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Abstract. This paper introduces a discriminative model for the retrieval of images from text queries. Our
approach formalizes the retrieval task as a ranking problem, and introduces a learning procedure optimizing
a criterion related to the ranking performance. The proposed model hence addresses the retrieval problem
directly and does not rely on an intermediate image annotation task, which contrasts with previous research.
Moreover, our learning procedure builds upon recent work on the online learning of kernel-based classifiers.
This yields an efficient, scalable algorithm, which can benefit from recent kernels developed for image com-
parison. The experiments performed over stock photography data show the advantage of our discriminative
ranking approach over state-of-the-art alternatives (e.g. our model yields 26.3% average precision over the
Corel dataset, which should be compared to 22.0%, for the best alternative model evaluated). Further analysis
of the results shows that our model is especially advantageous over difficult queries such as queries with few
relevant pictures or multiple-word queries.
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1 Introduction

In this paper, we address the problem of retrieving pictures from text queries. In this task, the retrieval system
is given a set of pictures and a few word query, it then outputs a picture ranking in which the pictures relevant
to the query should appear above the others. This type of setup is common in several application domains,
including web search engines, news wire services or stock photography providers. So far, the most widely-
used approach to this problem consists in applying text retrieval techniques over a set of manually-produced
captions that describe each picture. Although effective, this solution is expensive, as it requires a significant
manual labeling effort.

Consequently, several automatic annotation approaches have been proposed in the literature. These ap-
proaches rely on a set of captioned pictures to learn a model, which can then predict textual annotations for
any unlabeled picture. Two main types of auto-annotation models have been introduced: concept classification
models and bi-modal generative models. In the case of concept classification, a classifier is learned for each
vocabulary term, or concept, t. This classifier takes as input a picture and outputs a confidence value indicat-
ing whether the term ¢ should occur in the predicted picture caption. This classification problem is typically
addressed using Support Vector Machine (SVM) [33, 46] or boosting classifiers [43], as these large margin
approaches enjoy good generalization properties [45]. In the case of bi-modal generative models, the training
procedure learns a distribution estimating the joint probability P(p, ¢) of a picture p (i.e. a set of visual features)
and a caption c (i.e. a set of terms describing the picture). Given a test picture p, the learned distribution can
then be used to infer the most likely caption, or a distribution over the whole vocabulary. Compared to concept
classification, this generative approach hence learns a single model for all vocabulary terms, which notably
yields a better modeling of term dependencies. Several bi-modal generative models have been proposed in the
recent years, each model relying on different conditional independence assumptions between the observation
of the text and the visual features.

Besides their differences, both concept classification and bi-modal generative models address the image
retrieval problem through an intermediate task, auto-annotation. Image retrieval is performed by applying text
retrieval techniques over the textual outputs of the auto-annotation model. Therefore, their learning procedure
does not maximize a criterion related to the final refrieval performance, instead it maximizes a criterion related
to the annotation performance. In this work, we adopt an alternative approach and introduce a model to learn an
image retrieval model directly, without relying on auto-annotation. The proposed model, Passive-Aggressive
Model for Image Retrieval (PAMIR), adopts a learning criterion related to the final retrieval performance, based
on recent advances on discriminative learning for text retrieval [8, 17, 25]. PAMIR learning approach hence
takes as input a set of training queries, as well as a set of pictures, and outputs a trained model likely to achieve
high ranking performance on new data. Moreover, PAMIR also enjoys an efficient learning algorithm, which
builds upon recent work on online learning of kernel-based classifiers [12]. The advantages of the proposed
approach are several: our model parameterization can benefit from effective kernels for pictures comparison,
while its optimization procedure permits an efficient learning over large training sets. Furthermore, our ranking
criterion yields a discriminative retrieval model that does not rely on an intermediate annotation task, which
is theoretically appealing [45]. These advantages are actually supported by our experiments, in which PAMIR
is shown to outperform various state-of-the-art alternatives. For instance, the precision at top 10 of PAMIR
reaches 10% over the Corel dataset [14], which should be compared to 9.3% for SVM for concept classification,
the best alternative.

The remainder of this paper is organized as follows. Section 2 briefly describes previous related research.
Section 3 introduces the proposed approach. Section 4 presents the features used for image and query represen-
tation. This section also describes different picture kernels from which PAMIR could benefit. Section 5 reports
the experiments comparing PAMIR to the alternative approaches. Finally, Section 6 draws some conclusions.

2 Related Work

With the advent of the digital photography era, image retrieval has increasingly received attention. This study
focuses on an important part of this research domain, the query-by-text task. This task aims at identifying the
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pictures relevant to a few word query, within a large picture collection. Solving such a problem is of particular
interest from a user perspective since most people are used to efficiently access large textual corpora through
text querying and would like to benefit from a similar interface to search collections of pictures. In this section,
we briefly describe prior work focussing on this task.

