standard

deviation over 10 runs.

We observe from Table 4.10 that the use of AV features outperformed the use of single modalities

for both single-layer and multi-layer methods. This result supports the hypothesis that the group

actions we defined are inherently multimodal. Furthermore, the best two-layer HMM method (A-

HMM) using AV features improved the performance by over 8% compared to the AV single-layer

HMM. Additionally, the standard deviation for the two-layer approach is half the baseline’s, which

suggests that our approach might be more robust to variations in initialization, given the fact that

each HMM stage in our approach is trained using an observation space of relatively low dimen-

sion. Regarding hard vs. soft decision, soft decision produced a slightly better result, although not

statistically significant given the number of group actions. However, the standard deviation us-

ing soft-decision is again around half the corresponding one using hard-decision. The overall best

result so far we could get is using the HMM + CRFs framework. This result confirms the advan-

tage of CRFs over HMMs, as already shown by previous work on many sequence segmentation and

labeling tasks [124, 103, 117, 114, 77, 71, 54].
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Table 4.11. Confusion matrix of recognized group actions for single-layer HMM using audio-visual features. Rows: rec-
ognized actions. Columns: ground-truth

D M1 M1+N M2 M2+N M3 M3+N M4 M4+N N P P+N W W+N Del

D 45 1

M1 2 6 3

M1+N 3

M2 6 1

M2+N 2 3 1

M3 2 1

M3+N 3 7

M4 2

M4+N 3 5

N 2 1

P 6 5 1

P+N 1 3

W 1 1 1 1 2

W+N 1 17

Ins 1 1

To further analyze results, we provide the confusion matrices for single-layer HMM using AV

features, and two-layer HMM using AV, soft-decision and asynchronous HMM in Tables 4.11 and

4.12, respectively. We showed discussion (D), monologue (M1· · ·M4), monologue+note-taking (M1+N,

· · · , M4+N), note-taking (N), presentation (P), presentation+note-taking (P+N), white-board (W),

and white-board+note-taking (W+N). Empty cells represent zero values. It is evident that the two-

layer method greatly reduced the number of errors, compared with the single-layer method. For

both matrices, we see that most substitution errors come from confusions between actions with and

without note-taking. This might be mainly because several instances of “writing” could not be re-

liably detected as individual actions, as mentioned in the previous subsection. There are several

“presentation” actions confused with “white-board”, which might be because some speakers moved

around the white-board and projector-screen regions during a presentation. On the other hand,

“discussion” and “note-taking” actions can be recognized reasonably well.

4.6 Conclusions

In this chapter, meetings were defined as sequences of multi-modal group actions. We addressed the

problem of group action recognition, proposing a multi-layer framework to decompose it into two

layers. The first layer maps low-level audio-visual features into individual actions. The second layer
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Table 4.12. Confusion matrix of recognized group actions for two-layer HMM (using asynchronous HMM with soft deci-
sion). Rows: recognized actions. Columns: ground-truth

D M1 M1+N M2 M2+N M3 M3+N M4 M4+N N P P+N W W+N Del

D 44 1

M1 2 6 2

M1+N 4

M2 7

M2+N 1 5

M3 5 1

M3+N 1 6

M4 4

M4+N 1 5

N 1 3

P 6

P+N 8

W 2 2 1 1 1

W+N 1 18

Ins 1 1 1

uses results from the first layer as input to recognize group actions. Experiments demonstrate the

effectiveness of the framework to recognize a set of 14 multimodal turn-taking actions, compared to

a baseline, single-layer HMM system.

In reality, meetings are not restricted to pre-defined action sets. Furthermore, high-level group

actions in meetings can be ambiguous (and expensive) to label. In this view, modeling group actions

with unsupervised approaches, which find “action structure” in either individual meetings or whole

meeting collections, without the need for labeled data or previous knowledge of the actions, become

very attractive options. This is the subject of the next chapter.



Chapter 5

Group Action Modeling: Clustering

In this chapter, we address the problem of group action clustering using the two-layer HMM frame-

work described in Chapter 4. The goal is to create one cluster for each group action, where the

number of group actions and the action boundaries are unknown a priori. The results show that

the use of multiple modalities and the layered framework are advantageous, compared to various

baseline methods.

5.1 Introduction

A meeting can be seen as proceeding through phases, where a group disseminates information, dis-

cusses, and makes decisions [83]. In this view, a simple model can thus be used to define a meeting

as a continuous sequence of group actions (i.e., involving multiple simultaneous participants) cho-

sen from one or more pre-defined action dictionaries, which is well suited for supervised learning,

as we did in Chapter 4, as long as the action dictionaries are well defined. This implies that the

actions comprising each dictionary should be mutually exclusive, exhaustive, and unambiguous to

human observers, at least to a degree for which manually labeled data for supervised learning can

be reliably generated.

In reality, however, meetings are not restricted to pre-defined action sets. Furthermore, high-

level group actions in meetings can be ambiguous (and expensive) to label. Roughly speaking,

the degree of ambiguity correlates with the actions’ level of semantic meaning. Basic actions like
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writing or speaking can be clearly identified, group actions like discussions are more ambiguous,

and high-level actions like information sharing might be very difficult to label reliably, which could

seriously challenge supervised methods.

In this view, modeling high-level group actions with unsupervised approaches, which find “ac-

tion structure” in either individual meetings or whole collections, without the need for labeled data

or previous knowledge of the actions, become very attractive options [137, 141], especially given the

vast amount of data that is generated in many real cases. Given adequate features, clustering an in-

dividual meeting could partition it into action-consistent segments. Clustering an entire collection

could further find action-consistent clusters across meetings. Additionally, unsupervised methods

could naturally deal with variations (e.g. in the number of participants) that would otherwise need

to be modeled explicitly in supervised methods.

In this chapter, we apply the layered HMM framework for group action clustering in meetings,

as an alternative to fully supervised methodologies. In our view, our methodology constitutes an

attractive option for analysis of high-level group actions in meetings, due to its potential to deal

with actions that would otherwise be difficult to pre-define and/or expensive to label.

The multi-layer framework, action lexicon, audio-visual feature extraction process and individ-

ual action models have been described in Chapter 4. The rest of this chapter is organized as follows.

Section 5.2 introduces group action clustering. Section 5.3 presents experiments and discussion.

Concluding remarks are provided in Section 5.4.

5.2 Group Action Clustering

For group action clustering, we employ an agglomerative clustering algorithm, recently proposed in

the speech community for speaker clustering [3], and that has shown good performance for such a

task. The algorithm is based on an ergodic HMM framework with a minimum duration constraint,

where the number of clusters and segmentation boundaries are unknown a priori. Each state of

the HMM represents a cluster having several identical states in cascade in order to impose the

minimum duration constraint. A three-cluster case is illustrated in Figure 5.1.

The HMM clustering algorithm can be summarized as follows:

1. Initialization: Start by over-clustering, i.e. clustering the data into a number of clusters
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C1 C2

C3
Figure 5.1. The ergodic HMM topology with minimum duration constraint.

larger than the hypothesized number of actions. The probability density function of each

cluster is represented by a Gaussian Mixture Model (GMM) and the parameters of this GMM

are estimated using the expectation maximization (EM) algorithm. The initialization for each

distribution is done using K-means.

2. Segmentation: Obtain the segmentation automatically using the Viterbi algorithm [106] on

the current HMM topology and parameters.

3. Training: Re-estimate the parameters of all clusters based on this segmentation.

4. Merging: Search for the best candidate pair of clusters for merging based on the criterion as

follows [3]:

• Let Ma and Mb represent the number of parameters (Gaussian components) in the PDFs

of these two clusters (Da and Db) respectively.

• Let us hypothesize a new cluster having data D = Da

⋃
Db with a PDF modeled by a

GMM parameterized by θ with Ma + Mb number of Gaussian components.

• Given the above conditions, a pair of clusters (Da and Db) becomes a candidate for merg-

ing if the following is true:

log p(D|θ) ≥ log p(Da|θa) + log p(Db|θb). (5.1)

The segmentation-training-merging process is iterated until no more cluster pairs satisfy the

merging criterion.
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The HMM clustering algorithm has a number of advantages [3]. First, the final number of

clusters is decided automatically using a robust merging criterion. Secondly, instead of making

local threshold-based decisions, the HMM clustering algorithm produces a global segmentation

of the meeting video without using any pre-defined threshold, which is optimal in the maximum

likelihood sense, while avoiding the need for development data. Thirdly, the clustering algorithm

can be applied directly on the data sequences, deriving the segmentation in the process without

assumptions regarding the number of clusters and their boundaries.

The clustering algorithm can be applied to one individual meeting, as well as to a complete meet-

ing collection, with a minor difference. When clustering a collection, the features for all meetings

are concatenated. However, the inter-meeting boundaries are known a priori, so this particular

knowledge is used as part of the clustering process.

5.3 Experiments and Results

In this section, we describe our experiments and results. The meeting data set and audio-visual

feature extraction process have been described in Chapter 4. Since clustering is a different task

from recognition, we first present the performance measures used to evaluate our results. We then

present results for group action clustering and discuss our findings.

