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Abstract. This paper presents our participation in the CLEAR 07 evaluation workshop head
pose estimation tasks where two head pose estimation tasks were to be addressed. The first
task estimates head poses with respect to (w.r.t.) a single camera capturing people seated in a
meeting room scenario. The second task consisted of estimating the head pose of people moving
in a room from four cameras w.r.t. a global room coordinate. To solve the first task, we used a
probabilistic exemplar-based head pose tracking method using a mixed state particle filter based
on a represention in a joint state space of head localization and pose variable. This state space
representation allows the combined search for both the optimal head location and pose. To solve
the second task, we first applied the same head tracking framework to estimate the head pose
w.r.t each of the four camera. Then, using the camera calibration parameters, the head poses
w.r.t. individual cameras were transformed into head poses w.r.t to the global room coordinates,
and the measures obtained from the four cameras were fused using reliability measures based on
skin detection. Good head pose tracking performances were obtained for both tasks.
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1 Introduction

The study of head related-behaviors such as head gestures is of interest in many computer vision
related applications. When studying head gestures in a general framework, information about head
poses are required. Over at least a decade, many head pose tracking methods have been proposed.
However, before being the bases of head gesture studies, the performances of the proposed head pose
estimation methods have to be thoroughly investigated. For evaluating head pose estimation methods
evaluation databases are required. Efforts have been made to build and make publicly available,
a head pose video database with people having their head orientation continuously annotated with
a magnetic field location and orientation tracker [4]. Such a database is usefull for comparison of
cross-institution head pose evaluation where similar protocols can be used. Therefore, since 2006, the
Classification of Events, Activities and Relationships (CLEAR) evaluation workshop has targetted the
evaluation of head-pose estimation algorithms. In 2006, the head pose tracking task in the CLEAR
evaluation workshop involved estimating the head direction of a person among 8 possible directions
(North, North-East, East,..., where the cardinal directions corresponded to the wall of a room). A
limitation of this task was that the head directions were annotated by hand and that no precise
evaluation was possible. This was remedied in 2007.

In the 2007 CLEAR evaluation workshop, two head pose estimation tasks were proposed. The first
task, called the Augmented Multi-party Interaction (AMI) task, was about estimating people’s head
pose w.r.t. the view from a single camera. The data for this task consisted of 8 one-minute recordings.
In each recording, four people are involved in a meeting and two people among the four have their
head pose w.r.t. to a camera view annotated using a magnetic field location and orientation tracker
[1]. These annotations were used for evaluation as a head pose ground truth (GT). The second task,
called the Computers in the Human Interaction Loop (CHIL) task, involved estimating the head pose
of a person w.r.t. to a global room coordinate system using four camera views of the person. For this
task head pose ground truth was also generated using a magnetic field location and orientation tracker.
The two tasks are interesting in the sense that they cover two common scenarii in computer vision
applications. The first scenario occurs in a meeting room in which people are mostly seated. The
second, occurs in a seminar room or a lecture theatre in which the head is captured at a much lower
resolution and the people are mostly standing and moving. Evaluating head pose tracking algorithms
in these two situations is important to understand the behaviors of the algorithms for a wide range
of potentially interesting experimental setups.

In this work we used a probabilistic method based on a mixed state particle filter to perform
head pose tracking w.r.t. a single camera view [5]. Applying this method solves the AMI head pose
estimation task. To address the CHIL task, the head pose w.r.t. the camera is transformed to be
relative to the global room coordinate system using the camera calibration parameters. Then the
head pose estimated w.r.t. to the global room coordinate obtained from the four cameras are fused
into a single head pose estimate using the percentage of skin present in the estimated bounding box
for the head as reliability measure.

The remainder of this paper describes in more details the methods we used to solve the two tasks.
Section 2 describes the estimation method in term of the head pose w.r.t. a single camera view.
Section 3 describes the method we used to estimate the head pose w.r.t to a global room coordinate
to solve the second task. Section 4 gives the results we obtained for the AMI task and Section 5 the
results for the CHIL task. Finally, Section 6 provides some concluding remarks.