So far, the query-by-text problem has mainly been addressed through automatic annotation approaches. In
this case, the objective is to learn a model that can predict textual annotations from a picture. Such a model
permits the retrieval of unlabeled pictures through the application of text retrieval techniques over the auto-
annotator outputs. In the following, we briefly describe the two main types of approaches adopted in this
context, concept classification and bi-modal generative models.

2.1 Concept Classification

Concept classification formulates auto-annotation within a classification framework. Each vocabulary term ¢,
also referred as a concept, defines a binary classification problem, whose positive examples are the pictures for
which the term ¢ should appear in the predicted annotation. In this case, the learning procedure hence consists
in training a binary classifier for each vocabulary term, and each classifier is learned to minimize the error rate
of its concept classification problem.

Efforts in concept classification started with the detection of simple concepts such as indoor/outdoor [41],
or landscape/cityscape [44]. Then, significant research has been directed towards detecting more challenging
concepts, notably in the context of the TREC video benchmark [40]. Large sets of various concepts have
then been addressed in recent work, such as [9, 10]. Nowadays, popular approaches in concept classification
mainly relies on large margin classifiers, such as Support Vector Machines (SVM) [1, 33, 46] or boosting
approaches [43]. SVM for concept classification constitutes the state-of-the-art for single word queries. In
this application scenario, the images of the test corpus are ranked according to the confidence scores outputted
by the classifier corresponding to the query term [33, 46]. However, in the case of multiple word queries,
concept classifiers are more difficult to apply since the independent training of each concept classifier requires
to further define fusion rules to combine the scores of the different concept classifiers [1, 10]. [1] compares
different fusion strategies and concludes that, for query-by-text tasks, it is generally effective to compute the
average of the score of the concept classifiers corresponding to the query terms, after having normalized their
mean and variance. Therefore, we will adopt this fusion procedure latter in our experiments. As an alternative
to such ad-hoc fusion strategies, bi-modal generative approaches have been introduced to learn a single model
over the whole vocabulary, yielding a solution which can natively handle multiple-word queries.

2.2 Bi-Modal Generative Models

Contrary to concept classification, bi-modal generative approaches do not consider the different vocabulary
words in isolation. Instead, these approaches model the joint distribution P(c,p) of the textual caption (c)
and the picture visual features (p), P(c,p). The parameters of such a distribution are typically learned through
maximum likelihood training, relying on a set of picture/caption pairs. After this learning phase, the retrieval of
unlabeled pictures can be performed by ranking the pictures according to their likelihood P(p|q) given query
g, which is derived from the joint P(q,p) through Bayes rule. Alternatively, it is also possible to estimate
a conditional multinomial over the vocabulary { P(¢|p),Vt € V'}, for each unlabeled picture. This enables to
retrieve pictures through the application of text retrieval techniques over the inferred multinomials. In this case,
each multinomial P(-|p) is considered to represent a textual item, in which the number of occurrences of term
t is proportional to P(¢|p). This alternative retrieval technique is generally preferred since it is more efficient
(the multinomials need to be inferred only once for all queries) and it has shown to be more effective [31].
Several approaches based on the bi-modal generative framework have been proposed in the recent years.
These models mainly differ in the types of distributions chosen to model textual and visual features, as well
as in the way they model the dependencies between both modalities. In the following, we have chosen to
briefly describe three such models, Cross-Media Relevance Model (CMRM) [22], Cross-Media Translation
Table (CMTT) [35] and Probabilistic Latent Semantic Analysis (PLSA) [31]. A longer survey could also
have described alternative models such as Multimodal Hierarchical Aspect Model [4, 3], Multiple Bernoulli
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Relevance Model [16] or Latent Dirichlet Allocation [5]. However, for the sake of brevity, we decided to focus
on models that have shown to be the most effective over the Corel dataset [14].

Cross Media Relevance Model (CMRM) [22], is inspired by Cross-Lingual Relevance Model [28], con-
sidering caption of an image as the translation of its visual properties into words. In this model, it is assumed
that the visual properties of an image are summarized as a set of discrete visual features. Formally, the visual
features of a picture p are represented as a vector,

= (tff,p’ te 7tf|vC|7p)7

where ¢, refers to the number of features of type 7 in picture p and |C| is the total number of feature types.
Given such a representation, CMRM infers a multinomial P(¢|pt¢*?) over the vocabulary for any test picture
ptest. For that purpose, the joint probability of term ¢ and all the visual elements of p*®*! is estimated by its

expectation over the training pictures in Pyq;p,

[Ptrain

fpsf tz: P test‘j).