5.3.1 Performance Measures

Two measures (action error rate and frame error rate) were proposed to evaluate results of super-

vised continuous group action recognition in [33, 81]. However, these measures cannot be used for

unsupervised group action clustering because the labels of the clusters are unknown. Instead, we

use three measures used in the field of speaker clustering to evaluate our results: average cluster

purity (acp), average action purity (aap) and overall evaluation criterion K [2, 3]. These measures

are explained below. First we define:

- nij : total number of frames in cluster i by action j

- n•j : total number of frames of action j

- ni•: total number of frames in cluster i

- Na: total number of actions
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- Nc: total number of clusters

- N : total number of frames

The purity of a cluster pi• and the acp are defined as

pi• =

Na∑

j=1

n2
ij

n2
i•

, (5.2)

acp =
1

N

Nc∑

i=1

(pi• × ni•). (5.3)

Similarly, the action purity p•j and the aap are given by

p•j =

Nc∑

i=1

n2
ij

n2
•j

, (5.4)

aap =
1

N

Na∑

j=1

(p•j × n•j). (5.5)

The acp gives a measure of how well a cluster is limited to only one action, while the aap gives a

measure of how well one action is limited to only one cluster. In the ideal case, i.e. one cluster for

each group action, the value of both average action purity (aap) and average cluster purity (acp) is

one: acp = 1, aap = 1.

However, from only acp or aap taken separately, it is hard to evaluate the overall performance

because acp can achieve a high value with more clusters than really required, and aap can achieve

a high value with less clusters. In the extreme case, acp=1 if a cluster has only one frame and

aap=1 if there is only one cluster for the whole meeting. In order to facilitate comparison between

systems, an overall evaluation criterion K is defined as follows, where larger K indicates better

overall performance.

K =
√

acp × aap. (5.6)

As a percentage, the average criterion K is around 70% for the robust speaker clustering algorithm

described in [2].
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Table 5.1. Clustering results for individual meetings

Nc
Method

mean std
aap (%) acp (%) K (%)

two-layer HMM

Visual 6.20 2.19 41.4 77.0 56.8

Audio 3.10 1.12 71.3 56.1 63.7

Early Int. 3.59 0.95 69.5 71.3 70.1

MS-HMM 4.17 1.13 72.7 70.8 71.8

A-HMM 3.51 0.78 78.6 70.0 73.8

Baseline: single-layer HMM

Visual 8.72 2.17 33.6 76.1 50.6

Audio 3.03 1.94 61.1 57.8 58.6

AV 4.10 1.35 68.8 64.2 65.7

Baseline: true number of clusters (Nc = Na)

B1 64.3 60.1 62.1

B2

3.93 0.73
78.4 70.9 74.1

B2 − 1 2.93 0.73 83.5 62.7 71.8

B2 + 1 4.93 0.73 72.6 70.9 71.1

5.3.2 Results and Discussion

To test our approach, we investigated the following combinations of modalities and models for the

lower layer,

• Early integration, visual-only. The clustering algorithm was applied on the concatenation

of the results produced by an early integration I-HMM trained on visual-only features, and

the visual group features.

• Early integration, audio-only. Same as above, but replacing visual-only by audio-only

information.

• Early integration, AV. Same as above, but using AV data.

• Multi-stream, AV. Same as above, but using the MS-HMM in individual action layer.

• Asynchronous, AV. Same as above, but using the A-HMM.

Additionally, to analyze the benefit of the layered approach, we investigated a number of single-

layer clustering schemes, which use the same clustering algorithm directly applied on the low-level

features (visual, audio, and AV).

The performance regarding model selection (i.e., determination of the number of clusters) was

also studied. We define two baseline systems based on K-means (B1), and HMM clustering (B2)
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respectively, which model an “ideal” case, in which the final number of clusters is exactly the same

as the number of group actions (as indicated by the ground-truth). For these systems, the model

used for the lower layer was A-HMM, as it produced the best performance for the two-layer method

(see discussion below).

Finally, we investigated two clustering cases. In the first case, we cluster group actions for each

meeting. Usually, the number of group actions within one meeting is less than the complete set of

eight actions. In the second case, we cluster the whole test meeting collection, which produces a

segmentation for each meeting where segments belonging to the same cluster get consistent labels

across the corpus. In this case, there are eight group actions.

Parameter Selection. For the individual action layer, parameters were selected by six-fold

cross-validation, splitting the training set into training and validation subsets and selecting the

values of the hyper-parameters that maximize K (see Equation 5.6) in the validation sets. For

the group action layer, we obtained results by varying the number of initial clusters (10-30), the

number of Gaussians (5-10), and the minimum duration of each cluster (15-30s). In Tables 5.1-5.2,

the results for the number of clusters (Nc) are shown in terms of mean and standard deviation.

We report mean values for average action purity (aap) and cluster purity (acp), and for the overall

criterion (K). The results can be summarized as follows.

Single- vs. multi-modality and single- vs. two-layer HMM. For both the single- and the

two-layer cases, the use of AV features produced better results than using only one modality. Audio-

only features were more discriminant than video-only, which is not surprising given the type of

group actions we addressed. We noticed that methods using audio features got high aap and low

acp while methods using video features showed the opposite trend. This is because, according to

the ground-truth, the number of clusters (Nc) was usually underestimated using audio, while over-

estimated using visual features. Audio-only features thus seem to be described better by simpler

models, while visual-only features describe a more complex cluster structure. Additionally, the

layered approach outperformed the single-layer method under the same conditions (using one or

multiple modalities, and when clustering individual meetings or the whole data set). Given the

large total number of frames (> 43, 000), these improvements are statistically significant, which

confirms the effectiveness of the layered approach, and the multimodal nature of group actions in

meetings.
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Comparison between I-HMM methods. The analysis of the performance of the various I-

HMMs for individual action recognition is described in detail in [139], but overall, the asynchronous

HMM produced the best results. Regarding group action clustering, although multi-stream HMM

improved over early integration, the asynchronous HMM also produced the best results among all

HMM systems for the two meeting clustering cases. This indicates that the probability-based fea-

tures obtained from this model were more discriminative, and suggests the presence of asynchrony

between the audio-visual streams for individual actions. In Tables 5.1-5.2, both acp and asp of A-

HMM are above 70%. This means that more than 70% of all group actions are in the right clusters,

while more than 70% of all clusters are composed of data from the same group action.

Comparison with “ideal” baseline systems. The layered method using AV features outper-

formed the K-means baseline (B1), while performed slightly worse than HMM clustering baseline

(B2). We can also see that with a slight increase/decrease of the number of clusters, the performance

of this baseline system decreased. (In Tables 5.1-5.2, “B2 − 1” and “B2 + 1” denote the baseline sys-

tem, in which we deliberately increase or decrease the number of clusters by 1.) Interestingly,

the best two-layer HMM method outperforms these two cases, which somewhat suggests that our

approach is not too far from the “ideal” case.

Single meeting vs. entire meeting collection. The results of clustering the whole collection

are slightly worse than the results of clustering single meetings for the multimodal layered models

(between 1.6-2.0%); the degradation is more pronounced for the single-modality approaches. This

decrease in the clustering quality could be explained by the larger variation in the data (the num-

ber of meeting participants in the test set taken as a whole is 10), but mainly by the increasing

possibility of overlap between different group actions in the feature space, due to the larger number

of actions. Note however that clustering the whole corpus generates consistent action labels across

meetings; this important benefit was traded by the decrease in performance.

Model selection. For both individual meeting clustering and whole collection clustering, the

methods using AV features obtained a number of clusters closer to the true number of actions. For

the first case, there are 3.93 group actions on average in the ground-truth. The average number of

clusters found using AV features ranges from 3.51 to 4.17, which is close to the true number (Table

5.1). For the second case, there are 8 group actions in the ground-truth. The two-layer AV systems

MS-HMM and A-HMM both converged around 7 clusters (Table 5.2), which is in good accordance
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Table 5.2. Clustering results for meeting collection

Nc
Method

mean std
aap (%) acp (%) K (%)

two-layer HMM

Visual 11.67 2.16 31.0 47.2 38.2

Audio 3.50 2.65 77.7 41.4 56.7

Early Int. 10.60 1.93 70.9 65.7 68.3

MS-HMM 7.28 1.41 74.8 65.2 69.8

A-HMM 7.10 1.70 74.0 70.5 72.2

Baseline: single-layer HMM

Visual 16.33 4.08 20.2 46.3 30.6

Audio 3.16 2.40 76.1 33.6 50.6

AV 6.73 2.51 64.3 60.1 62.1

Baseline: true number of clusters (Nc = Na)

B1 47.3 51.1 49.2

B2

8 0
71.5 73.8 72.6

B2 − 1 7 0 74.5 67.1 70.7

B2 + 1 9 0 63.9 78.5 70.8

with the true number, although slightly underestimated.

To evaluate the quality of the clustering results, we display the found clusters and ground-

truth actions in Fig.5.2, for the best 13 test meetings ranked by decreasing order, based on the

criterion K (the symbol M# is the meeting index in the test set). Dashed-line rectangles denote

automatic clusters (with labels {1, 2, ...}), which are compared against the ground-truth actions

denoted by solid-line rectangles, showing discussion (D), monologue (M), monologue + note-taking

(MN), note-taking (N), presentation (P), presentation + note-taking (PN), white-board (W) and white-

board + note-taking (WN). The left and right columns of Fig.5.2 show the results of clustering

individual meetings and the entire meeting collection, respectively. For both cases, we can see

that for meetings with large overall criterion K, the obtained alignments between clusters and

actions are better. The results degrade with decreasing K. Notice that, for the case of clustering

the meeting collection (Fig.5.2: right-column), cluster labels are consistent across meetings. For

example, most clusters with label “3” correspond to “MN” (monologue + note-taking) group action,

and clusters with label“1” often correspond to the “D” (discussion) action.
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Figure 5.2. Results of clustering individual meetings (left column), and entire meeting collection (right column). Clus-
tering an individual meeting could partition it into action-consistent segments. Clustering an entire collection could
further find action-consistent clusters across meetings.

