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Abstract. This paper presents a comparison between six different ways toycoav@ational information
provided by a robot to a human. Visual, auditory, and tactile feedbaclalities were selected and designed
to suggest a direction of travel to a human user, who can then decideaifriees or not with the robot’s
proposition.

This work builds upon a previous research on a novel semi-autor®namigation system in which the human
supervises an autonomous system, providing corrective monitoringlsigzhenever necessary.

We recorded both qualitative (user impressions based on selectethaitdrranking of their feelings) and
quantitative (response time and accuracy) information regardingetitféypes of feedback. In addition, a
preliminary analysis of the influence of the different types of feedlmarckrain activity is also shown. The
result of this study may provide guidelines for the design of such a huotzot interaction system, depending
on both the task and the human user.
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Figure 1: Scheme of the proposed semi-autonomous navigadiacept.

1 Introduction

Robots interacting with humans should be able to receiventanas as well to communicate relevant infor-
mation such as perceptual input or internal states backetdttman. This is even more relevant for robots
helping humans, as in service robotics. We have proposed &oecept for semi-autonomous navigation for
disabled people where the user relies mainly on the machidgeovides only corrective monitoring signals
when needed [17]. In this approach, shown in Figure 1, thetrisbendowed with autonomous capabilities
(depicted on the right part) and can interact with the humaorder to reach the user’s desired goal. For in-
stance in navigational tasks, at each relevant place inrthieomment (e.g., crossroads), the robot chooses a
direction of travel according to local environmental infa@tion and to the previously learned human-machine
interaction. This choice is then submitted to the human fwespproval before its execution. In general, the
human monitors the activity of the robot and provides a ative signal whenever the robot proposition differs
from the user’s desired action.

In this approach designed for daily use, it is then cruciakt@mbly communicate the controller’s decisions
to the human user. This paper seeks to compare different teayovide such communication when com-
pleting a navigational task. We will explore the three mégmdback modalities, namely visual, auditory, and
tactile feedback. Three different kinds of visual feedlsa@le., icons, spatially located squares, and text), two
of auditory (i.e., spatially located sounds and voice) anel @actile (i.e., spatially located actuators) are tested.
Both quantitative (accuracy and rapidity) and qualitafiveer feelings about the feedback types) information
was used to assess their suitability.

In the long term, the described approach for sustained htnotawt interaction might also be implemented
using Brain-Computer Interfaces (BCI), where brain sigree translated onto robot commands. To this
end, we perform a preliminary analysis of electroencepgrajohic (EEG) signals generated while performing
the described task, with a particular focus on signals ggedrwhen human subjects supervise the robot’s
decisions.

In the next section, a brief review of the state of the art &fedént feedback principles and input systems
is proposed. Then, in section 3, we will describe our expenital setup and the protocol used for collecting
information. Section 4 will present the results, which aeedssed in section 5. Finally, we will conclude with
a summary and an outlook on future work.
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2 State of the art

The proposed semi-autonomous navigation system impliessadhuman-machine communication loop. On
one side, the robot’s decisions are sent to the user (i.€himato-human communication), and on the other
side, the human sends monitoring signals to the contraller, human-to-machine communication). This
section contains a brief review of related work with a focagfweir application in brain computer interfaces.

2.1 Input systems

Common input systems for human-machine interaction raraye keyboards, joysticks, and touch screens to
devices more adapted to disabled persons, like voice coaenaxe-tracking, or sip and puff systems [20, 24].

Inrecentyears, a novel technology has been studied, ndoragty-computer interfaces (BCI). Non-invasive,
electroencephalography (EEG) based BCls rely on the degadibrain activity in order to manipulate robotic
devices, virtual keyboards, or more general computer egidins [15, 22]. It allows the use of a new commu-
nication channel, the brain, instead of limb or eye movemsent/oice commands.

The work done by Ferrez and Malh [7, 8] about error potentials is a recent addition to tlalable decoded
brain-commands for human robot interaction. This potémdicates the human awareness of an erroneous
response made by the system when classifying the userionierih the experiments we are presenting, we
will study the influence of the different feedback modatitan the recognition of this error potential.