Jj=1

It is then assumed that terms and visual elements are independent given a training picture, leading to

‘Pt'r'ain‘ |C‘
P(t,p"**") = > P(j)- P(ely) [T Plolg)oreesr. €))
i=1 v=1

In this equation, the probability of a training picture P(j) is assumed to be uniform over the training set, i.e.
P(j) = 1/|Pirainl|, while the probability of a term given a training picture P(t|j) and the probability of a
visual element given a training pictures P(v|j) are estimated through maximum likelihood, smoothed with the
Jelinek-Mercer method [22]. From (1), P(t|p'®*") can then be estimated through Bayes rule, P(t|p's") =
P(t, ptest) / P(ptest). Although simple, this approach has shown to be more effective compared to other ap-
proaches inspired by translation models, e.g. [14].

Cross Media Translation Table (CMTT) also builds upon cross-lingual retrieval techniques [35]. This
model considers textual terms and discrete visual features, or visterms, as words originating from two different
languages and constructs a translation table containing P(t|v) for any pair of term/visterm (¢,v). This table
allows for the estimation of P(¢|p'“*) for any term ¢ and any picture p*®s*:

m

t|ptest ZP t|% Uz |ptest)

test) tfz ptest

W and vy, ..., v, are the visterms of p’cst,

where P(v;|p

The translation table {P(t|v) Vt, v} is built from the training data Dy, according to the following pro-
cess. First, each term ¢ (and each visterm j) is represented by a |Dy,.q.r,| dimensional vector, ¢; (v;), in which
each component k is the weight of term 4 (visterm j) in the k'” training example. As a noise removal step, the

matrix M = [t1,...,tr,v1,...,vy] containing all term and visterm vectors is approximated with a lower rank
matrix, M’ = [t},...,th, v, ..., vy], through Singular Value Decomposition, and P(j|7) is finally defined as
= cos(t;, vj)
P(jli) = V]

S, cos(th, vp)

Like CMRM, this method has also been evaluated over the Corel corpus [35], where it has shown to be effective.
The use of Singular Value Decomposition has notably shown to improve noise robustness. However, CMTT
has also some limitations. In particular, cosine similarity can only model simple relationships between terms
and visual features. Approaches modeling more complex relationships, such as Probabilistic Latent Semantic
Analysis [31], have subsequently been introduced.



IDIAP-RR 07-38 5

Probabilistic Latent Semantic Analysis (PLSA) has first been introduced for text retrieval [20], before
being extended to image retrieval [31]. This model introduces the following conditional independence assump-
tion: “terms and discrete visual features are independent from pictures conditionally to an unobserved discrete
variable zp, € {z1,...,2K}" (2x is called an aspect variable and the hyperparameter K is referred to as the
number of aspects). In this framework, the probability of observing a term ¢ or a visual feature v in a picture p
follows

P(p,t) = P(p)- Y P(zklp)P(t|z), 2)
k

P(p,v) = P(p)-Y_ P(aklp)P(v]z). 3)
k

The different parameters of the model can be estimated relying on a two-step process. First, the probabili-
ties P(p), P(zx|p) and P(t|zy) for all p € Piqsp are estimated to maximize the training caption likelihood
through the Expectation Maximization algorithm. Then the probabilities P(v|z ), Vv, k are fitted to maximize
the training picture likelihood, keeping P(p) and P(zx|p) fixed. For test pictures without caption, the proba-
bilities P(p), P(z|p) are estimated to maximize the picture likelihood, keeping P(v|zy), V(v, k) to the values
estimated during training. After this procedure, (2) is applied to infer P(p,t) for any test picture p and any
term ¢. Similarly to CMRM, Bayes rule can then derive P(t|p) from P(p,t).

This model has several strengths: the latent aspect assumption allows one to model more complex depen-
dencies between term and visual features, compared to CMRM or CMTT. Moreover, the two step training
procedure biases the latent space toward the text modality, yielding better performance than less constrained
latent models [31].

In absence of manual annotations, bi-modal generative models constitute the state-of-the-art for the retrieval
of images from multiple-word queries, while, as mentioned above, concept classification is generally preferred
for single word queries. However, one could wonder whether it is possible to provide a single solution for both
settings. More fundamentally, one can also question the auto-annotation framework on which both types of
approaches are based. In both cases, model training aims at solving an auto-annotation problem: for concept
classification, the learning objective is to minimize the number of false positives (predicting a word which does
not occur in the reference annotation) and false negatives (not predicting a word occurring in the reference
annotation), while, for bi-modal generative models, the learning objective is to maximize the likelihood of the
training picture/caption pairs. None of those criteria is tightly related to the final retrieval performance and there
is hence no guarantee that a model optimizing such annotation objectives also yields good retrieval rankings.

In order to address those issues, we propose a discriminative ranking model for the query-by-text problem.
The proposed approach is based on recent work on discriminative learning for the retrieval of text documents [8,
17, 25]. It learns a retrieval model with a criterion related to the ranking performance over a set of training
queries. To the best of our knowledge, this is the first attempt to address the query-by-text problem directly,
without solving an intermediate annotation problem.