2 Head Pose Tracking with Respect to a Camera View

In this Section, we summarize the probabilistic method we used to track the head pose of a person
w.r.t. a single camera view. This method is more thoroughly described in [5, 3].
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(a) (b)

Figure 1: a) Training head pose appearance range (Prima-Pointing Database[6] ) and b) texture
features from Gaussian and Gabor filters and skin color binary mask.

2.1 Probabilistic Method for Head Pose Tracking
The Bayesian formulation of the tracking problem is well known. Denoting the hidden state repre-
senting the object configuration at time t by Xt and the observation extracted from the image by Yt,
the objective is to estimate the filtering distribution p(Xt|Y1:t) of the state Xt given the sequence of
all the observations Y1:t = (Y1, . . . , Yt) up to the current time. Given standard assumptions, Bayesian
tracking effectively solves the following recursive equation:

p(Xt|Y1:t) ∝ p(Yt|Xt)

∫
Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1 (1)

In non-Gaussian and non linear cases, this can be done recursively using sampling approaches, also
known as particle filters (PF). The idea behind PF consists of representing the filtering distribution
using a set of Ns weighted samples (particles) {Xn

t , wn
t , n = 1, ..., Ns} and updating this representation

when new data arrives. Given the particle set of the previous time step, configurations of the current
step are drawn from a proposal distribution Xt ∼ q(X|Xn

t−1, Yt). The weights are then computed as

wt ∝ wn
t−1

p(Yt|Xt)p(Xt|X
n

t−1
)

q(Xt|Xn

t−1
,Yt)

.

Five elements are important in defining a PF: i) a state model which is an abstract representation of
the object we are interested in; ii) a dynamical model p(Xt|Xt−1) governing the temporal evolution
of the state; iii) a likelihood model p(Yt|Xt) measuring the adequacy of the data given the proposed
configuration of the tracked object; and iv) a proposal distribution q(X|Xn

t−1, Yt) the role of which is to
propose new configurations in high likelihood regions of the state space v) and a sampling mechanism
which defines how the filtering distribution will be approximated using particles. These elements are
described in the following paragraphs.
State Space: The state space contains both continuous and discrete variables. More precisely, the
state is defined as X = (S, r, l) where S represents the head location and size, and r represents the
in-plane head rotation. The variable l labels an element of the discretized set of possible out-of-plane
head poses. In addition to the set of poses displayed in Fig. 1(a), 3 additional poses at pan values of
-135◦, -180◦, and 135◦ (and a 0◦ tilt) were selected to represent the head from the back and allow
head tracking when people are turning their head to the camera.
Dynamical Model: The dynamics governs the temporal evolution of the state, and is defined as

p(Xt|Xt−1) = p(rt|rt−1, lt)p(lt|lt−1, St)p(St|St−1, St−2) . (2)

The dynamics of the in-plane head rotation rt and discrete head pose lt variables are learned using
head pose GT training data. Notice that the roll dynamics depend on the out-of-plane appearance (in
plane rotation dynamics is different for frontal and profile poses). Head location and size dynamics
are modelled as second order auto-regressive processes.
Observation Model: The observation model p(Y |X) measures the likelihood of the observation for
a given state . The observations Y = (Y tex, Y skin, Y sil) are composed of texture features, skin color
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(a) (b)

Figure 2: a) Silhouette binary features (foreground mask), b) heads detected from the silhouette
features.

features (see Fig. 1(b)) and silhouette features (see Fig. 2(a)). Texture features are represented by
the output of three filters (a Gaussian and two Gabor filters at different scales) applied at locations
sampled from image patches extracted from each frame and preprocessed by histogram equalization
to reduce light variations effects. Skin color features are represented by a binary skin mask extracted
using a temporally adapted skin color model. The silhouette features are represented by a binary
mask which is obtained from foreground segmentation using a temporally adapted background model
as presented in [7]. Assuming that, given the state vector, the texture, skin color, and silhouette
features are independent, the observation likelihood is modeled as:

p(Y |X = (S, r, l)) = ptex(Y tex(S, r)|l)pskin(Y skin(S, r)|l)psil(Y
sil) (3)

where ptex(·|l) and pskin(·|l) are pose dependent models learned from the Prima-Pointing Database[6]
and psil(·) is the silhouette likelihood model learned from training data (provided with the two tasks).
For a given hypothesized configuration X, the parameters (S, r) define an image patch on which
the features are computed, while for the pose dependent models, the exemplar index l selects the
appropriate appearance likelihood model.
Proposal Distribution: The role of the proposal distribution is to suggest candidate states in
interesting regions of the state space. As a proposal distribution, we used a mixture between the state
dynamics p(Xt|Xt−1) and a head detector p(Xt|X̂

d
t ((Yt))) based on the silhouette features according

to the formula:
q(Xt|X

n
t−1, Yt) = (1 − α)p(Xt|X

n
t−1) + αp(Xt|X̂

d
t ((Yt))) (4)

where α < 1 is a mixture weight and X̂ d
t ((Yt)) = {X̂d

i (Yt), i = 1, ..., Nd
t } is the set candidate head

states obtained from the detection procedure illustrated by the green boxes in Fig. 2(b). Qualitatively,
the particles drawn from the second mixture components are randomly sampled around the detected
head locations. More information about the proposal function can be found in [3]. The state dynamics
are used to enforce temporal continuity in the estimated filtering distribution while the head detector’s
role is to allow automatic re-initialization after short-term failure and to avoid the tracker being
trapped in local maxima of the filtering distribution.
Sampling Method: In this work, we use Rao-Blackwellization (RB) which is, a process in which we
apply the standard PF algorithm to the tracking variables S and r while applying an exact filtering
step to the exemplar variable l. In the current case, this means that the samples are given by:
Xi = (Si, ri, πi(l), wi) instead of Xi = (Si, ri, li, wi), where πi(l) represents the posterior distribution
of the pose variable given all the other variables and the observations. The method theoretically
results in a reduced estimation variance, as well as a reduction of the number of samples. For more
details about the RB procedure, the reader is referred to [5].

3 Head Pose w.r.t to a Global Room Reference
In section 2 we presented a method to track and estimate head poses w.r.t. to a camera viewing
direction. Using the head pose w.r.t. to a camera view, we can estimate it w.r.t. to a global room
reference using matrix transformations.
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(a) Sample view of the AMI
evaluation data.

]
(b) Head attached basis w.r.t which
head rotations are defined.

Figure 3: Example views of two persons in the evaluation data.

3.1 Head Pose Estimation w.r.t to a Global Room Reference using a Single

Camera View
Head poses can be equivalently represented using Euler angles or a rotation matrixes. Denoting by
Rhead

vdir the current pose expressed in the local viewing direction coordinate reference system. Then,
given the correction matrix Rvdir

cam that expresses the local reference vectors into the camera reference
vector basis (this matrix depends on the image position of the head), and the calibration matrix Rcam

3D

that provides the rotation of the camera reference w.r.t. the global 3D reference, the current pose
w.r.t the global reference can simply be computed as: Rhead

3D = Rcam
3D Rvdir

camRhead
vdir . The pose w.r.t. to

the global room reference is then obtained using the Euler angle representation of the matrix Rhead
3D .

3.2 Head Pose Estimation w.r.t to a Global Room Coordinate using Mul-

tiple Camera Views
The method described in Section 3.1 allows us to estimate the head pose of a person w.r.t. the global
room reference using only a single camera. When multiple camera views are available, head poses can
be estimated from these sources by defining a procedure to fuse the estimates obtained from the single
camera views. Such a fusion procedure is usually based on a measure that assesses how reliable the
estimates are for each camera. Assuming the head is correctly tracked, the amount of skin pixels in the
head bounding box can be used as a reliability measure. In general, a high percentage of skin pixels
is characteristic of near frontal head poses for which head pose estimation methods are known to be
more reliable [2], while a low percentage of skin pixels in the head location means the head appears
either as a near profile head pose or from the back. Thus, we defined a camera fusion procedure as
follows. After tracking the person in each of the camera views and having estimated the head pose
w.r.t. to the global room reference, the final head pose is estimated by averaging the estimates from
the two cameras for which the percentage of skin in the head bounding box is higher.