The choice of an input system depends on the human user anorelke targeted application. Information
from the input system can be either discrete, for button®mevcommand, or continuous, for joysticks or eye-
tracking systems. BCI systems can be designed to providetyyoes of inputs. As opposed to continuous input
systems, discrete input systems typically encode feweralotommands, thus having a lower information bit
rate, therefore they are used to convey high-level infoionatas in our proposed human-robot interaction
scheme. The input processing has to be designed accordasghell as the information provided to the user.
Moreover, we have shown that a semi-autonomous approactevine user emits corrective actions yields
higher information transfer rates than explicit navigatibdiscrete commands [17].

2.2 Feedback systems

In Human-Computer Interactions, Brewster have proposettamscription of visual information to auditory or
tactile representation. His so-calledrcong4] or tactons[3] try to imitate the use of visual icons to represent
files, folder, menus, or actions. Specific tacton (respelstiearcon) patterns are created by modifying the
frequency (pitch), amplitude (intensity), duration, ttimyt, or body location (timbre) of the stimuli. Vibro-
tactile stimuli have also been studied for providing spati@rmation to the human about directions to explore
in a building-clearing task [13].

EEG studies have largely used stimulus presentation irr ¢oderovide feedback of the subject’s perfor-
mance of a task or to provide a cue to react to. Visual feedsaekdely used, as it is considered a natural
communication channel. Auditory feedback is a good altarear a complement to the visual one. Vibro-
tactile (haptic) feedback is nowadays getting more and ratiemtion due to the novelty and to the potential
applications it has. Feedback has also an influence on lotitityaand has to be carefully designed for optimal
usage [14].

When providing visual feedback about EEG signal classificathe performance of a user can be displayed
either with bars, lines, moving cursor, or icons [7, 11, 28hterberger et al. experimented the usage of audio
melodies for indicating the output of the EEG classificafib®, 11] or for representing the brain activity itself
with the sonification of the EEG in real time [9]. Vibro-tdetsystems have recently been studied in comparison
with visual feedback [12]. They show no significant diffecerfor the realisation of the task, but do allow the
visual channel to be freed up or to complete the informatiow.fl

Some brain signals, the so-called evoked potentials, agse@sponses to external stimuli. For instance,
the P300 signal is a positive EEG deflection 300 ms after $tisnanset, elicited when a significant, rare
stimulus appears in a sequence of frequent other stimuérerare numerous applications on the use of P300
using both visual [5, 18] and auditory [19] stimuli.
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Figure 2: (a) Example of maze with T crossings only. (b) Scit§eview of the maze. The visual cue on the
floor shows the correct direction.

In recent years, there has been an increased interest iyirgguorain activity during real-world experi-
ences. In particular, virtual reality techniques have kagalied to both functional magnetic resonance imaging
(fMRI) [21] and EEG studies [2]. This work follows the samepapach and aims to exploit the high temporal
resolution of EEG, as opposed to fMRI higher spatial resmfytn realistic situations.

3 Methods

Twenty-two subjects (6 women) aged 24-52 (mean 30.18, sid. 5187) participated in the experiment. All
participants gave informed written consent before the gexpnt. In addition, EEG activity was recorded for
four of these subjects while they performed the task.

During the experiment, subjects are asked to monitor thésides of a simulated robot navigating in a
virtual maze (Figure 2). The correct trajectory is indichlby arrows drawn on the floor of the corridors. At
each junction, the controller decision is presented to 8&r using one of six different feedback modalities.
The subject is asked to press a key whenever an erroneowsoteis presented. Each modality was tested
separately and user responses and reaction times werel@ddor each condition. Moreover, verbal reports
were acquired before, during, and after the experiment sesasthe user’s preference among the different
modalities.