3 Passive-Aggressive Model for Image Retrieval

This section introduces our discriminative model for the retrieval of images from text queries, Passive Ag-
gressive Model for Image Retrieval (PAMIR). It first formalizes the query-by-text problem before introducing
PAMIR parameterization and learning objective. Finally, it explains how the proposed linear model can be
applied to infer non-linear decision functions relying on kernels.

3.1 Formalizing the Query-by-Text Problem

In the query-by-text problem, the retrieval system receives a text query ¢, from the text space 7, and a set of
pictures P, from the picture space P. It should then output a picture ranking in which the pictures relevant to
q would ideally appear above the others, i.e.

Vp* € R(q, P),¥p~ € R(q, P), rk(q,p") < rk(q,p”) 4
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where R(q, P) refers to the set of pictures of P that are relevant to g, R(q, P) refers to the set of pictures of
P that are not relevant to ¢ and rk(q, p) refers to the position of picture p in the ranking outputted for query
q. Our goal is hence to learn a ranking model from training pictures Pj,.q;, and queries Q¢4 Such that the
constraints of type (4) are likely to be verified over new pictures Py and queries Qyes:-

Similarly to most text retrieval approaches [2], we address this ranking problem relying on a scoring func-
tion F. This function F' : 7 x P — R assigns a real value F'(q, p) expressing the match between any query ¢
and any picture p. Our ranking approach is then simple: given a query ¢, we compute the score of each picture
pin the picture set P, { F(q, p), Vp € P}, and order the pictures by decreasing scores. In this context, condition
(4) translates to

Vp* € R(q, P),¥p~ € R(q, P), F(q,p") > F(q,p™), )

and our objective comes down to learning a function F' likely to verify (5) for unseen pictures P;.,; and queries
Qtest- For that purpose, we introduce a parametric function F),, along with an algorithm to infer the parameter
w from (Pyrain, Qtrain ), S0 that F, is likely to achieve this objective.

3.2 Model Parameterization

The parameterization of F, is inspired from text retrieval,
Fw:TXP_}Rv where Fw(qap):(wa(p)a

fuw refers to a parametric mapping from the picture space P to the text space 7, and - refers to the dot product
in the text space, which is commonly used to measure the matching between textual vectors [2]. In other words,
our scoring function F;, measures the match between a picture p and a query g by first projecting the picture
into the text space according to f,,, before measuring the match between the obtained textual vector f,,(p) and
the query q.

In the following, the form of f,, is first limited to linear mappings,

fw:P—T, where fu(p)= (w1 p,...,wr D) (6)

and w = (wy,...,wr) is a vector of PT, T being the dimension of the text space 7. Section 3.5 then shows
that the training procedure proposed thereafter can be extended to non-linear mappings through the kernel trick.

3.3 Large Margin Learning for our Ranking Problem

Our goal is to learn the parameter w such that F, yields high ranking performance over unseen test queries.
For that purpose, we first introduce a geometric interpretation of F,, from which we can derive a margin
maximization objective suitable to our ranking task.

For any query ¢ = (q1,...,qr) € 7 and picture p € P, we define v(q, p) as the vector (¢1p, . .., grp) of
PT and rewrite F,,(q,p) as w - y(gq, p), since

Fule,p) = q-fulp)=q-(w1-p,...,wp-p)
= > wi(gp) = w-v(g,p).

Hence, we can interpret F3, (g, p) as the projection of (g, p) onto the vector w. This means that PAMIR ranks
the pictures of P according to the order of the projections of {y(g¢,p),Vp € P} along the direction of w, see
Figure 1. With such an interpretation, one can easily remark that only the direction of w determines whether
the constraints of type (5), Vg € 7, Vp* € R(q, P),

Vp~ € R(q,P), w-y(¢,p") —w-~y(g,p”) >0,

are verified since the norm of w has no influence on the sign of w - y(q, p™) — w - v(q,p™).
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Figure 1: PAMIR ranking strategy: in this example, the pictures of {p1, p2, ps} are ranked pa, p3, p1 in answer
to the query ¢. This figure illustrates that the pictures are ranked according to the order of the projections of

{7(q,p1),7(q; p2),7(q, p3)} along the direction of w.
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Hence, we can arbitrarily constrain the weight vector to lie on the unit circle ¢/, and solve our learning
problem by finding a vector u € U that verifies all training constraints. In other words, we want to select the
weight vector in the set

S = {U S u s.t. V(Q7p+ap7) S Dtruina
w-y(q,pt) —u-y(g,p7) > 0}

where Dy,.qin refers to all triplets (¢, p*, p~) such that ¢ € Qtrains p* € R(q, Pirain)s P~ € R(q, Prrain)-

When the training constraints are feasible (S # ), any weight vector of S yields perfect retrieval perfor-
mance over the training set. However, not all these solutions will yield the same results over some new test
data. In order to select a vector of S likely to yield high generalization performance, we introduce the notion
of margin for our ranking problem. For any vector u € S, we define its margin as

m(u) = min  w-y(g,p") —u-v(g,p),
(¢:pF,p7)ED4rain
which is, by definition of S, a positive quantity. This notion of margin is inspired from the definition introduced
in [19] in the context of ranked categorization.