5.4 Conclusions

In this chapter, we addressed the problem of group action clustering using the layered HMM frame-

work. The first layer maps low-level audio-visual features into probability-based, individual-action

features. The second layer groups such features into clusters, which correspond reasonably well to

group actions.

In meetings, some people seem particularly capable of driving the conversation and dominating

its outcome. These people, skilled at establishing the leadership, have the largest influence on the

group decisions, and often shift the focus of the meeting when they speak. In the next chapter, we

will describe a novel dynamic Bayesian network that quantitively determines how much influence

each participant has on the outcome of the meeting.



Chapter 6

Dominance Modeling

In this chapter, we present a model that learns the influence of interacting Markov chains within

a team. The proposed model is a dynamic Bayesian network (DBN) with a two-level structure:

individual-level and group-level. The individual level models actions of each player, and the group-

level models actions of the team as a whole. Unlike existing multi-stream models, the influence

of each player on the team, which can also be interpreted as reliability in the case of data fu-

sion, is jointly learned with the rest of the model parameters in a principled manner using the

Expectation-Maximization (EM) algorithm. Experiments on two data sets: synthetic multi-player

game, and multi-party meetings show the effectiveness of the proposed model. In the first experi-

ment, we demonstrate that our model can learn reasonable influence values for players in various

synthetic multi-player games. In the second experiment, we learn the influence of each participant

in meetings using acoustic and language features. We show that the learned influence distributions

are in good accordance with the influence distributions from human judgements.

6.1 Introduction

In multi-agent systems, individuals within a group coordinate and interact to achieve a goal. For

instance, consider a basketball game where a team of players with different roles, such as attack

and defense, collaborate and interact to win the game. Each player performs a set of individual

actions, evolving based on their own dynamics. A group of players interact to form a team. Actions
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of the team and its players are strongly correlated, and different players have different influence

on the team. Taking another example, in conversational settings, some people seem particularly

capable of driving the conversation and dominating its outcome. These people, skilled at establish-

ing the leadership, have the largest influence on the group decisions, and often shift the focus of the

meeting when they speak [39]. This problem of determining how much influence one person has

on others has been studied in the context of multi-party conversations [9] and wearable computing

[24].

In this chapter, we propose a novel dynamic Bayesian network, that we call the team-player

influence model for multi-stream sequence modeling. The proposed model has a two-level structure:

In the first level, we model actions of individual players. In the second one, we model team actions

as a whole. A fundamental aspect of our model is that it explicitly learns the influence of individual

players on the team. The learned influence values have different semantic meanings for different

applications. We illustrate this on two datasets: synthetic multi-player games (Section 6.5), and

multi-party meetings (Section 6.6) for different purposes (1) a multi-player game dataset with the

goal to determine the influence of players in games, and (2) a meeting dataset aiming at determine

the influence of participants in multi-party meetings.

This chapter is organized as follows. Section 6.2 introduces the team-player influence model.

Section 6.3 reviews related models. Section 6.4 discusses implementation issues. Section 6.5

presents results on multi-player games. Section 6.6 presents results on a meeting corpus. Sec-

tion 6.7 provides concluding remarks.

6.2 The Team-Player Influence Model

The proposed model, called the team-player influence model, is a dynamic Bayesian network (DBN)

with a two-level structure: the player level and the team level (Figure 6.1). The player level rep-

resents the actions of individual players, evolving based on their own Markovian dynamics (Figure

6.1 (a)). The team level represents group-level actions (the action belongs to the team as a whole,

not to a particular player). In Figure 6.1 (b), the arrows up (from players to team) represent the

influence of the individual actions on the group actions, and the arrows down (from team to players)

represent the influence of the group actions on the individual actions.
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Let Oi and Si denote the observation and state of the ith player respectively, and SG denotes the

team state. For N players, and observation sequences of identical length T , according to Figure 6.1,

the joint distribution of our model is given by

P (S, O) =

N∏

i=1

P (Si
1) ·

T∏

t=1

N∏

i=1

P (Oi
t|Si

t) ·
T∏

t=1

P (SG
t |S1

t · · ·SN
t ) ·

T∏

t=2

N∏

i=1

P (Si
t|Si

t−1, S
G
t−1). (6.1)

Regarding the player level, we model the actions of each individual with a first-order Markov

model (Figure 6.1 (a)) with one observation variable Oi and one state variable Si. Furthermore, to

capture the dynamics of all the players interacting as a team, we add a hidden variable SG (team

state), which is responsible to model the group-level actions. Different from individual player states

that have their own Markovian dynamics, the team state is not directly influenced by its previous

state. SG could be seen as the aggregate behavior of the individuals, yet it provides a useful level of

description beyond individual actions. There are two kinds of relationships between the team and

players:

1. The team state at time t influences the players’ states at the next time (down arrow in Figure

6.1 (b)). In other words, the state of the ith player at time t + 1 depends on its previous state

as well as on the team state, i.e., P (Si
t+1|Si

t, S
G
t ).

2. The team state at time t is influenced by all the players’ states at the current time (up arrow

in Figure 6.1 (b)), resulting in a conditional state transition distribution P (SG
t |S1

t · · ·SN
t ).

We add one hidden variable Q in the model, to switch parents for SG. The idea of switching

parent (also called Bayesian multi-nets [16] explained in Chapter 3) is as follows: a variable -SG

in this case- has a set of parents {Q, S1 · · ·SN} (Figure 6.1(c)). Q is the switching parent that

determines which of the other parents to use, conditioned on the current value of the switching

parent. {S1 · · ·SN} are the conditional parents. In Figure 6.1(c), Q switches the parents of SG



80 CHAPTER 6. DOMINANCE MODELING

(a) 
observation

individual player state

(b) 

 S

 S

 S

team state

player A

player B

player C

   t-1     t      t+1

G S  t-1 G S t G S  t+1 

1 S t 
1 S  t-1 1 S  t+1 

2 S  t-1 2 S  t 

3 S  t 3 S   t-1 
3 S   t+1 

2 S  t+1 

i S  t-1 

i O  t-1 i O t 

i S  t+1 

i O  t+1 

Q=1

Q=2

Q=N

Q

G S

(c) 
N S

2 S

1 S

i S t 

Figure 6.1. (a) Markov Model for individual player. (b) The team-player influence model (for simplicity, we omit the
observation variables of individual Markov chains, and the switching parent variable Q). (c) Switching parents. Q is
called a switching parent of SG, and {S1 · · ·SN} are conditional parents of SG. When Q = i, Si is the only parent of
SG.

among {S1 · · ·SN}, corresponding to the distribution,

P (SG
t |S1

t · · ·SN
t ) =

N∑

i=1

P (SG
t , Q = i|S1

t · · ·SN
t ) (6.2)

=

N∑

i=1

P (Q = i|S1
t · · ·SN

t )P (SG
t |Si

t · · ·SN
t , Q = i) (6.3)

=
N∑

i=1

P (Q = i)P (SG
t |Si

t) =
N∑

i=1

αiP (SG
t |Si

t). (6.4)

From Equation 6.3 to Equation 6.4, we made two assumptions: (i) Q is independent of {S1 · · ·SN};

and (ii) when Q = i, SG
t only depends on Si

t. The distribution over the switching-parent variable

P (Q) essentially describes how much influence or contribution the state transitions of the player

variables have on the state transitions of the team variable. We refer to αi = P (Q = i) as the

influence value of the ith player. Obviously,
∑N

i=1 αi = 1, i.e., the sum of contributions of all players

equals 1.

A fundamental aspect of our model is that the αi values are automatically learned from data (see

Section 6.4). The learned αi values have different semantic meanings for different applications. We

illustrate this on three applications: synthetic multi-player games and multi-party meetings (see

sections 6.5, 6.6). For synthetic multi-player games, αi indicates whether player i plays a leading

(or following) role in games. In multi-party meetings, αi represents the influence of each participant

in meetings.

It is also worthwhile to discuss more about the meaning of the team state SG. This hidden vari-

able models the team state, and acts as a “bottleneck” node that reduces the complexity of the model
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from a combinatorial number of pairwise links (that would model full inter-player interactions) to

a linear number. In the generative model, at each time-step the team state is emitted by only one

player, chosen based on the influence prior. This is an operation that might not be computed by

pair-wise interactions without enumerating all of them. In addition, each player is further affected

by the team state. Since the model was trained in an unsupervised manner, there is no guaran-

tee that this hidden variable will have a direct semantic interpretation. The variable takes values

selected to maximize the overall likelihood.

6.3 Related Models

The proposed team-player influence model is related to a number of models, namely mixed-memory

Markov model (MMM) [115, 68], coupled HMM (CHMM) [98], influence model [5, 9, 24], dynamical

systems trees (DSTs) [60], layered HMM [97, 138], and multi-stream HMM [36]. MMMs decom-

pose a complex model into mixtures of simpler ones, for example, a K-order Markov model, into

mixtures of first-order models: P (St|St−1St−2 · · ·St−K) =
∑K

i=1 αiP (St|St−i). The CHMM models

interactions of multiple Markov chains by directly linking the current state of one stream with the

previous states of all the streams (including itself): P (Si
t |S1

t−1S
2
t−1 · · ·SN

t−1). However, the model

becomes computationally intractable for more than two streams. The influence model [5, 9, 24]

simplifies the state transition distribution of the CHMM into a convex combination of pairwise con-

ditional distributions, i.e., P (Si
t|S1

t−1S
2
t−1 · · ·SN

t−1) =
∑N

j=1 αjiP (Si
t |Sj

t−1). We can see that influence

model and MMM take the same strategy to reduce complex models with large state spaces to a

combination of simpler ones with smaller state spaces. In [9, 24], the influence model was used to

analyze speaking patterns in conversations (i.e., turn-taking) to determine how much influence one

participant has on others. In such model, αji is regarded as the influence of the jth player on the ith

player.