3.1 Types of Feedback

Six different types of feedback were tested to convey thet'simnavigation decisions, i.eyrn left, turn right,
andforward. At each point, one of three decisions is presented to thiestulilhe tested feedback conditions
were:

e Visual pictograms (V1)An icon containing an arrow (pointirigft, right, or up), similar to a traffic sign,
is shown in the center of the screen (c.f. Figure 3a,b).

e Visual squares (V2)Colored squares are shown at tlf, right, or centerof the screen (c.f. Figure 3c).
o Visual text (V3) The worddeft, right, andforward are shown in the center of the screen (c.f. Figure 3d).

e Auditory tones (A4)Sound tones, spatially localized to tledt, right, or centerof the user, were played
back through stereo headphones. The same tone was used tbrah conditions so as the information
was solely provided by the spatial localization.

e Auditory words (A5)A pre-recorded voice informed the user about the contslékecision pronouncing
the worddeft, right, andforward.
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(d)

Figure 3: Examples of visual feedback. Pictograms (V1)c€ject and (b) erroneous feedback. (c) Squares
(V2) and (d) text feedbacks (V3).
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Figure 4: Vibro-tactile actuator (a) front and side view dhyplaced on the body.

¢ Tactile (T6) Vibro-tactile actuatofswere located in the upper back of the user (c.f. Figure 4). The
electromagnetic devices provide a short vibration to thgesu, i.e., an oscillation at 200 Hertz during
50 milliseconds.

The motivation for the selection of these feedback typestowa®ver the major human sensory channels
(sight, hearing, touch) and to make the association stisacéummand evident. This avoids the need for the
subjects to learn the association and reduces the risk dfiterigretation.

3.2 Experimental Protocol

Throughout the experiment, subjects were asked to gradeiffieeent types of feedback with respect to the
following adjectives{(i) Natural,(ii) Understandabldjii) Not Disturbing, andiv) Pleasant. The whole exper-
iment consists of three phases and lasts around 90 mifutes

3.2.1 Preliminary Measures

This phase is intended to establish a priori feedback pFaters of the subjects before actually experiencing the
maze navigation. After hearing the description of the expent, subjects were asked which type of feedback
ranks first and last for the above mentioned criteria. Moeeahe response time needed for pressing a key as
soon as a stimulus was presented on a black screen was ntkasure

A control situation was also included where the subjectvaltidrives the robot through the maze by
pressing one of the arrow keys according to the visual cub@fidor. This helps the user to get used to the 3D
maze environment and the cues to follow. This manual driigngimilar to the semi-autonomous navigation
strategies encountered in robotics: at each relevant jlacecrossings, the robot waits for a direct order from
the user [1, 24]. This test serves as a basis of comparisehdoeaction times and for the percentage of correct
orders.

3.2.2 Semi-Autonomous Maze Navigation

In this phase the subjects have to monitor the robot’s datssivhile navigating inside the virtual maze with
a first-person view. In order to focus our attention on the &m#robot interaction, the robot is following
predefined paths. This prevents a long learning period ofdlieer complex environment by the subjects.
This allows furthermore to correctly label the sample, to ruore experiments than with a real robot, and
even to involve novice users without previous experiendé vabots (which otherwise might appear to drive
chaotically and thus distract their attention). Threead#ht mazes were designed, all of them consisting of 36

1From Engineering Acoustics, INC., FI, USA [6]
2Experimental sessions involving EEG recordings lasted e®minutes more to account for electrode placement, subjepapation,
and additional trials per condition.
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binary intersections. The robot controller was set up so &ske erroneous decisions in 40% of the trials. The
speed of the robot was set so as to spend three seconds bétweemrccessive intersections.

When the robot arrives at an intersection, it proposes aaraasing one of the feedback types described in
Section 3.1, waiting then for one second for the user’s nespoThe subject is expected to press a key whenever
the controller makes an error. The system also informs teewken he/she does not respond adequately (i.e.,
either by pressing the key when there is no error -false igesibr not pressing when an error occurs -true
negative). If the subject does not press a key within onerskeadter an error, the trial is also counted as a
failure. In all cases, the robot will follow the correct gajory towards the exit of the maze.

Subjects whose EEG brain activity was recorded did the thhazes for each condition (resulting in about
65 correct and 43 erroneous feedbacks) while the rest ofubjecs choose two out of the three mazes (43
correct and 29 erroneous feedbacks). The order of mazegsadbdck types changed randomly across different
subjects. After the subject completed the task for eachitiondthe operator asked him/her to grade it, again
according to the four criteria already mentioned (i.e.,Uxat Understandable, Not Disturbing, and Pleasant).
The scale ranged from one for a perfect fit to the criteria (eagy pleasant), to five for the opposite (e.g., very
unpleasant), three being neutral.