Equipped with this definition, we now explain why large margin solutions are preferable to ensure good
generalization performance. Given a test triplet (qtest, Dioors Pros:) cOmposed of a query giest, a picture p;-
relevant to g5+ and a picture p;_,, non-relevant to gses¢, we define R(gest, p;fest, Diest) @S the smallest quantity
that satisfies 3(qrrain, Pirains Pirain) € Dirain S-t.

{ H'Y(thainap;_t‘ain) - ’Y(Qtest,pz-t;st)u < R(Qtestvptiestvp%st)
H’Y(thin,ptmm) - V(Qtestaptest)‘l < R(qtest7ptest7ptest)'

This definition implies that, Vu € S,

{ [u - Y(@erains Dirgin) — U - V(Gtests Dioge)| < R(tests Piosss Prest)
[w - Y(qtrain, pt_'rain) —u- 'Y(qtest:pt_est)l < R(ntStvpz—est’pt_est)

since ||u|| = 1. Therefore,

-V (rest: Pest) — -V (drests Diest)
= (’LL : ’Y(Qtestap;rest) —Uu- ’Y(qtrain»p;ain))
- (u : 'Y((Itestap;est) —U- V(Qtrain»p;«m'n))
+ (’LL ! V(thimp:rmm) —u- ’Y(Qtrainypt_rain))

can be bounded as,

(G Piast) — V(@ Prest) > —2R(Grests Piosts Prest) + m(w)

since w - Y(q, D win) — U V(@ Pirgin) > M () by definition of m(u). Consequently, any solution u € S for
which the margin m(u) is greater than 2R(qtest, Pjost, Pros;) Satisfies the test constraint u - (g, phg,) — u -
V(4 Prest) > 0

Therefore, we decide to focus on the selection of the weight vector of S with the largest margin, as this
weight is the most likely to satisfy all the constraints of a given test set,

* p—
u* = argmax m(u).

This maximization problem is actually equivalent to the following minimization problem

. 1
min

t.
uwePT m(u)?’ ®

[ul =1
{ V(q,er,p*) S Dtrainau ! ’Y(qap+) —Uu- 7(‘]7]77) > m(u)
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and the introduction of the vector w = %u yields the following formulation of the same problem,

min Hw||2,
wePT
st.V(q,p",p7) € Diain,w - ¥(¢,p") —w-y(g,p™) > 1.

This formulation of our retrieval problem is similar to the Ranking Support Vector Machine (RSVM) prob-
lem [25] introduced in the context of text retrieval, even if the notion of margin was not formalized as such in
the case of RSVM.

Like for RSVM, we need to relax the training constraints for the non-feasible case (S = (J), which yields
the following optimization problem,

min  |w|?* + C Z €q.ptps
wePT
(¢,p%,p7)EDtrain
s.t. V(q,p+,p7) S Dtraina (7)
{ w-y(q,pT) —w (g, p7) > 1 =& pt p-
gq,pﬂp* 20

where the hyperparameter C' controls the trade-off between maximizing the margin and satisfying all the train-
ing constraints. This problem (7) can equivalently be written as,

min_[lw|* + C ) l(w;q,p*,p7),
wePT
(¢;p7,p7)EDtrain

Where V(Q7p+ap7) S Dtrain7
l(w;q,pt,p~) =max(0,1 —w-v(q,p") +w-v(g,p7)),
see [11].

3.4 An Efficient Learning Algorithm

The resolution of problem (7) involves a costly optimization procedure, if the RSVM approach is adopted. In
fact, state-of-the-art techniques to solve this problem have a time-complexity greater than O(|Dsyqin |?) [24],
where | Dy,.qr | denotes the number of training constraints. As we would like to handle large constraint sets, we
derive an efficient training procedure by adapting the Passive-Aggressive (PA) algorithm, originally introduced
for classification and regression problems [12]. For our ranking problem, PA should minimize

L(w; Dirain) = > l(w;q,pt,p7). ®)

(¢;p%,p~)EDtrain

while keeping ||w||? small.
For that purpose, the algorithm constructs a sequence of weight vectors (w’, ..., w") according to the
following iterative procedure: the first vector is set to be zero, w?® = 0 and, at the i*" iteration, the weight w" is

selected according to the 7*" training example (¢*, p'*,p*~) and the previous weight w*~*,

) 1 . o o
w" = argmin §||w—wZ 2+ e l(ws (¢ p™F,p"). ®

Hence, at each iteration, we select the weight w' as a trade-off between minimizing the loss on the current
example [(w; (¢*,p**,p*~)) and remaining close to the previous weight vector w*~!. The aggressiveness
parameter ¢ controls this trade-off. Based on [12], it can be shown that the solution of (9) is

w' = w4 el
H(w' ™ (qi,pi+7pi‘))}
[[vil[?