All these models, however, limit themselves to modeling the interactions between individual

players, i.e., the influence of one player on another player. The proposed team-player influence

model extends these models by using the group-level variable SG that allows to model the influ-

ence between all the players and the team: P (SG
t |S1

t S2
t · · ·SN

t ) =
∑N

i=1 αiP (SG
t |Si

t), and additionally

conditioning the dynamics of each player on the team state: P (Si
t+1|Si

t , S
G
t ).
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DSTs [60] have a tree structure that models interacting processes through the parent hidden

Markov chains. There are two differences between DSTs and our model: (1) In DSTs, the parent

chain has its own Markovian dynamics, while the team state of our model is not directly influenced

by the previous team state. Thus, our model captures the emergent phenomena in which the group

action is “nothing more” than the aggregate behaviors of individuals, yet it provides a useful level

of representation beyond individual actions. (2) The influence between players and team in our

model is “bi-directional” (up and down arrows in Figure 6.1(b)). In DSTs, the influence between

child and parent chains is “uni-directional”: parent chains can influence child chains, while child

chains cannot influence their parent chains.

The layered HMMs were proposed to model multimodal office activities [97], and multimodal

group actions in meetings (see Chapter 4). The basic idea of layered HMMs is to decompose the

complex action recognition problem into layered architectures. Each layer, which is trained inde-

pendently, uses ergodic HMMs or extensions. The output of the lower layer provides the input to

the upper layer. Similar to the layered HMMs, the team-player influence model has a two-level

structure: players and team. Different from layered HMMs, the team-player influence model can

nicely capture interactions between the team and players as (1) the team state influences the play-

ers’ states at the next time, and (2) the team state is influenced by all the players’ states at the

current time. Furthermore, the team-player model is trained jointly, while each layer of the layered

HMM is trained independently.
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6.4 Implementation Issues

For simplicity, let us assume that all player variables have the same number of states NS , and the

team variable has NG possible states. The joint log probability is then given by,

log P (S, O) =

N∑

i=1

NS∑

j=1

zi
j,1 · log P (Si

1 = j)

︸ ︷︷ ︸

initial probability

+

T∑

t=1

N∑

i=1

NS∑

j=1

zi
j,t · log P (Oi

t|Si
t = j)

︸ ︷︷ ︸

emission probability

+

T∑

t=2

N∑

i=1

NS∑

j=1

NS∑

k=1

NG∑

g=1

zi
j,t · zi

k,t−1 · zG
g,t−1 · log P (Si

t = j|Si
t−1 = k, SG

t−1 = g)

︸ ︷︷ ︸

group influence on individual transition

+

T∑

t=1

NS∑

k=1

NG∑

g=1

zG
g,t · zi

k,t · log{
N∑

i=1

αiP (SG
t = g|Si

t = k)

︸ ︷︷ ︸

individual influence on group

}, (6.5)

where the indicator variable zj,t = 1 if St = j, otherwise zj,t = 0. We can see that the model has

complexity O(T ·N ·NG·N2
S). For example, typical values used in our experiments are T = 2000, NS =

10, NG = 5, N = 4, thus a total of 106 operations is required, which is still tractable. An Expectation

Maximization (EM) algorithm can be applied where the E-step estimates the expectation of the

indicate variable zj,t, while the M-step maximizes the Equation 6.5.

We implemented our model using the Graphical Models Toolkit (GMTK) [17], a DBN system

for speech, language, and time series data. Specifically, we used the switching parents feature of

GMTK, which greatly facilitates the implementation of the two-level model to learn the influence

values using the Expectation Maximization (EM) algorithm. Since EM is sensitive to local maxima,

good initialization is very important. One strategy we have found useful is that we first train

individual action models (Figure 6.1 (a)). Then we use the trained emission distribution from the

individual action model to initialize the emission distribution of the team-player influence model.

In this way, the two-level model can be trained more simply.

In the next sections, we study the performance of our model on both synthetic data (several

multi-player games) and real data (a corpus of multi-party meetings). The two datasets illustrate

the typical applications of our model. In the first experiment, we demonstrate that our model can

learn reasonable influence values for players in various synthetic multi-player games. In the second

experiment, we learn the influence of each participant in meetings using acoustic and language
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Figure 6.2. A snapshot of the multi-player games: four players move along the pathes labeled in the map based on
some predefined rules. Some are leading players, and some are following players. A follower tries to catch the leader
by following the leader’s direction. Initial positions and speeds of players are randomly generated.

features. We show that the learned influence distributions are in good accordance with the influence

distributions from human judgements.

6.5 Experiments on Synthetic Data

6.5.1 The Task

We first test our model on multi-player synthetic games, in which four players (labeled A-D) move

along a number of predetermined paths manually labeled in a map (Figure 6.2), based on the fol-

lowing rules:

• Game I: Player A moves randomly. Player B, C and D are meticulously following player A.

• Game II: Player A moves randomly. Player B is meticulously following player A. Player C

moves randomly. Player D is meticulously following player C.

• Game III: All four players, A, B, C and D, move randomly.

A follower moves randomly until it lies on the same path as its target, and after that it tries to

reach the target by following the target’s direction. The initial positions and speeds of players are

randomly generated. The observation of an individual player is its motion trajectory in the form of

a sequence of positions, (x1, y1), (x2, y2) · · · (xt, yt), each of which belongs to one of 20 predetermined

paths in the map. Therefore, we set NS = 20. The number of team states is set to NG = 5. In
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Figure 6.3. Influence values, αi in Equation 6.4, with respect to the EM iterations in different games. (a) The final learned
influence value for the leading player A is almost 1, while the influence values for the other three players are almost 0.
(b) The learned influence values for both leading player A and C are close to 0.5, and the influence values for following
player B and D are close to 0. (c) The learned influence values are equally around 0.25, since players A, B, C, D move
randomly.

experiments, we found that the final results were not sensitive to the specific number of team

states for this dataset in a range from 3 to 10 states. The length of each game sequence is T = 2000

frames. EM iterations were stopped once the relative difference in the global log likelihood was less

than 2%.

6.5.2 Results and Discussions

Figure 6.3 shows the learned influence value for each of the four players in the different games with

respect to the number of EM iterations. We can see that for Game I, player A is the leading player

based on the defined rules. The final learned influence value for player A is almost 1, while the

influence for the other three players are almost 0. For Game II, player A and player C are both

leaders based on the defined rules. The learned influence values for player A and C are indeed close

to 0.5, which indicates they have similar influence on the team. For Game III, the four players

are moving randomly, and the learned influence values are around 0.25, which indicates that all

players have similar influence on the team. The results on these toy data suggest that our model

is capable of learning sensible values for {αi}, in good agreement with the concept of influence we

have described before.
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6.6 Experiments on Meeting Data

6.6.1 The Task

As a second application of the team-player influence model, we investigate the influence of partici-

pants in meetings. Status, dominance, and influence are important concepts in social psychology for

which our model could be particularly suitable in a (dynamic) conversational setting [39]. In this

section, we first describe how we manually collected influence judgements and the performance

measure we used. We then report our results using audio and language features, compared with

simple baseline methods. The meeting dataset has already been described in Chapter 4.

6.6.2 Manually Labeling Influence Values and Performance Measure

The manual annotation of influence of meeting participants is to some degree a subjective task, as

a definite ground-truth does not exist. In our case, each meeting was labeled by three independent

annotators who had no access to any information about the participants (e.g. job titles and names).

This was enforced to avoid any bias based on prior knowledge of the meeting participants (e.g. a

student would probably assign a large influence value to his supervisor). After watching an entire

meeting, the three annotators were asked to assign a probability-based value (ranging from 0 to 1,

all adding up to 1) to meeting participants, which indicated their influence in the meeting (Figure

6.5(b-d)). From the three annotations, we computed the pairwise Kappa statistics [26], a commonly

used measure for inter-rate agreement, defined as

K =
P (A) − P (E)

1 − P (E)
(6.6)

where P (A) is the observed agreement, and P (E) is the chance agreement. The obtained pairwise

Kappa ranges between 0.68 and 0.72, which demonstrates a good agreement among the different

annotators. We estimated the ground-truth influence values by averaging the results from the

three annotators (Figure 6.5(a)).

We use the Kullback-Leibler (KL) divergence to evaluate the results. For the jth meeting, given

an automatically determined influence distribution P̃j(Q), and the ground truth influence distribu-

tion Pj(Q), the KL divergence is given by: D(P̃j‖Pj) =
∑N

i=1 P̃j(Q = i) log2
P̃j(Q=i)
Pj(Q=i) , where N is the
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Figure 6.4. Illustration of state sequences using audio and language features respectively. Using audio, there are two
states: speaking and silence. Using language, the number of states equals to the number of PLSA topics plus one
silence state.

number of participants. The smaller D(P̃j‖Pj), the better the performance (if P̃j = Pj ⇒ D(P̃j‖Pj) =

0). Note that the KL divergence is not symmetric. We can calculate the average KL divergence for

all the meetings: D = 1
M

∑M

j=1 D(P̃j‖Pj), where M is the number of meetings.