3.2.3 Final Debriefing

Once the task has been completed for all the six differeregyqf feedback a post-experimental debriefing
takes place. The subject is asked to rank all the conditionsder to obtain a posteriori preferences.

3.3 EEG recordings

We recorded EEG activity during the experiment for four of gubjects (mean age 26.5; SD 1.0) using a
Biosemi acquisition systems (www.biosemi.nl). Data waguared with a sampling rate of 512 Hz using
64 electrodes according to the standard 10/20 interndtgystdem. Signals were then re-referenced to the
common average reference (CAR) and a 1-10Hz band-passwiterapplied. External triggers were sent
to the acquisition board of the EEG system by the experinheotéware to timestamp relevant events (i.e.,
experiment start/stop, feedback delivery, and user'soresg)

EEG data was segmented into epochs corresponding to eaehim@zsection and baseline activity com-
puted in the 100 millisecondsrior to the feedback onset. Epoch activity (in the time domairg than used to
classify correct and erroneous trials. We use a linear ficgitassifier trained using an iterative recursive least
square algorithm [16]. This classifier is trained using EE@&gles from a particular time window (where the
phenomena are expected to occur) where each sample is emtsiddependent.

Separate classifiers were designed per subject and typediidek. Classification performance was as-
sessed using 10-fold cross validation. Moreover, in ordexmulate realistic operating conditions of a BCI
device, no artifact rejection was applied and all the triedse included in the analysis.

4 Results

This section presents the different performance measasedts. Reaction time, user performance, user feed-
back evaluations, and EEG signals are analysed in ordesé&ssishe suitability of each feedback type.

4.1 Reaction time

Figure 5a shows the reaction time during both the prelingimaeasures and during maze navigation for all
types of feedback. For the preliminary measures, the vigmgalback types have the shortest response time
and also the most uniform (small standard deviation), fedid by vibro-tactile feedback (T6). No significant
difference was found between them (ANOVA test< 0.05, followed by a multiple-comparison Bonferroni
correction). The two auditory feedback types have the lshgsponse time, the voice cues being the slowest
and having the biggest standard deviation. This last resutbe explained by the fact that subjects reacted
either as soon as they heard something or at the end of the word
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Figure 5: (a) Response time in milliseconds for the prelanyrtests and during the experiments. (b) Difference
between the response times calculated for each subjecteSten 3.1 for the meaning of the feedback labels.

When we look at the reaction times during the experiments, avesee that V1, V2 and T6 elicit the
quickest responses when performing the monitoring taslks{atistical difference). A possible explanation is
that the position of the squares on the screen (V2) refleatseiimtely the proposed direction. As the subject
already knows where to go, the decision to accept or rejecptbposition is immediate. When displaying
pictograms (V1), the subject has to do one more step, i.eaftarp matching process between the requested
direction and the proposed one. When providing the inforomably mean of vibrations (T6), the processing is
similar to that in V2 but slightly slower. Having to decodattév/3), auditory cues (A4) or words (A5) in order
to compare with the desired direction takes significantlyartone. As before, some subjects also waited until
the end of the word before acting and some not, thus exptathia large standard deviation. The two auditory
feedback types are statistically the slowest.

Figure 5b represents the difference between the mean respiome before and during the experiments,
calculated for every subject. It highlights the larger ahiiity in the time required to process the voice feedback
(A5) and the change in the feedback’s processing. But tleenm istatistical difference among the different
conditions.

4.2 Understandability - User performance

Figure 6 gives us insights into the understandability ofhefsedback type by displaying the percentage of
erroneous responses made by the subjects for each feeglpackitven a correct or erroneous proposition from
the robot. The poorest performance corresponds to 3D sd)d Users reported difficulty in distinguishing
the center tone from the side ones, thus explaining the ptrge of false answers. A different tone per cue
would have helped.