and o' =~(q",p"") = (¢, ") (10)

where 7; = min {07
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The hyperparameter c is selected to maximize the performance over some validation data D,,,;;4. The number
of iterations n is also validated: training is stopped as soon as the validation performance stops improving.
This early stopping procedure actually allows one to select a good trade-off between satisfying all training
constraints (i.e. minimizing the training loss L(w; Dyyqin)) and maximizing the margin (i.e. minimizing
|w]|?). During the training process, it can be shown that, while the training error is decreasing [12], ||w||? tends
to increase, see Appendix. Hence, the number of iterations n plays a role similar to C' in RSVM (7), setting
the trade-off between margin maximization and training error minimization. The introduced PA algorithm
therefore solves our learning problem with a time-complexity growing linearly with the number of iterations n.
The observed complexity, reported later in Section 5, actually shows that n grows much slower than | Dy;.qin |2,
a lower bound on RSVM time-complexity, enabling PAMIR to address much larger constraint sets.

3.5 Non-Linear Extension

Our model parameterization is based on a linear mapping f,, from the picture space P to the text space 7,
see Eq. (6). This parameterization can be extended to non-linear mappings through the kernel trick, which
allows PAMIR to benefit from effective picture kernels recently introduced in the computer vision literature,
e.g. [48, 27, 30]. To kernelize PAMIR, we show that its parameterization solely requires the evaluation of dot
products between picture vectors. For that purpose, we prove that, in the weight vector w = (wq, ..., wr),
each subvector wy, Vt, is a linear combination of training pictures. This then implies that the evaluation of

fw(p) = (U}l 'p7"'7wT'p)7 vpepv

only requires to compute the dot product between p and any training picture. The proof that, V¢, the vector w; is
a linear combination of training pictures is performed by induction over the iterations of our training procedure:
at the first 1terat10n the property is obviously verified since wy = 0, then the update preserves the property
since, wi = wi ' + 70}, where v} is itself a linear combination of training pictures, v} = ¢! (p'* — p'~),
see Eq. (10). Hence, at the last iteration n, w; = wy verifies the property. This means that we can rewrite
w; as wy = Z‘P*“”"l oy ;pj, where Vi, oy ; € R. Consequently, we can introduce any kernel function
k:PxP—-R, and rewrite f, as,

‘PtTaznl

Vpe P, | Z ay ik(pj,p),
j=1

where [f,,(p)]; denotes the " component of the f,,(p) vector. Practically, in this kernelized case, each w; is
stored as as a support set, consisting of pairs (cy ;, p;). The following section notably discusses different types
of kernels suitable for our task.

This section has introduced PAMIR, a model suitable for image retrieval from text queries. This model
has several advantages compared to the previous approaches presented in Section 2: unlike SVM for concept
classification, PAMIR can natively handle multiple-word queries, without requiring any fusion strategy; unlike
bi-modal generative models, it relies on margin maximization training and hence enjoys good generalization
properties [45]. More importantly, unlike both SVM for concept classification and bi-modal generative models,
PAMIR training relies on a ranking criterion related to the final retrieval performance of the model. This
criterion yields a discriminative retrieval model, which does not learn from textual annotations, but directly
from training queries with pictures assessed for relevance.

4 Text and Visual Features

This section introduces both the representation of text queries, and the representation of pictures, along with
kernel functions suitable for picture comparison.
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4.1 Query Representation

The bag-of-words framework is borrowed from text retrieval [2] for query representation. In this context, a
vocabulary V' is given prior to training to define the set of allowed words. Then, the bag-of-words representation
neglects word ordering and assigns each query as a vector ¢ € R”, where T denotes the vocabulary size. The
it" component ¢; of this vector is referred to as the weight of term i in the query ¢. In our case, it is defined as
the normalized idf weighting scheme [2],

bi,q 1dfi
> i (byq idf;)?

where b; , is a binary weight, denoting the presence (b; ;, = 1) or absence (b; ; = 0) of ¢ in ¢, and idf; is
the inverse document frequency of ¢. This latter quantity is defined based on a reference corpus, such as an
encyclopedia, and corresponds to idf; = —log(r;), where r; refers to fraction of corpus documents containing
term ¢. This weighting hypothesizes that, among the terms present in ¢, the terms appearing rarely in the
reference corpus are more discriminant and should be assigned higher weights.

qi =

4.2 Picture Representation

The representation of pictures for image retrieval is a research topic in itself, and different approaches have been
proposed in the recent years, e.g. [16, 42, 43]. Contrary to the well-established bag-of-words representation for
text data, there is not yet a single image representation that would be adequate for a wide variety of retrieval
problems. However, among the proposed representations, a consensus is emerging on using local descriptors
for various tasks, e.g. [29, 36]. This type of representation segments the picture into regions of interest, and
extracts visual features from each region. The segmentation algorithm as well as the region features vary among
approaches, but, in all cases, the image is then represented as a set of feature vectors describing the regions of
interest. Such a set is often called a bag-of-local-descriptors.