6.6.3 Audio and Language Features

We first extract audio features useful to detect speaking turns in conversations. We compute the

SRP-PHAT measure using the signals from a 8-microphone array [81], which is a continuous value

indicating the speech activity from a particular participant. We use a Gaussian emission probabil-

ity, and set NS = 2, each state corresponding to speaking and non-speaking (silence), respectively

(Figure 6.4).

Additionally, language features were extracted from manual transcripts. After removing stop

words, the meeting corpus contains 2175 unique terms. We then employed probabilistic latent se-

mantic analysis (PLSA) [57], which is a language model that projects documents from the high-

dimensional bag-of-words space into a topic-based space of lower dimension. Each dimension in

this new space represents a “topic”, and each document is represented as a mixture of topics. In our

case, a document corresponds to one speech utterance (ts, te, w1w2 · · ·wk), where ts is the start time,

te is the end time, and w1w2 · · ·wk is a sequence of words. PLSA is thus used as a feature extractor

that could potentially capture “topic turns” in meetings.

We embedded PLSA into our model by treating the states of individual players as instances of

PLSA topics. Therefore, the PLSA model determines the emission probability in Equation 6.5, and

is trained independently of the team-player influence model. We assign each segment to the aspect

with maximal probability, similar to the strategy used in the aspect HMM [18]. We repeat the PLSA

topic within the same utterance (ts ≤ t ≤ te). The topic for the silence segments was set to 0 (Figure
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Figure 6.5. Influence values of the four participants (the y-axis direction in each figure (a) - (h)) for the 30 meetings (the
x-axis direction in each figure (a) - (h)). The gray-scale bar indicates the influence values ranging from 0 (dark) to 1
(bright). Figures (a) to (h) correspond to: (a) ground-truth (average of the three human annotations: A1, A2, A3). (b)
A1 : human annotation 1, (c) A2 : human annotation 2. (d) A3 : human annotation 3. (e) Our model + language. (f)
Our model + audio. (g) Speaking-length. (h) Randomization.

6.4). We can see that using audio-only features can be seen as a special case of using language

features, by using only one topic in the PLSA model (i.e., all utterances belong to the same topic).

The number of PLSA topics was set to 10 (NS = 10), and NG was set to 5 (NG = 5). Experimentally,

we found that the final results were not sensitive to the specific number of states for this dataset in

a reasonable range. But a more thorough evaluation of the effect of the choice of these parameters

would be needed. In our experiments, we stop EM training once the relative difference in the global

log-likelihood between two consecutive iterations was less than 2%.

6.6.4 Results and Discussions

We compare our model with a method based on the speaking length (how much time each of the

participants speaks). In this case, the influence value of a meeting participant is defined to be

proportional to his speaking length: P (Q = i) = Li/
∑N

i=1 Li, where Li is the speaking length of

participant i. As a second baseline model, we randomly generated 1000 combinations of influence

values (under the constraint that the sum of the four values equals 1), and report the average
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Table 6.1. Results of different methods on meetings (“model” denotes the team-player influence model).

Method KL

model + Language 0.106

model + Audio 0.135

Speaking length 0.226

Randomization 0.863

Table 6.2. Results of human annotation on meetings.

Human Annotation KL

Ai vs. Aj 0.090

Ai vs. Ai 0.053

Ai vs. GT 0.037

performance.

The results on the separate test set are shown in Table 6.1 and Figure 6.5 (e-h). We can see

that the performance of the three methods: model + language, model + audio, and speaking-length

(Figure 6.5 (e-g)) are significantly better than that of the randomization method (Figure 6.5 (h)).

Using language features with our model achieves the best performance, but it is optimistically

obtained by the fact that manual transcripts were used to train the PLSA model. Our model (using

either audio or language features) outperforms the speaking-length based method, which suggests

that the learned influence distributions are in better accordance with the influence distributions

from human judgements. As shown in Figure 6.4, using audio features can be seen as a special

case of using language features. We use language features to capture “topic turns” by factorizing

the two states: “speaking, silence” into more states: “topic1, topic2, ..., silence”. We can see that the

result using language features is better than that using audio features. In other words, compared

with “speaking turns”, “topic turns” improves the performance of our model to learn the influence

of participants in meetings.

It is interesting to look at the KL divergence between any pair of the three human annotations

(Ai vs. Aj ), any one against the average of the others (Ai vs. Ai), and any one against the ground-

truth (Ai vs. GT). The average results are shown in Table 6.2. We can see that the result of “Ai

vs. GT” is the best, which is reasonable since “GT” is the average of A1, A2, and A3. Figure 6.6

shows the histogram of KL divergence between any pair of human annotations for the 30 meetings.

The histogram has a distribution of µ = 0.09, σ = 0.11. We can see that the results of our model
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Figure 6.6. Histogram of KL divergence between any pair of the human annotations (Ai vs. Aj) for the 30 meetings.
The histogram has a distribution of µ = 0.09, σ = 0.11.

(language: 0.106, audio: 0.135) are very close to the mean (µ = 0.09), which indicates that our model

is comparable to human performance.

With our model, we can calculate the cumulative influence of each meeting participant over time.

Figure 6.7 shows the cumulative influence values for segments with increasing length: 10 seconds,

20 seconds, ..., 5 minutes. We can see that the cumulative influence is related to the meeting

agenda: The meeting starts with the monologue of person1 (monologue1). The influence of person1

is almost 1, while the influences of the other persons are nearly 0. When the four participants are

involved in a discussion, the influence of person1 decreases, and the influences of the other three

people increase. The influence of person4 increases quickly during monologue4. The final influence

of participants becomes relatively stable in the second discussion.

6.7 Conclusions

In this chapter, we presented the team-player influence model for dominance modeling in meetings.

The individual level models actions of individual players and the group-level models the group as a

whole. Our model uses the team state as a way of modeling interactions among participants, while

keeping a tractable representation. The proposed model explicitly learns the influence of individual

players on the team. Experiments on both synthetic multi-player games and multi-party meetings

showed the effectiveness of the proposed model. In the first experiment, we demonstrated that our



6.7. CONCLUSIONS 91

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time (min.)

In
flu

en
ce

 V
al

ue

m
on

ol
og

ue
4

m
on

ol
og

ue
1

discussion

Person1
Person2
Person3
Person4

di
sc

us
si

on

Figure 6.7. Evolution of cumulative influence over time in a 5 minute meeting. The dotted vertical lines indicate the
predefined meeting agenda. The meeting starts with the monologue of person1 (monologue1). The influence of
person1 is almost 1, while the influences of the other persons are nearly 0. When the four participants are involved in
a discussion, the influence of person1 decreases, and the influences of the other three people increase. The influence
of person4 increases quickly during monologue4. The final influence of participants becomes relatively stable in the
second discussion.

model can learn reasonable influence values for players in various synthetic multi-player games.

In the second experiment, we investigated the influence of participants in meetings. We showed

that the learned influence distributions are in good accordance with the influence distributions

estimated by human judgements.

In some event detection applications, events of interest occur over a relatively small proportion

of the total time: e.g. alarm generation in surveillance systems, and extractive summarization of

raw video events. We call this kind of event: unusual event. In the next chapter, we address the

problem of unusual event modeling.
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Chapter 7

Unusual Event Modeling

In this chapter, we address the problem of temporal unusual event detection. Unusual events are

characterized by a number of features (rarity, unexpectedness, and relevance) that limit the appli-

cation of traditional supervised model-based approaches. We propose a semi-supervised adapted

Hidden Markov Model (HMM) framework, in which usual event models are first learned from a

large amount of (commonly available) training data, while unusual event models are learned by

Bayesian adaptation in an unsupervised manner. The proposed framework has an iterative struc-

ture, which adapts a new unusual event model at each iteration. We show that such a framework

can address problems due to the scarcity of training data and the difficulty in pre-defining unusual

events. Experiments on audio, visual, and audio-visual data streams illustrate its effectiveness,

compared with both supervised and unsupervised baseline methods.

7.1 Introduction

In some event detection applications, events of interest occur over a relatively small proportion of

the total time: e.g. alarm generation in surveillance systems, and extractive summarization of raw

video events. The automatic detection of temporal events that are relevant, but whose occurrence

rate is either expected to be very low or cannot be anticipated at all, constitutes a problem which

has recently attracted attention in computer vision and multimodal processing under an umbrella

of names (abnormal, unusual, or rare events) [121, 141, 21]. In this thesis, we employ the term un-
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usual event, which we define as events with the following properties: (1) they seldom occur (rarity);

(2) they may not have been thought of in advance (unexpectedness); and (3) they are relevant for a

particular task (relevance).

It is clear from such a definition that unusual event detection entails a number of challenges.

The rarity of an unusual event means that collecting sufficient training data for supervised learning

will often be infeasible, necessitating methods for learning from small numbers of examples. In

addition, more than one type of unusual event may occur in a given data sequence, where the event

types can be expected to differ markedly from one another. This implies that training a single

model to capture all unusual events will generally be infeasible, further exacerbating the problem

of learning from limited data. As well as such modeling problems due to rarity, the unexpectedness

of unusual events means that defining a complete event lexicon will not be possible in general,

especially considering the genre- and task-dependent nature of event relevance.

