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Abstract. Extending previous works done on considerably smaller data sets, the paper studies lin-

ear discriminant analysis of about 30 hours of phoneme-labeled speech data in the time-frequency

domain. Analysis is carried both independently in time and frequency and jointly. Data driven

spectral basis show similar frequency sensitivity as human hearing. LDA-derived temporal FIR

filters are consistent with temporal lateral inhibition. Considerable improvement is obtained using

first temporal discriminant.



2 IDIAP–RR 06-20

1 Introduction

Data-driven design of analysis module in automatic recognizer of speech (ASR) has been shown to
be powerful means for improvement of performance in a number of well accepted ASR tasks [1],[2].
It allows for extracting speech-specific knowledge from large amounts of labelled speech data and
for efficient use of this knowledge on new ASR tasks [3]. While the most effective in its nonlinear
form [4], its linear version represented by linear discriminant analysis (LDA) has a distinct advantage
in data-driven feature module design since its output can be readily interpreted in terms of linear
systems [5]. It has been used for design of spectral basis [6], FIR RASTA filters [11] and 2-D spectro-
temporal basis [12],[18],[14]. The LDA-derived spectral basis yield spectral analysis with auditory-like
spectral resolution and LDA-derived FIR band-pass filters with symmetrical (approximately zero-
phase) impulse responses emphasize dominant speech components in the modulation spectrum of the
signal. 2-D discriminants derived from a relatively short segments (about 100 ms) of speech in [12],[18]
were found beneficial but their properties were not explicitly reported.

Informal evidence suggests that the 2-D LDA basis can be well approximated by an outer product
of LDA-derived spectral basis and LD-derived FIR filters [21], [14]. Kajarekar et al. work is of a
particular interest since they report forms of their 2-D discriminants, using longer speech segments
(about 1000 ms) that were reported necessary for sufficient classification of phonemes in speech [15],
and explicitly aimed at comparisons of 1-D and 2-D discriminants. However in [14], the authors had
at their disposal only about 3 hours of phoneme-labeled data, and reported that use of longer speech
segments could have created problems in 2-D LDA design since the necessary covariance matrixes are
rather large. Further, their speech database (OGI Stories), though reasonably realistic, consists of
monologues and does not fully represent true conversational speech.

As the popular wisdom goes: “There is no data like more data”. We are convinced it is beneficial to
revisit the LDA using large amounts of phoneme-labeled realistic conversational speech that became
recently available from SRI International in order to understand if same conclusion holds across
databases, and this is the topic of our paper. The paper is organized as follows: in section 2, we
review LDA based techniques for degenerate matrix we use in experimental part, in section 3 we give
a brief description of the database, in sections 4,5 we describe experiments in temporal, spectral and
joint spectro-temporal domain and in section 6 we present ASR experiments.

2 Linear Discriminant Analysis

Given a data set {Xk
i
} where Xk

i
is an n-dimensional feature vector that represents the ith sample

of kth class, LDA aims at simultaneously minimizing the within-class covariance matrix Sb and the
across-class covariance matrix Sw defined as:

Sb =
K∑

k

(X̄k − X̄)(X̄k − X̄)T Sw =
K∑

k=1

Mk∑

i=1

(Xk

i − X̄k)(Xk

i − X̄k)T (1)

where K is the number of classes, Mk is the number of elements in the kth class, X̄k is the class mean
defined as X̄k = 1/Mk

∑Mk

i=1
Xk

i=1
and X̄ is the global mean of the data X̄ = 1/(

∑K

k=1
Mk)

∑K

k=1

∑Mk

i=1
Xk

i
.

LDA aims at finding a transformation Y = AX such that the Fisher criterion defined in terms of Sb

and Sw is maximized [7] i.e.

maxA(trace(AT SwA)−1(AT SbA)). (2)

Solving equation (2) is equivalent to the generalized eigenvalue problem Sbx = λSwx for λ 6= 0 and
solution can be obtained by applying eigen-decomposition to the matrix S−1

w Sb if Sw is not singular.
However in real situations, the matrix Sw can be singular. A common technique for overcoming this

problem is the PCA-LDA in which the space is first smoothed preserving the principal components of
total covariance matrix and then LDA is applied to non degenerate matrix (as in [17]). PCA may not
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be compatible with LDA; in [8] it is shown that the most important space for linear discrimination
is the null space of matrix Sw

1. In fact if SwA = 0 and Sb 6= 0, the ratio (2) is maximized and
perfect classification is achieved. However, use of PCA may directly eliminate the null space of Sw,
eliminating the most discriminative information. A possible solution proposed in [9] computes first
V T SbV = Λ, eliminating the null space of Sb (which is useless for discrimination) and projecting Sw in
this space. In this way the null space of Sw is preserved together with most important discriminants
(for details see [9]).

In real data situations, many eigenvalues are generally very small but different from zero ; this
induces the problem of the number of components that should be preserved while smoothing Sb. We
apply cross validation over a separate data set using as validation criterion the ratio (2) in order to
decide the valid number of discriminants.