This study also adopts the local descriptor framework. Our features are extracted by dividing each picture
into overlapping square blocks, and each block is then described with edge and color histograms. For edge
histograms, we rely on uniform Local Binary Patterns [34]. These texture descriptors have shown to be effective
on various tasks in the computer vision literature [34, 42], certainly due to their robustness with respect to
changes in illumination and other photometric transformations [34]. Local Binary Patterns assign the texture
histogram of a block by considering differences in intensity at circular neighborhoods centered on each pixel.
Precisely, we use LB Py o patterns, which means that a circle of radius 2 is considered centered on each block.
For each circle, the intensity of the center pixel is compared to the interpolated intensities located at 8 equally-
spaced locations on the circle, as shown on Figure 2, left. These eight binary tests (lower or greater intensity)
result in an 8-bit sequence, see Figure 2, right. Hence, each block pixel is mapped to a sequence among
28 = 256 possible sequences and each block can therefore be represented as a 256-bin histogram. In fact, it has
been observed that the bins corresponding to non-uniform sequences (sequences with more than 2 transitions
1 — 0 or 0 — 1) can be merged, yielding more compact 59-bin histograms without performance loss [34].

Color histograms are obtained by k-means clustering. The color codebook is learned from the Red-Green-
Blue pixels of the training pictures, and the histogram of a block is obtained by mapping each block pixel to
the closest codebook color.

Finally, the histograms describing color and edge statistics of each block are concatenated, which yields a
single vector descriptor per block. Our local descriptor representation is therefore simple, relying on both a
basic segmentation approach and simple features. Of course, alternative representations could have been used,
e.g. [16, 13, 43]. However, this paper focuses on the learning model, and a benchmark of picture representations
is beyond the topic of this research.

4.3 Picture Kernels

Our model relies on a kernel function k£ : P x P — R over the picture space P, as explained in Section 3.
Given our picture representation, we hence need a kernel to compare bags of local descriptors. Fortunately,
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Figure 2: An example of Local Binary Pattern (LB F;g »). For a given pixel, the Local Binary Pattern is a 8-bit
code obtained by verifying whether the intensity of the pixel is greater or lower than its 8 neighbors.

several kernels comparing sets of feature vectors have been proposed along with the development of local
descriptors [48, 27, 30].

Distribution Kernel approaches fit a distribution p(v|p) over the space of local descriptors for each picture
p, and then apply a kernel between distributions to compare pictures. Such kernels includes the Bhattacharya
kernel or the expected likelihood kernel [21].

In this study, we fit a Gaussian Mixture Model for each picture p through Expectation-Maximization, as
proposed in [30]. Motivated by scalability issues, we fit standard Gaussians on the input space, not kernelized

Gaussian mixtures like [30]. The learned distributions are then compared with the Expected Likelihood Kernel
(ELK),

KRR (p, ) = / p(vlp) p(v]p’)dv

which can be computed in closed form for Gaussian mixtures [21, 30].
Matching Kernel approaches [48] rely on a minor kernel, k!, that compares local descriptors. The kernel

between two sets of local descriptors, p = {dp,i}l:il1 and p’ = {dp/yi}Lp: ‘1, is defined as the average of the
best-match-score between the descriptors of p and p/,

kmdt(,h (

o) =5 [, p) + )]

1
2
[l
where Z axk; dpisdpy ;).

Formally, this function k™" is not a true Mercer kernel, since its Gram matrix is not always positive def-
inite [6]. However, in practice, it can be used with SVM or PAMIR, without enjoying the same theoretical
guarantee as a true kernel [6]. Empirically, SVMs relying on this kernel have shown to be effective over several
object categorization tasks [6, 15, 48].

Visterm Kernel approaches explicitly represent the pictures in a high dimensional vector space, where the
linear kernel is applied. For that purpose, each local descriptor of a picture p is represented as a discrete index,
called visual term or visterm, and, like for text data, the picture is represented as a bag-of-visterms vector, in
which each component p; is related to the presence or absence of visterm 7 in p.

The mapping of the descriptors to discrete indexes is performed according to a codebook C', which is
typically learned from the local descriptors of the training pictures through the k-means algorithm [14, 23, 36].
This study also applies this standard strategy. The assignment of the weight p; of visterm ¢ in picture p is
classical as well,

tfy, idf?
S (e fy idfy)?
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Figure 3: Examples of Corel pictures along with the associated captions.

where ¢ f, the term frequency of ¢ in p, refers to the number of occurrences of ¢ in p, while ¢df;”, the inverse
document frequency of 4, is defined as —log(r?), r¥ being the fraction of training pictures containing at least
one occurrence of 4.