Most existing works on event detection have been designed to work for specific events, with

well-defined models and prior expert knowledge, and are therefore ill-posed for handling unusual

events. Alternatives to these approaches, addressing some of the issues related to unusual events,

have been proposed recently [121, 141, 21]. However, the problem remains unsolved.

We propose a framework for unusual event detection. Our approach is motivated by the ob-

servation that, while it is unrealistic to obtain a large training data set for unusual events, it is

conversely possible to do so for usual events, allowing the creation of a well-estimated model of

usual events. In order to overcome the scarcity of training material for unusual events, we propose

the use of Bayesian adaptation techniques [110], which adapt a usual event model to produce a

number of unusual event models in an unsupervised manner. The proposed framework can thus be

considered as a semi-supervised learning technique.

In our framework, a new unusual event model is derived from the usual event model at each

step of an iterative process via Bayesian adaptation. Temporal dependencies are modeled using

HMMs, which have recently shown good performance for unsupervised learning [3]. We objectively

evaluate our algorithm on a number of audio, visual, and audio-visual data streams, each generated

by a separate source, and containing different events. With relatively simple audio-visual features,

and compared to both supervised and unsupervised baseline systems, our framework produces en-

couraging results.



7.2. THE ITERATIVE ADAPTED HMMS 95
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Unusual Event K
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Figure 7.1. HMM topology for the proposed framework

This chapter is organized as follows. We introduce the proposed framework in Section 7.2. In

Section 7.3, we present experimental results and discuss our findings. We conclude the chapter in

Section 7.4.

7.2 The Iterative Adapted HMMs

In this section, we first introduce our computational framework. We then describe the implemen-

tation details.

7.2.1 Framework Overview

As shown in Figures 7.1 and 7.3, our framework is a hierarchical structure based on an ergodic

K-class Hidden Markov Model (HMM) (K is the number of unusual event states plus one usual

event state), where each state is a sub-HMM with minimum duration constraint. The central state

represents usual events, while the others represent unusual events. All states can reach (or be

reached from) other states in one step, and every state can transmit to itself.

Our method starts by having only one state representing usual events (Figure 7.2, step 0). It

is normally easy to collect a large number of training samples for usual events, thus obtaining a

well-estimated model for usual events. A set of parameters θ∗ of the usual-event HMM model is
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0. Training the general model

A general usual event model is estimated with

a large number of training samples.

1. Outlier detection

Slice the test sequence into fixed length segments.

The segment with the lowest likelihood given the

general model is identified as outlier.

2. Adaptation

A new unusual event model is adapted from the general

usual event model using the detected outlier.

The usual event model is adapted from the general

usual event model using the other segments.

3. Viterbi decoding

Given a new HMM topology (with one more state),

the test sequences are decoded using Viterbi

algorithm to determine the boundary of events.

4. Outlier detection

Identify a new outlier, which has the smallest

likelihood given the adapted usual event model.

5. Repeat step 2, 3, 4

6. Stop

Stop the process after the given number of iterations.

Figure 7.2. Iterative adapted HMM

learned by maximizing the likelihood of observation sequences {X1, X2, ..., XM} as follows:

θ∗ = arg max
θ

M∏

j=1

P (Xj |θ). (7.1)

The probability density function of each HMM state is assumed to be a Gaussian Mixture Model

(GMM). We use the standard Expectation-Maximization (EM) algorithm [31] to estimate the GMM

parameters. In the E-step, a segmentation of the training samples is obtained to maximize the

likelihood of the data, given the parameters of the GMMs. This is followed by an M-step, where

the parameters of the GMMs are re-estimated based on this segmentation. This creates a general

usual event model.

Given the well-estimated usual event model and an unseen test sequence, we first slice the test

sequence into fixed length segments overlapping with each other. This is done by moving a sliding

window over the whole sequence. The choice of the sliding window size corresponds to the minimum

duration constraint in the HMM framework. Given the usual event model, the likelihood of each
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segment is then calculated. The segment with the lowest likelihood value is identified as an outlier

(Figure 7.2, step 1). The outlier is expected to represent one specific unusual event and could be

used to train an unusual event model. However, one single outlier is obviously insufficient to give a

good estimate of the model parameters for unusual events. In order to overcome the lack of training

material, we propose the use of model adaptation techniques, such as Maximum a Posteriori (MAP)

[110], where we adapt the already well-estimated usual event model to a particular unusual event

model using the detected outlier, i.e, we start from the usual event model, and move towards an

unusual event model in some constrained way (see Section 7.2.2 for implementation details). The

original usual event model is trained using a large number of samples, which generally means that

it yields Gaussians with relatively large variances. In order to make the model better suited for

test sequences, the original usual event model is also adapted with the other segments (except for

the detected outlier), using the same adaptation technique for the unusual event model (Figure 7.2,

step 2).

Given the new unusual and usual event models, both adapted from the general usual event

model, the HMM topology is changed with one more state. Hence the current HMM has 2 states,

one representing the usual events and one representing the first detected unusual event. The

Viterbi algorithm is then used to find the best possible state sequence which could have emitted

the observation sequence, according to the maximum likelihood (ML) criterion (Figure 7.2, step 3).

Transition points, which define new segments, are detected using the current HMM topology and

parameters. A new outlier is now identified by sorting the likelihood of all segments given the

usual event model (Figure 7.2, step 4). The detected outlier provides material for building another

unusual event model, which is also adapted from usual event model. At the same time, both the

unusual and usual event models are adapted using the detected unusual / usual event samples

respectively. The process repeats until we obtain the desired number of unusual events. At each

iteration, all usual / unusual event models are adapted from the parent node (see Figure 7.3),

and a new unusual event model is derived from the usual event model via Bayesian adaptation.

The number of iterations thus corresponds to the number of unusual event models, as well as the

number of states in the HMM topology.

As shown in Figure 7.3, the proposed framework has a top-down hierarchical structure. Initially,

there is only one node in the tree, representing the usual event model. At the first iteration, two
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Usual event modelUnusual event model

iteration=3

iteration=0

iteration=1

iteration=2

Figure 7.3. Illustration of the algorithm flow. At each iteration, two leaf nodes, one representing usual events and the
other one representing unusual events, are split from the parent usual event node; A leaf node representing an unusual
event is also adapted from the parent unusual event node.

new leaf nodes are split from the upper parent node: one representing usual events and the other

one representing unusual events. At the second iteration, there are three leaf nodes in the tree: two

for unusual events and one for usual events. The tree grows in a top-down fashion until we reach

the desired number of iterations. The proposed algorithm is summarized in Figure 7.2.

Compared with previous work on unusual event detection, our framework has a number of ad-

vantages. Most existing techniques using supervised learning for event detection require manually

labeling a large number of training samples. As our approach is semi-unsupervised, it does not

need explicitly labeled unusual event data, facilitating initial training of the system and hence ap-

plication to new conditions. Furthermore, we derive both unusual event and usual event models

from a general usual event model via adaptation techniques in an online manner, thus allowing for

a faster model training. In addition, the minimum duration constraint for temporal events can be

easily imposed in the HMM framework by simply changing the number of cascaded states within

each class.

In the next subsection, we give more details on the used adaptation techniques.

7.2.2 MAP Adaptation

Several adaptation techniques have been proposed for GMM-based HMMs, such as Gaussian clus-

tering, Maximum Likelihood Linear Regression (MLLR) [75] and Maximum a posteriori (MAP)

adaptation (also known as Bayesian adaptation) [110]. These techniques have been widely used

in tasks such as speaker and face verification [110, 20]. In these cases, a general world model of
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speakers / faces is trained and then adapted to the particular speaker / face. In our case, we train a

general usual event model and then use MAP to adapt both unusual and usual event models.

According to the MAP principle, we select parameters θ∗ such that they maximize the posterior

probability density, that is:

θ∗ = arg max
θ

P (θ|X) = argmax
θ

P (X |θ) · P (θ), (7.2)

where P (X |θ) is the data likelihood and P (θ) is the prior distribution. When using MAP adaptation,

different parameters can be chosen to be adapted [110]. In [110, 20], the parameters that are

adapted are the Gaussian means, while the mixture weights and standard deviations are kept fixed

and equal to their corresponding value in the world model. In our case we adapt all the parameters.

The reason to adapt the weights is that we model events (either usual or unusual) with different

components in the mixture model. When only one specific event is present, it is expected that the

weights of the other components will be adapted to zero (or a relatively small value). We also adapt

the variances in order to move from the general model, which may have larger covariance matrix,

to a specific model, with smaller variance, focusing on one particular event in the test sequence.

Following [110], there are two steps in adaptation. First, estimates of the statistics of the train-

ing data are computed for each component of the old model. We use {wnew
i , µnew

i , σ2new
i } to represent

the weight, mean and variance for component i in the new model, respectively. These parameters

are estimated by ML, using the well-known equations [15],

wnew
i =

1

M

M∑

j=1

P (i|xj , θ), (7.3)

µnew
i =

∑M
j=1 xjP (i|xj , θ)

∑M
j=1 P (i|xj , θ)

, (7.4)

σ2new
i =

∑M
j=1 P (i|xj , θ)(xj − µnew

i )(xj − µnew
i )T

∑M

j=1 P (i|xj , θ)
, (7.5)

where M is the number of data examples.

In the second step, the parameters of a mixture i are adapted using the following set of update
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equations [110].