3 Database description

Experiments are run using 30 hours of speech obtained from the CTS (Conversational Telephone
Speech) database. CTS database is a collection of narrowband speech data from many different
previous databases (Switchboard, Fisher databases, etc.). Data are labeled into 40 phonetic classes
and labels provided by SRI are automatically obtained using forced alignment. This amount of data is
significantly larger than the amount of data previously used for this task, allowing robust estimation
of Spectro-Temporal discriminants.

4 Data driven temporal and spectral discriminants

Temporal filters were introduced as means for alleviating effects of linear distortion of the signal [10].
In [11] temporal filters were derived using LDA on time trajectory of critical band energies; data
driven discriminants had similar magnitude frequency response as RASTA filter [10]. LDA is applied
here on vectors composed by a sequence of critical band energies with a total duration of 1010ms (101
frames) and labeled as the phonetic class in the center of the vector.

In this first set of experiments we apply LDA as described in section (2). Until now only first three
discriminants have been studied; the use of large amount of data allows the robust estimation of higher
discriminants. If data are split in sentences as it is usually done in speech recognition, discriminants
exhibit artifacts at the end and at the begin, otherwise if they are processed with full context they
show significant non-zero values only in the center. This suggest that the procedure of splitting the
data in blocks may be detrimental for such temporal processing of data.

Figure 1 shows four discriminants obtained from the fifth critical band. Discriminants at other
frequencies are very similar. Width of those filters suggests that information about phonemes is spread
in time over an interval of around 500ms around the center of the phoneme. First discriminant is
qualitatively similar to RASTA filter while higher order discriminants describe more details of signal
dynamics. In frequency domain they corresponds to pass band filters that pass lower frequencies of
the modulation spectrum. Width of temporal discriminants progressively increase, suggesting the use
of different time resolutions. This result directly supports the intuition in [13] where a filter bank of
multi-resolution RASTA filters is used for extracting temporal informations.

In [19],[17] spectral discriminants are derived using LDA, however PCA is used for smoothing Sb

and Sw. According to the discussion of section 2 this is a suspect method that can significantly affect
the result. We repeat the same experiment using 30 hours of speech and the previously discussed
LDA technique for singular matrices. Hamming window shifted by 10ms step is used to obtain 129
points of 12th order LPC logarithmic power spectrum.

Cross validation experiments select out of the possible 39 discriminants only 25 (that are enough for
covering the discriminative space). In figure 2 first four temporal discriminants are plotted on a linear

1The null space of a matrix S is defined as {x|Sx = 0, xǫRn}
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Figure 1: Four discriminants obtained using LDA on Temporal Patterns for the fifth critical band

scale. Linear discriminants show a higher oscillation frequency at low frequency and progressively lower
oscillation frequency in the higher part of the spectrogram, suggesting different frequency resolution
at different parts of the spectrum.

To further investigate this issue we performed sensitivity analysis as described in [19]. Sensitivity
of a given bases is computed as the Euclidean distance between a gaussian shape centered at a given
frequency and the same shape shifted by a certain value, projected on the bases. In other words if g(f)
is a gaussian shape centered at frequency f and W is the LDA basis, the sensitivity S(f) is defined as
S(f) = ||g(f) ·W − g(f +µ) ·W || where µ is a shift. Figure 3 (up) plots sensitivity to a constant shift
µ = 25Hz on a linear scale; in this case LDA basis are more sensitive at lower frequencies. Figure 3
(down) plots sensitivity to a constant shift µ = 0.8 Bark on a Bark scale; sensitivity is now constant,
suggesting that LDA discriminants emulate the Bark scale with higher resolution at low frequencies
and lower resolution at higher frequencies. The Bark scale was derived by perceptual experiments,
LDA spectral basis are completely data-driven supporting [19].
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Figure 2: Four spectral discriminants on a linear scale.
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Figure 3: Sensitivity of LDA linear basis versus constant shift on a linear scale (up) and on a bark
scale (down).
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Figure 4: First twelve spectro temporal discriminant

5 Joint spectro-temporal analysis

Analysis of spectrum and of temporal trajectories has been done in previous sections independently.
We want to investigate now discrimination in joint spectro-temporal domain using discriminant anal-
ysis. A T ×F matrix where T is the temporal context and F is the number of frequency components
is labeled according to the phoneme in its center. The matrix can be represented as a vector of size
T × F and classical LDA can be applied. This approach was applied in [14] in critical band domain
with a context of 101 frames on small amount of data. Conclusion was that the amount of data
was not sufficient for robust estimation of discriminants. Better results were obtained if analysis was
carried independently in time and in frequency and discriminants recombined. We are interested here
in using the LPC power spectrum (dimension 129 points) in combination with a temporal context of
101 frames. If matrices are represented as vectors, Sw and Sb have a dimension of 13000 × 13000
which is unsuitable for computational reasons. A way to overcome this dimension problem is doing
discriminant analysis directly in the matrix space represented as a tensor. In other words, operations
on vectors are replaced by operations on tensors and final discriminant space is a tensorial space. If X
is a matrix of dimension T × F , we seek the space transformation that reduces T × F into a space of
dimensions l1× l2; this space is obtained by the tensor product of a subspace L of dimension T × l1 and
R of dimension F × l2. Projection of an element X in this space is given by the product Y = LT XR
with final dimension l1 × l2. In the tensorial space, the Frobenious norm can be used to derive within
and across class matrices Sw and Sb defined as:

Sw =
k∑

i=1

∑

XǫCi

||X − Mi||
2

F Sb =
k∑

i=1

ni||Mi − M ||2F (3)

where Mi is the class mean matrix and M is the global mean matrix. Using the Frobenious norm
property trace(MMT ) = ||M ||2

F
and applying the transform Y = LT XR expression (3) reduces to:

S̄w = trace(
k∑

i=1

∑

XǫCi

LT (X − Mi)RRT (X − Mi)
T L) (4)

S̄b = trace(

k∑

i=1

niL
T (Mi − M)RRT (Mi − M)T L). (5)



6 IDIAP–RR 06-20

Optimal transforms L and R can be found iteratively fixing one of them, projecting tensor in their
space and solving the generalized eigenvalue problem (see [16]). This result in eigen-decomposition of
matrix 101×101 and 129×129 instead of 13000×13000. In other words rows are projected on matrix
RRT and columns on matrix LT L that span the linear discriminant space of rows and columns of
X respectively. Linear discriminants obtained using 2DLDA have similar shape as outer product of
discriminants obtained processing independently the temporal and spectral domain, suggesting that
those domains can be processed independently2. Figure 4 shows twelve 2D discriminants in the time
frequency domain. Some of them show strong localization properties both in time and in spectral
domains as if they were sensitive to a particular region in the plane; on the other hand we can notice
as well discriminants with a sensitivity more spread over the frequency domain.

6 Experiments

In this section we describe results obtained running recognition experiments using spectral and tem-
poral discriminants. LPC power spectrum is projected on spectral and temporal basis and results are
compared with LPC power spectrum projected on DCT basis and with PLP cepstral coefficients. For
experiments we used a database that is different from the one used for deriving linear discriminants
assuming that those findings are universal properties of speech and not task dependent. Recognition
results are run on the OGI-digits database. Table 1 shows results obtained using the following set
of 13 features: (a) LPC power spectrum projected on 13 DCT basis (b) PLP (c) LPC power spec-
trum projected on 13 spectral linear discriminants (d) LPC power spectrum projected on 13 spectral
linear discriminants and filtered with one temporal discriminant. If LDA basis are used instead of

13 LPCC 13 PLP 13 spec. 13 spec. × 1 temp.
85.9 86.5 86.5 90.9

Table 1: Accuracy for different sets of 13 features on OGI-digits

DCT basis, an improvement of 4% (relative) is obtained. DCT basis has a uniform spectral sensi-
tivity while LDA has a higher sensitivity at lower frequencies (emulating somehow the bark scale)
where the most important information for recognition is contained. Spectral basis designed from data
yield similar performance as PLP features designed according to auditory principles [10]. If spectral
features are filtered with first temporal discriminant a considerable improvement of 35% (relative)
w.r.t. the LPC baseline and 32% (relative) over PLP is obtained indicating the effectiveness of larger
temporal context, imposed by the temporal filtering. In table 2 we compare results for 39 features, i.e.
LPCC features plus delta and double delta with power spectrum projected on 13 spectral basis and 3
temporal basis. In this case LDA spectral and temporal discriminants outperform LPCC plus delta

39 LPCC + deriv. 39 PLP + deriv. 13 spect. × 3 temp.
94.0 94.6 94.7

Table 2: Accuracy for different sets of 39 features on OGI-digits

and double delta by 11% (relative) while only very small improvement w.r.t. PLP and derivatives
is found. Again data guided features yield equivalent results as currently often used PLP static and
dynamic features.

2This is similar to the Combined Discriminant Analysis proposed in [14] but here final estimation is achieved trough
an iterative algorithm that converges to two discriminant subspaces
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7 Conclusions

In this work we have extended previous LDA analysis of spectro-temporal domain done on smaller
data sets. A tensorial LDA is proposed for processing long time-frequency slices and a revisited LDA is
used for dealing with singular covariance matrices. Temporal basis have similar magnitude frequency
characteristic as RASTA filters but differ in phase, spectral bases have similar frequency sensitivity
as the Bark scale of hearing and obtained 2D filters show localization properties both in time and
frequency. Those conclusions are qualitatively consistent with what was presented earlier in literature
[6],[11],[14] on smaller databases. We found a large improvement in the use of data driven front-end
when only 13 features are used. In this case the most important gain in performances is obtained
when time trajectories are filtered with first temporal discriminant. On the other side only small
improvements are obtained when dynamic features are added. The fact that results were carried over
different databases supports the universal (speech specific and not task specific) nature of our findings.
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