4 The AMI Head Pose Estimation Task

The AMI head pose estimation task consisted of tracking head poses w.r.t a single camera in a meeting
room. In this section we describe the evaluation data and protocols for this task, then give the results
achieved by our head pose tracking algorithm.

4.1 Evaluation Data and Protocols
The AMI data is composed of 8 meetings recorded from a single camera view. Four people are
involved in each meeting. Among the four people, two which are always visible are used for head pose
estimation evaluation. Figure 3(a) shows an example view of the two people denominated person right
and person left. The evaluation data consists of 1 minute recordings of 16 people. The head pose
annotations of the 16 people used for evaluation were obtained using a magnetic field 3D location
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error (in degrees) 1R 1L 2R 2L 3R 3L average
pointing vector 15. 6 17. 5 16. 0 14. 8 8. 4 11. 6 14. 0

pan 9. 9 13. 4 4. 9 12. 9 4. 4 7. 4 8. 8
tilt 11. 2 9. 5 14. 7 6. 7 6. 8 7. 5 9. 4
roll 10. 4 8. 1 13. 7 8. 2 7. 2 11. 5 9. 8

Table 1: Head pose estimation performance for the person left (L) and right (R) in the three test
meetings of the AMI data. The last column gives the average pose estimation errors.

and orientation tracker [1], called a flock of bird, that was attached to each person’s head. After
calibration of the flock of birds to the camera, the outputs of the sensors were transformed to generate
the head pose annotations. Among the 16 people available, the data (video recordings and head pose
annotations) of 10 people were used as development data, and that of the 6 remaining people were
used as test data.

As performance measures, we used four metrics: the head pointing vector error, and the absolute
head pan, tilt, and roll estimation error. The head pointing vector is the normal unit vector of the
z axis of the basis attached to the head ( see Fig 3(b)). It defines the head pointing direction. The
head pointing vector error is the absolute angle between the ground truth head pointing vector and
the estimate. The head pan is defined as the rotation w.r.t to the y- axis of the basis attached to the
head (see Fig 3(b)), the head tilt is the rotation w.r.t. to the x-axis and the head roll is the rotation
w.r.t. to the z-axis. The estimation errors for these angles are the absolute differences between the
head pose ground truth and estimates.

4.2 Results for the AMI Task

To solve the AMI task, we initialized the head localization manually before applying the head pose
tracking method described in Section 2. The performances of the algorithm for the 6 persons in
the test set are given in Table 1. Over the whole AMI evaluation dataset, our head pose tracking
method achieves an average estimation error of 14◦ for the pointing vector estimation, 8.8◦ for head
pan estimation, 9.4◦ for the head tilt estimation and for 9.8◦ for the head roll estimation. An analysis
of the errors according to each individual shows significant variability of the performances due to
variations in appearance or sitting attitude. For the head pointing vector estimation, the lowest
estimation errors is achieved with the person sitting to the right side in the third test meeting (3R
in Table 1) while the highest errors are obtained with person 1L (cf Table 1). This shows that some
people are much better tracked than others, which is most probably due to the fact that they are
better represented by the appearance models than others.

Fig. 4 gives sample images of head pose tracking results. This figure can be analyzed in parallel
with Table 1. The first row of Fig. 4 shows that for person 1L (left person), head localization problems
occur in some frames. In the last row of Fig. 4, we can observe that the person sitting to the right side,
for whom the best tracking performance are achieved, has his head always correctly localized, even in
difficult conditions. This illustrates the correlation between good head pose estimation performance
and good head localization performance.

5 The CHIL Head Pose Estimation Task

The CHIL task consisted of estimating the head pose of a person w.r.t to a global room coordinate
system using single or multiple camera views. In the following subsections, we describe the evaluation
data and protocols and show the results using the algorithm described in Section 3.
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Figure 4: Sample images of head pose tracking results in the AMI data: first row show images of the
first test meeting, second row shows images for the third test meeting.