ŵi = α · wold
i + (1 − α) · wnew

i , (7.6)

µ̂i = α · µold
i + (1 − α) · µnew

i , (7.7)

σ̂i = α · (σold
i + (µ̂i − µold

i )(µ̂i − µold
i )T ) + (1 − α) · (σnew

i + (µ̂i − µnew
i )(µ̂i − µnew

i )T ), (7.8)

where {ŵi, µ̂i, σ̂2
i } are weight, mean and variance of the adapted model in component i, {wold

i , µold
i ,

σ2old
i } are the corresponding parameters in the old component i respectively, and α is a weighting

factor to control the balance between old model and new estimates. The smaller the value of α, the

more contribution the new data makes to the adapted model.

7.3 Experiments and Results

In this section, we first introduce the performance measures and baseline systems we used to eval-

uate our results. Then we illustrate the effectiveness of the proposed framework using audio, visual

and audio-visual events.

7.3.1 Performance Measures

The problem of unusual event detection is a two-class classification problem (unusual events vs.

usual events), with two types of errors: a false alarm (FA), when the method accepts an usual event

sample (frame), and a false rejection (FR), when the method rejects an unusual event sample. The

performance of the unusual event detection method can be measured in terms of two error rates:

the false alarm rate (FAR), and the false rejection rate (FRR), defined as follows:

FAR =
number of FAs

number of usual event samples
× 100%, (7.9)

FRR =
number of FRs

number of unusual event samples
× 100%. (7.10)

The performance for an ideal event detection algorithm should have low values of both FAR and

FRR. We also use the half-total error rate (HTER), which combines FAR and FRR into a single
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measure: HTER = FAR+FRR
2 .

7.3.2 Baseline Systems

To evaluate the results, we compare the proposed semi-supervised framework with the following

baseline systems.

• Supervised HMM: Two standard HMM models, one for usual events and one for unusual

events, are trained using manually labeled training data according to Equation 7.1. For test-

ing, the event boundary is obtained by applying Viterbi decoding on the sequences.

For supervised HMM, we test two cases. In the first case, we train usual and unusual event

models using a large (sufficient) number of samples, referred to as supervised-1. In the second

case, referred to as supervised-2, around 10% of the unusual event training samples from

the first case are used to train the unusual event HMM. The purpose of supervised-2 is to

investigate the case where there is only a small number of unusual event training samples.

• Unsupervised HMM: The second baseline system is an agglomerative HMM-based cluster-

ing algorithm, recently proposed for speaker clustering [3], and that has shown good perfor-

mance. The unsupervised HMM clustering algorithm starts by over-clustering, i.e. clustering

the data into a large number of clusters. Then it searches for the best candidate pair of clus-

ters for merging based on the criterion described in [3]. The merging process is iterated until

there are only two clusters left, one assumed to correspond to usual events, and another one

for unusual events. We assume that the cluster with the largest number of samples represents

usual events, and the other cluster represents unusual events. This model is referred to as

unsupervised.

For both the proposed approach and the baseline methods, all parameters are selected to mini-

mize half-total error rate (HTER) criterion on a validation data set.

7.3.3 Results on Audio Events

For the first experiment, we used a data set of audio events obtained through a sound search en-

gine: http://www.findsounds.com/types.html. The purpose of this experiment is to have a
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Table 7.1. Audio events data. Number of frames for various methods (NA: Not Applicable).

train set test set
method

usual unusual usual unusual

our approach 90000 NA

supervised-1 90000 20000

supervised-2 90000 2000
72750 2250

unsupervised NA NA

controlled setup for evaluation of our algorithm. We first selected 60 minutes of audio data contain-

ing only ‘speaking’ events. We then manually mixed it with other interesting audio events, namely

‘applause’, ‘cheer’, and ‘laugh’ events. The length of each concatenated segment is random. ‘Speak-

ing’ is labeled as usual event, while all the other events are considered unusual. The minimum

duration for audio events is two seconds.

We extracted Mel-Frequency Cepstral Coefficients (MFCCs) features for this task. MFCC are

short-term spectral-based features and have been widely used in speech recognition [106] and audio

event classification. We extracted 12 MFCC coefficients from the original audio signal using a

sliding window of 40ms at fixed intervals of 20ms. The number of training and testing frames

for the different methods is shown in Table 7.1. Note that there is no need for unusual event

training data for our approach. For the unsupervised HMM, there is no need for training data. The

percentage of frames for unusual events in the test sequence is around 3%.

Figure 7.4(a) shows the performance of the proposed approach with respect to the number of it-

erations. We observe that FRR always decreases while FAR continually increases with the increase

of the number of iterations. This is because our approach derives a new unusual event modal from

the usual event model via Bayesian adaptation at each iteration. With the increase of unusual

event models, more unusual events can be detected, while more usual events are falsely accepted

as unusual events.

Figure 7.4(b) shows the performance comparison between the proposed approach and baseline

systems in terms of HTER. We can see that the supervised HMM with sufficient amount of training

data gives the best performance. The proposed approach improves the performance, compared to

the supervised-2 and unsupervised baselines when the number of iterations is adequately closer.

The results show that the benefit of using the proposed approach is not performance improvement

when sufficient training data is available, but rather its effectiveness when there are not enough
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Figure 7.4. Results for audio unusual event detection. The X-axis represents the number of iterations in our approach.

training samples for unusual events. The best result of our approach is obtained at 4 iterations

(HTER = 6.65%), slightly worse than supervise-1 (HTER = 5.29%), showing the effectiveness of our

approach given that it does not need any unusual event training data.

7.3.4 Results on Visual Events

The visual data we investigate is a 30-minute long poker game video, containing 26 different events

and originally manually labeled and used in [141]. Seven cheating related events, including ‘hiding

a card’, ‘exchanging cards’, ‘passing cards under table’, etc., are categorized as unusual events (see

Figure 7.6). Other events such as ‘playing cards’, ‘drinking water’, and ‘scratching’, are considered

as usual events. The minimum duration for these visual events is 15 frames.

The number of training and testing frames for different methods is shown in Table 7.2. While

we chose this visual task to show application on an existing data set, we note that the percentage

of frames of unusual events in the test sequence is about 17%, which does not correspond very well

to the assumption of rarity made by our model. The unusual event testing data for the supervised-1

method is much smaller, compared to other methods. This is because we use a larger number of

unusual event frames (1320) for training, and we are left with a small number of unusual event

frames (195) for testing. To deal with this problem, we repeat experiments for supervised-1 ten

times by randomly splitting total unusual events into two parts: one with 1320 frames for training,

and the other one with 195 frames for testing. We report the mean results of the ten runs. Note also

that the amount of training data for the unusual model (1320 frames) is smaller than the previous

experiments.
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Table 7.2. Video events data. Number of frames for various methods (NA: Not Applicable).

train set test set
method

usual unusual usual unusual

our approach 9000 NA 1515

supervised-1 9000 1320 195

supervised-2 9000 300
7387

1215

unsupervised NA NA 1515

We extract motion and color features from moving blocks of each frame in the video in a similar

way as in [141]. We start with a static background image. We detect the moving objects using

background subtraction. We then superimpose a 6 × 6 grid on the detected motion mask. We first

compute a motion histogram. In each tile of the grid, we calculate the total number of motion pixels,

and these features are concatenated to form a 6× 6 = 36 dimension of feature vector to describe the

motion in the current frame. In a similar way, we can compute the color histogram for the moving

objects in chromatic color space (defined by r = R
R+G+B

, g = G
R+G+B

). We concatenate the motion

histogram and the color histogram into a 108 = 36+2×36 dimensional feature vector. To reduce the

feature space dimension and for feature decorrelation, we apply a Principal Component Analysis

(PCA) to transform the 108-dimensional features into 36-dimensional features.

The results are shown in Figure 7.5. Overall, this is a more difficult task. We observe the similar

trend of FAR and FRR as in audio event detection, with respect to the number of iterations in our

approach. The best result of our approach is obtained with 4 iterations, although the values of

HTER are relatively stable between 4 iterations and 7 iterations. We come to similar conclusions

as for the audio event detection, that is, the supervised approach with sufficient training samples

provides the best performance, while the proposed framework is better than the other baseline

systems. Note that the supervised approach with small number of training samples performs worse

than the unsupervised approach.

7.3.5 Results on Audio-Visual Events

We also apply our framework to audio-visual unusual event detection using the ICCV’03 recorded

presentation videos, publicly available: http://www.robots.ox.ac.uk/∼awf/iccv03videos.

Each presentation video is about 20 minutes in length with 25 frames per second. We define a set of

multimodal unusual events, including ‘speaker showing demo, audience applause’, ‘speaker playing
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Figure 7.5. Results of visual unusual events detection.

Figure 7.6. Top: Visual event of ‘exchanging cards’; Bottom: Visual event of ‘passing cards under table’

video, audience laugh’, and ‘speaker interrupted by audience’s questions’. Note that since some

unusual events in the presentation setting cannot be defined before watching the entire database,

the unusual events list we define here should be regarded as a small subset.

A set of audio-visual features were extracted. For audio features, we used the same features as

in Section 7.3.3. For visual features, we extracted a motion histogram from each frame of the video,

computed in a similar way to Section 7.3.4. Audio and visual features were then concatenated.

Since the occurrence of unusual events is rare, manually labeling a large amount of samples

is impractical, highlighting the need for semi-supervised or unsupervised approaches. Due to the

lack of sufficient annotated training data for the supervised baselines, we only report results of our

approach. Two presentation videos are used for training to build the general usual event model. We

then apply our framework to a third meeting for unusual event detection. We labeled the events

by hand to obtain a ground truth in the three videos. The results are shown in Figure 7.7. We

observe that, with the increase of iterations, FRR decreases while FAR increases, which means

that more unusual events are detected, but at the cost of falsely accepting more usual events as

unusual events. The best result of our approach is obtained when the number of iterations is 5.
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Figure 7.7. Results of our approach in terms of FAR, FRR and HTER.