The performance with the voice feedback (A5) is the bestatiofollowed by the pictogram cues (V1).
Although the auditory proposition takes longer to procéss,user are more self-confident about the answer.
The traffic signs have two characteristics which make thesy &aprocess adequately: they are well-known
by the subjects (from their car-driving experiences) amy #ire similar to the cues contained in the maze. The
result of the text feedback (V3), with the second worst penfmce, differs greatly from the voice feedback. A
possible explanation is the fact that the text was not djsishable enough from the background.

It can be argued that subjects would make more mistakes dteiffiening of a new maze because they
would have to remember the task to be solved or to adapt theasge the new type of feedback. Comparison
of the error percentages in the full maze (as shown in figurer@fter removing the first five, ten, and fifteen
crossings showed no significant difference (data not shoWhjs may suggest that no specific training was
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Figure 6: Percentage of erroneous responses made by tleetsulgir (a) correct and (b) false robot proposi-
tions. See section 3.1 for the meaning of the feedback labels

required for the different feedback types.

The performance of the subjects when providing a navigatioommand at each crossing reached 99.6%.
It can be deduced that the cues placed in the maze and thedisin view were well assimilated by the
subjects and do not perturb the navigational decision gsoce

4.3 Verbal reports

When asked for their a-priori best and worst feedback typesrding to our criteria, the participants in the
tests widely agreed on the fact that the visual feedbackgusigns (V1) should be the best: it is natural,
understandable, not very disturbing, and pleasant (seefitgue). Although the voice (A5) is ranked as second
favorite, second most natural, and second most undersikngeeople would find it disturbing and unpleasant
for daily use (figure 7b). Tactile feedback (T6) is little kmoand sometimes dreaded. Its scores were the most
negative. Users didn’t show any particular trend with respe other feedback types.

If we compare the feedback types as evaluated during the (#gtire 7c), one can see that V1 is still
strongly preferred. Voice (A5), square (V2), and tactiledback (T6) are statistically the next-best rated
feedback types. The lowest scores, according to our foterij were given to text (V3) and sound feedback
(A4). This is mostly due to the fact that the people had to eatrate in order to properly read and understand
what was written on the screen and that it was difficult torfisimate the different auditory stimuli solely by
spatial location. Some subjects reported their wish to laadiferent sound for each stimulus.

The a-posteriori ranking of the different feedback typagyFe 7d) reflects their evaluation during the tests
but strengthens their differences. From the statisticsfigmude 7f, showing the overall a-posteriori ranking of
the six feedback types, we can order the feedbacks by prefer@ictograms (V1), followed by squares (V2)
and voice (A5), followed by tactile (T6), followed at the el text (V3) and sounds (A4).

4.4 EEG recordings

We want to assess whether event related potentials elibitetle different types of feedback can be used to
classify erroneous and correct trials. Based on previadiest [7], we focus the analysis on electrodes located
in fronto-central areas (i.e. electrodes Fz, FCz and Cz)reb\er, to discard the use of motor activity in the

classification, the signal of the first 150ms after the feellmnset was not taken into account. Independent
classifiers were designed for each individual. Table 1 shistlected electrodes and time windows chosen
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Figure 7: Qualitative assessment of the different feedligpks: a-priori evaluation of (a) positive or (b)
negative preferences, (c) evaluation during the tests@nakposteriori rank. (e) A-priori preferred feedbacks
and (f) a-posteriori preferences. A ranking or an evaluatibl corresponds to the best grade. See section 3.1
for the meaning of the feedback labels.
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Subject| Time Window | Electrodes | Elect. location
1 | [150ms, 450ms] Fz, FCz, Cz Fz
2 [200ms, 450ms]  Fz, FCz FCz
3 [200ms, 450ms]| Fz, FCz
4 [200ms, 450ms] Fz, FCz, Cz

Cz

Table 1: Selected electrodes and time windows used for EB&sification. Rightmost column shows the
location of the electrodes used for classification on thgestib scalp.

for each subject. Except for subject one, classification besed on the time signal from 200ms to 450 ms
after the feedback onset.

Classification performance for each condition and subgshbwn in Figure 8. Each point in the figure,
represents the mean classification performance (10-fadscvalidation) in the ROCReceiver Operating
Characteristig space. In this space, the x-axis corresponds to the falsiévaorate, FPR (i.e., misclassified
error trials), while the y-axis corresponds to the true fpasirate, TPR (i.e., properly classified correct trials).
The performance of a perfect classifier corresponds to tivg (1), i.e. upper left corner in the plot, while
random classification lies along the diagonal line.