(a) Top view of the room. At the top left cor-
ner is the global room reference and at the four
corners are the cameras.

(b) Sample images from the 4 cam-
era recordings. First row, camera 4
and 2, second row camera 1 and 3

Figure 5: Top view of the seminar room and sample images from the four camera views

5.1 Evaluation Data and Protocols

The CHIL data involved 15 people recorded in a seminar room. The 15 people were wearing a magnetic
field location and orientation tracker, which provided their head pose w.r.t a global room reference.
Four cameras located in the upper corners of the room were used to record the whole scene during
three minutes in which the people had to move around and orient their head towards all the possible
directions. Fig. 5(a) shows a top view of the room with its reference and the four cameras and
Fig. 5(b) shows a sample image of all four camera views. In each of the recordings, head location
annotations were provided every 5 frames. The recorded data were split into 10 videos with their
corresponding annotations for training and 5 videos for testing. Only the frames for which head
location annotations were available were used for head pose estimation evaluation. Similar to the
AMI task, the error measures used for evaluation were the head pointing vector, pan, tilt and roll
errors in degrees.

5.2 Results for the CHIL Task

To solve the CHIL task we used two methods. The first method, denoted CHIL-M1, is based on head
pose tracking with respect to a single camera view as described in Section 2. Then the pose w.r.t. the
camera are transformed into pose w.r.t. to the global room reference using the methodology described
in Section 3.1. For this method, only one camera (cam 3 in Fig. 5(b)) was considered. The second
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method pointing vector pan tilt roll
CHIL-M1 30.0◦ 24.1◦ 14.0◦ 7.3◦

CHIL-M2 19.4◦ 15.0◦ 10.0◦ 5.3◦

Table 2: Head pose estimation average errors over the whole test set of the CHIL data using single
camera (CHIL-M1) and the fusion of the four cameras (CHIL-M2).

cam 1

cam 2

cam 3

cam 4

Figure 6: Sample images (cropped from the original images for better visualization) of head pose
tracking results for CHIL-M2. Each row displays sample images for the corresponding camera. Images
of the same column correspond to a single time frame recorded from the 4 camera views.

method, denoted CHIL-M2, used the head poses w.r.t. to the global room reference estimated by four
cameras and fused the estimates into a single one using the fusion procedure described in Section 3.2.
In the following experiments the initial head locations were again provided manually.

Table 2 gives the average head pose estimation errors for the whole CHIL test data using the
two methods. From the results, we can conclude that the method based on multiple camera fusion
outperforms the method that used a single camera view. The improvements can be explained by
the camera selection being implicitly embedded into the fusion process. More precisely, when using
only one camera, large errors are produced when the tracked persons are showing the back of their
head. On the contrary, in the fusion scheme, only the two cameras with the highest reliability measure
-usually the ones that the person is facing- are selected to estimate the head pose, thus providing good
results in almost all conditions.

Fig. 6 shows the head pose tracking results for one person and illustrates the usefulness of the
fusion procedure. In the second column for instance, camera 3 and 4 were automatically selected to
provide the pose results.
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6 Conclusion

In this paper we described our participation to the two head pose estimation tasks of the CLEAR07
Evaluation and Workshop. We proposed to use an exemplar-based representation of head appearances
embedded into a mixed state particle filter framework. This method allowed us to estimate the head
orientation of a person w.r.t. to a single camera view, thus solving the first task. The second task
was solved by transforming the rotation matrix defining the pose w.r.t. the camera using the cam-
era calibration parameters of a camera to obtain the head pose w.r.t a global room reference. This
procedure was improved by fusing the single camera estimates using skin color as a camera fusion
reliability measure. Good performances were achieved by the methods we proposed in solving both
tasks. In term of future work, we plan to define the head localization component of the state space
of our mixed state particle filter directly in the three-dimensional space rather than in the image plane.
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