Table 7.3. Overall the best results
Events Method FAR % FRR % HTER %

our method 2.09 11.2 6.65

supervised 1 3.97 6.62 5.29
audio

supervised-2 11.8 12.6 12.2

unsupervised 12.5 24.2 18.3

our method 42.2 21.4 31.8

supervised-1 26.8 29.6 28.2
visual

supervised-2 41.3 40.2 40.7

unsupervised 40.1 35.5 37.8

audio-visual our approach 7.20 28.2 17.7

7.3.6 Overall Discussion

Table 7.3 summarizes overall results of audio, visual and audio-visual unusual event detection.

For the proposed approach, the results correspond to the iteration with the minimum HTER. For

both audio and visual unusual event detection, we can see that supervised HMM well-trained with

sufficient data achieves the best performance while the proposed approach performs better than

the other baseline systems.

As a well-known rule-of-thumb, the number of training samples needed for a well-trained model

is directly related to the model complexity (the number of model parameters). The penalty for

training with insufficient data is over-fitting, i.e. poor generalization capability. Both our approach

and the baseline methods are based on HMMs for usual and unusual events modeling and hence

have similar model complexity.

For the proposed approach, we currently do not determine the optimal number of iterations. As
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shown in Figures 7.4, 7.5 and 7.7, finding the optimal number of iterations is a trade-off between

FAR and FRR. Some applications require more unusual events detected thus need more iterations.

Otherwise, we might stop iterations at the early stages if fewer false alarms are expected. Auto-

matic model selection is a difficult problem that we are studying, in particular with the Bayesian

Information Criterion (BIC) [116]. In our approach, there is one additional state in the HMM topol-

ogy at each iteration, which results in an increase of both the number of model parameters and the

likelihood of a test sequence. BIC could be used to handle the trade-off between model complexity

and data likelihood.

We also note that feature selection is a critical issue in unusual event detection, particularly

when using a semi- or unsupervised approach. The nature of the events found by the system will

necessarily relate to the nature of discrimination provided by the features. In the above experi-

ments, while the audio features seem to allow such discrimination, ongoing research should include

investigation of different visual features.

Finally, regarding the three properties we used to define an unusual event (rarity, unexpect-

edness, and relevance), our method aims at accounting for the first two (one could argue that un-

expectedness is a feature of some rare events). Relevance is a task-dependent property, whose

incorporation in our work would require human intervention.

7.4 Conclusions

In this chapter, we presented a semi-supervised adapted HMM framework for unusual event detec-

tion. The proposed framework is well suited for cases in which collecting sufficient unusual event

training data is impractical and unusual events cannot be defined in advance. With relatively sim-

ple audio-visual features, and compared to both supervised and unsupervised baseline systems, our

framework produces encouraging results.
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Chapter 8

Conclusion

8.1 Summary of Achievements

In this thesis, we have developed a number of computational frameworks for human interaction

modeling from sensor information. We used the more general probabilistic graphical model frame-

work, which provides for families of probability distributions to be modeled in a concise and intuitive

manner. The major contributions of this thesis can be broken down into three computational mod-

els (i.e. multi-layer HMM, team-player influence model, and semi-supervised adapted HMM) and

three related tasks (i.e. group action modeling, influence modeling, and unusual event modeling).

The following sections presents brief summary of specific contributions.

Part I (Chapter 4 – Chapter 5) provided a multi-layer HMM framework which decomposes the

problem of human interaction modeling into individual action and group action stages, thus sim-

plifying the complexity of the task. By defining a proper set of individual actions, group actions can

be modeled as a two-layer process, one that models basic individual activities from low-level audio-

visual features, and another one that models the interactions. We proposed a two-layer Hidden

Markov Model (HMM) framework that implements such concept in a principled manner, and that

has advantages over previous works. First, by decomposing the problem hierarchically, learning

is performed on low-dimensional observation spaces, which results in simpler models. Second, our

framework is easier to interpret, as both individual and group actions have a clear meaning, and

thus easier to improve. Third, different HMM models can be used in each layer, to better reflect

109
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the nature of each subproblem. This framework is general and extensible, and experiments and

comparison with a single-layer HMM baseline system showed its validity.

In Part II (Chapter 6), we proposed a model that learns the influence of interacting Markov

chains within a team. The proposed model is a dynamic Bayesian network (DBN) with a two-level

structure: individual-level and group-level. The individual level models actions of each player, and

the group-level models actions of the team as a whole. Unlike existing multi-stream models, the

influence of each player on the team, which can also be interpreted as reliability in the case of

data fusion, is jointly learned with the rest of the model parameters in a principled manner using

the Expectation-Maximization (EM) algorithm. Experiments on synthetic multi-player game and

multi-party meetings showed the effectiveness of the proposed model. In the first experiment, we

demonstrated that our model could learn reasonable influence values for players in simple syn-

thetic multi-player games. In the second experiment, we learnt the influence of each participant in

meetings using acoustic and language features. We show that the learned influence distributions

are in good accordance with the influence distributions from human judgements.

In Part III (Chapter 7), we addressed the problem of temporal unusual event detection. Unusual

events are characterized by a number of features that limit the application of traditional supervised

model-based approaches. We proposed a semi-supervised adapted Hidden Markov Model (HMM)

framework, in which usual event models are first learned from a large amount of (commonly avail-

able) training data, while unusual event models are learned by Bayesian adaptation in an unsu-

pervised manner. The proposed framework has an iterative structure, which adapts a new unusual

event model at each iteration. We showed that such a framework could address problems due to the

scarcity of training data and the difficulty in pre-defining unusual events. Experiments on audio,

visual, and audio-visual data streams illustrated its effectiveness, as compared to both supervised

and unsupervised baseline methods.
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8.2 Directions to Explore

Without being exhaustive, we identify the following areas of potential future work.

• Multi-stream Modeling

Multi-stream sequence processing is a very challenging problem in machine learning. Some

open issues are discussed in [12]. For instance, most solutions that model the joint prob-

ability of the streams need in general exponential resources with respect to the number of

streams, the number of states of each underlying Markov chain, or the size of each stream,

thus quickly become intractable. There are two directions for this problem. First, we could

decompose the complex problem of multi-stream modeling into stages. Second, we could de-

rive approximate inference techniques (such as variational Bayesian methods [6]) to make

complex models tractable.

• Group Action Modeling

– Defining a richer set of group actions: The group action lexicon we currently defined

is small and thus limited. A direction of future work could be the definition of a rich set

of group actions. For that purpose, incorporating semantic language features would be

essential for such task.

– Incorporation of a language model for actions: Being successfully used in continu-

ous speech recognition, a language model is the way in which words are naturally used

together, according to the grammar and spelling rules of a language. A line of future

research could be the investigation of a language model for group actions in the meeting

scenarios.

– Group action recognition in other applications: Meetings are just a particular case

of where group actions emerge. Group activity recognition and discovery play an impor-

tant role in other applications, such as surveillance, monitoring, and human-computer

interaction. Applying the models proposed in this thesis to other scenarios could be a

direction for future research.

• Dominance Modeling
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– Modeling: The team-player influence model could be studied and extended in a num-

ber of ways. On the modeling side, we still need to gain deeper understanding of the

“meaning” of the hidden team variable, which acts as a bottleneck node that reduces the

complexity of the model from a combinatorial number of pairwise links to a linear num-

ber, but which, as discussed in Chapter 6, has no clear semantic interpretation when the

model is trained in an unsupervised fashion. A second important issue is the fact that

influence is a parameter that might have fluctuations over time. Investigating this issue

could be especially attractive for analyzing group activity from a long-term perspective.

– Application: On the application side, a deeper study of the effect of automatically ex-

tracted multimodal features, e.g. speaking length with gaze, on the estimation of influ-

ence in meetings is necessary.

– Evaluation: As discussed in Chapter 6, detecting influence of meeting participants is to

some degree a subjective task, as a unique ground-truth and a perfect evaluation measure

does not exist. We used Kullback-Leibler (KL) divergence to evaluate the results reported

in this thesis. One could investigate the use of alternative evaluation measures.

• Unusual Event Detection

– Model Selection: For the proposed semi-supervised adapted HMM framework, we cur-

rently do not determine the optimal number of iterations. Finding the optimal number

of iterations is essentially a model selection problem. Some applications might require

more unusual events being detected, and thus need more iterations in the proposed algo-

rithm. Otherwise, we might stop iterations at the early stages if fewer false alarms are

expected. Automatic model selection is a difficult problem in machine learning. There

are various methods that can be used for model section, such as simple validation, cross-

validation, and Bayesian Information Criterion (BIC) [116] methods. In particular, BIC

could be a promising method because in our semi-supervised adapted HMMs, there is one

additional state in the topology at each iteration, which results in an increase of both the

number of model parameters and the likelihood of a test sequence. BIC could be used to

handle the trade-off between model complexity and data likelihood. The investigation of

the optimal model structure remains as a future research issue.
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– The unbalanced data: Many applications face the problem of unbalanced data. That

is, the number of samples for some classes is far less (or more) than samples of the other

classes. The problem of unusual event detection belongs to this category. There is rela-

tively little work in machine learning that explicitly addresses the problem. In the future,

a research issue might be the investigation of novel machine learning algorithms that can

address this data-unbalanced problem in a principled way.
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