It can be observed that, with the exception of subject 4 sdiaation above random levels is obtained for
several types of feedback; in general, a higher classificatte was obtained for correct rather than for error
trials. The best classification rates were obtained for dlotilé feedback (T6) in subject Z’PR = 0.76;
FPR = 0.30); and visual squares (V2) in subjectBPR = 0.71; FPR = 0.40).

In contrast, text feedback (V3) yields near-random per#oroe in three of the subjects. This type of
feedback was lowest ranked and most unnatural during th@alezports, several subjects pointing out that this
stimulus was not salient enough and the interpretationefdkt message required extra cognitive processes.

These preliminary results suggest that, in certain camktiit is possible to recognize EEG activity related
to the recognition of errors. It should be noticed that a $ingfassifier was used in this study, and more pow-
erful techniques might provide better classification rssuh particular, we plan to apply Gaussian classifiers
which have been previously used to recognize error potsntidCl applications [7].

5 Discussion

Using a virtual reality environment, we have presented ditgtige and quantitative evaluation of different
types of feedback used to communicate a robot’s navigdtewsions to a human user. The human subject
acts as aritic of the robot, sending corrective signals whenever the sbwtkes a wrong decision. More-
over, preliminary analysis of EEG signals elicited in thask is also provided as a first step towards future
implementation using Brain-Computer Interfaces.

In general, the visual pictograms (V1) is the most liked femzk and the one providing the quickest and
best answers. It is not a surprising result given the stradtworld we live in. “A picture is worth a thousand
words”: carefully selected pictograms transmit immedjatiee desired information. This is especially true in
our test environment, were the cues pointing to the exittesame as the provided feedback. This facilitates
decision making, but not detract from it in a normal envir@minwhere subjects know where they want to
go. Furthermore, it is easy to design new pictograms forratlgigational commands, like entering a door,
docking at a desk, or making a U-turn for example. Pictogranestherefore the most convenient feedback
types from a user and communication point of view.

Spatially placed squares (V2) and text (V3) elicit quickp@sses as well but are less accurate. They are
also less appreciated by the users, the text having the wagussteriori rank. An extension of the available
feedbacks to new commands is easy for the text, but the desitnis feedback type should be improved in
order to have more distinguishable stimuli and reduce theuatof erroneous responses. Concerning the
squares, new commands would imply specific new locationpeciic successions of squares, thus needing
some learning for the human subject. Pictograms and tectbfexk could fit on a relative small display, whereas
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Figure 8: EEG classification performance for all subjecid types of feedback. Mean classification perfor-
mance (10-fold cross validation) is shown in the ROC spadé®R ¥ True positive rate, FPR = False positive
rate. See section 3.1 for the meaning of the feedback labels.
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localized squares (or any type of icons) may require a bidgglay. Alternatively, squares could be replaced
by lights when transferred onto a real mobile platform, thinsplifying the interface from a technical point of
view and clearing the field of view. However, for a larger det@mmands, squares might not be an appropriate
type of feedback.

Voice feedback (A5) did not leave anybody indifferent. Ipgpeeciation and the time used to process the
auditory information differed greatly from subject to sedy. Interestingly, it had the best percentage of correct
responses, arguably in association with its largest r@adiime. As noted by some subjects, this feedback
doesn’t have a pop-up effect that might trigger false respen Thus it could be a precise but slow feedback
system, easily extendible to further navigational comnsa&ibjects had also different strategies in processing
the stimuli. Some reacted at the beginning of the words asutref a short learning phase. The present
study aimed also at understanding the processing of dpatlates tones (A4) and the results are worse than
expected, mainly due to the fact that the different stima@rewnot distinguishable enough. Subjects took more
time before reacting in order to be sure of their answer, lvhiaes often even then wrong. Therefore they
mostly agreed on the second-worst rank of this feedback #pifferent tone per stimulus would have helped
a lot but would have required a learning phase, which we vaatteavoid. This learning phase may also be
required if the number of commands increases, demandingtehnumber of tones, as is the case for the
earcond4].

Similarly ranked than voice feedback (A5), vibro-tactieeflback (T6) performed worst in terms of the
amount of erroneous responses. Some people reported Itigficim feeling the actuator placed in the center
of the back and suggested placing it on the chest. Howewattioa time for vibro-tactile feedback was the
second best after visual stimuli. Thus, if we remove thealifeedbacks from the available ones in order not to
clutter the visual channel, to leave intact the visual fidlgliew, or to ease the technical apparatus, tactile and
voice feedback seem to be a sensible choice. The user waalthave more freedom to interact with people or
to enjoy the surroundings if he/she does not have to coratentn a screen. On the other hand, the extension
of navigational commands would lead to more complex haptiugi, like the tactons[3], requiring a learning
process. It would thus give an advantage to voice feedbasphiteats slower reaction time.

The comparison between a-priori feelings and a-posterémiking reveals a real change in opinion about
vibro-tactile (T6) and text feedback (V3). Subjects weré familiar with vibro-tactile feedback, thus pro-
ducing a poor a-priori evaluation. After the experiment®ytdiscovered that it was more suitable for such
a human-robot interaction than thought. Although not ehofggnale subjects were included in the study to
assess gender specific preferences, we found that men tgusitvely evaluate the tactile feedback more
than women. However, a further study would be required tdigarthis finding. As mentioned before, text
feedback was not well appreciated because of the poor sglathe stimuli, thus resulting in the change in
opinion. In a similar way, there was a large variability i #-priori evaluation of voice feedback (A5), but it
decreased after the experiment. In the end, A5 was selestedenof the best feedback types other than the
visual ones.

It should be noted that the task to be solved by the subjecthaisgery natural to them at the beginning.
People reported the desire to provide an input for agreeisigad of disagreeing with the robot’s proposition.
One could have thus expected worst performances at thertiegiof a new modality or of a new maze, which
didn’t appear significantly in the results.

Additionally, we present preliminary results on the cléisation of EEG signals elicited by the different
types of feedback. Consistent with the subject’'s qualiasvaluations, visual text feedback (V3) has the
poorest classification performance. The fact that the ditiware not salient enough and the required decoding
process may cause event-related potentials to not be wihsgnized across trials, makes its recognition more
difficult.

Although the classification performance obtained is noy\Yegh (especially for erroneous trials), these
results, using a simple classifier with no artifact rejatticonstitute a promising basis to further explore the
use of BCI systems in this type of human-robot interactioe.plén to extend the present study by including a
larger number of subjects and comparing different claggifo algorithms.

Finally, a fine adaptation of every feedback system predéntthis paper to each user is required, as there
is a large inter-subject perceptual variability. Adapmatto possible sensory impairments as well as to the
personal feelings of the human is also required. For exanapfemale voice could be preferred by a male
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user, a male one by a female user, or a different tone injeimsétach ear. The more adapted the human-robot
interaction is, the better the results.

In summary, the present paper provides a detailed compabistween the user’s perception of different
feedback modalities for human-robot interaction, confilgrsome de facto hypotheses but also providing new
information about less common types of feedback, like vilaile actuators. Some guidelines for the de-
sign of feedback systems or for increasing the number of ¥hdadle commands are also brought to light.
The next step of the study will be to assess the learning siforeeach modality as another aspect of a feed-
back’s adequacy for human-robot interaction. Having maitgests will contribute to the refinement on the
psychophysical aspects of the findings, but especiallyiferrécognition of the error potential in brain activ-
ity. As previously mentioned, more women patrticipating lie xperiments could bring better insights into
the inter-subject or even the inter-gender variability fed perception of the different stimuli. We will also
perform experiments in an office environment where subjedtshave to visit different places, either along
self-generated or fixed paths.

The present study used explicit cues to signal the correhttpeollow in order to have a well-controlled
experimental setup, i.e. the correct labeling of erroneobst decisions. In future work, we will reproduce
this experiment using the user’'s own representation of theect path (e.g. the subject learns the correct
trajectories prior to the experiments), which is closerdalistic situations.
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