Each of the presented kernels proposes a different technique to compare bags of local descriptors, whose
effectiveness highly depends on the application context. For our task, we selected the most appropriate kernel
through validation, as explained in the next section.

S Experiments and Results

In this section, we present the experiments performed to evaluate PAMIR. We first describe our experimental
setup, and then discuss the various issues related to hyperparameter selection, including the choice of a suitable
kernel. Finally, we report the experimental results comparing PAMIR to the alternative models presented in
Section 2.

5.1 Experimental Setup

The datasets used for evaluation originate from stock photography, one of the application context of query-by-
text image retrieval. Data from other domains, such as web search engine or newspaper archive, could also
have been used. However, we decided to focus on stock photography, since the annotations associated with
such pictures are generally produced by professional assessors with well defined procedures, which guarantees
a reliable evaluation.

Two datasets are used in our experiments, Corel15™!! and Corel1®™@r9¢, Both sets originate from the
Corel stock photography collection', which offers a large variety of pictures, ranging from wilderness scenes
to architectural building pictures or sport photographs. Each picture is associated with a textual caption that
depicts the main objects present in the picture, see Figure 3.

Corel®mall corresponds to the 5, 000-picture set presented in [14]. This set, along with the provided split
between development and test data, has been used extensively in the query-by-text literature, e.g. [3, 23, 31].
It is composed of a 4, 500-picture development set Py, and a 500-picture test set Fg,. For model training
and hyperparameter selection, we further divided the development set into a 4, 000-picture train set P}, and a
500-picture validation set P ;; (see Table 1).

The queries needed to train and evaluate our model originate from the caption data. For that purpose,
we first defined the relevance assessments considering that a picture p is relevant to a query ¢ if and only if

ICorel data are distributed through
http://www.emsps.com/photocd/corelcds.htm.
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Table 1: Corel®™a! Statistics

train valid test

Number of pictures
Picture size

4,000 500 500
384x256 or 256x384

Number of queries
Avg. # of rel. pic. per q.

7,221 1,962 2,241
5.33 2.44 2.37

Vocabulary size
Avg. # of words per query

179
2.78 2.51 2.51

Table 2: Core12¥9¢ Statistics

train valid test
Number of pictures 14,861 10,259 10,259
Picture size 384x256 or 256x384

Number of queries
Avg. # of rel. pic. per q.

55,442 39,690 39,613
3.79 3.51 3.52

Vocabulary size

1,892

IDIAP-RR 07-38

Avg. # of words per query 2.75 2.72 2.72

the caption of p contains all query words. Then, we defined the query set, Q;.;,» @iuiqr OF Qieg» as the set
containing all the queries for which there is at least one relevant picture in the picture set, P, Pajigs OF
Pg,;. This strategy defining queries and relevance assessments is hence not identical to a labeling in which a
human assessor issues queries and labels pictures. However, it is based on manually produced captions and the
resulting relevance information can be considered as reliable. In fact, there is no doubt that the pictures marked
as relevant according to the definition above are indeed relevant, e.g. if the words beach, sky are present in a
caption, it can confidently be claimed that the corresponding picture is relevant to the queries “beach”, “sky”
and “beach sky”. The only problem that could affect our relevance data is due to the possible incompleteness
of some captions. If a word is missing from a caption, the corresponding picture will wrongly be marked as
non-relevant for all queries containing this word. This weakness is however not specific to our labeling process.
For instance, system pooling, the semi-automatic technique used for labeling data in retrieval benchmarks, also
underestimates the number of relevant documents [2].

Corel®mall statistics are summarized in Table 1. The datasets are used as follows: the parameter vector
w is learned over (Pg,,, Qi) through the training procedure defined in Section 3. Hyperparameters, such as
the number of training iterations, or the type of kernel used, are selected over (Pg;q, @%,:q)- Final evaluation
is conducted over (P5, Q%,). The training and evaluation of the alternative models is also performed over to
the exact same data split, as it is the only way to conduct a fair comparison between the models [32].

The second dataset, Core1*@*9¢, contains 35,379 images and hence corresponds to a more challenging
retrieval problem than Core15™1!, Like for the smaller set, Core 1379 pictures originate from the Corel
collection and Core1%2*9¢ queries have been defined relying on the picture captions as explained above. The
statistics of the training, validation and test sets of Core1*2*9¢ are reported in Table 2.

For both datasets, performance evaluation has been conducted relying on standard information retrieval

measures: average precision, precision at top 10, and break-even point [2]. For any query q, these measures
evaluate the picture ranking outputted by the retrieval system as follows.
Precision at top 10 pictures (P10) measures the percentage Pr(10) of relevant pictures within the top 10 po-
sitions of the ranking. P10 hence evaluates the percentage of relevant material a user would encounter on the
first 10—result page of a search engine. Although it is easy to interpret, this measure tends to overweight simple
queries with many relevant pictures when averaging over a query set. For such queries, it is easier to rank some
relevant pictures within the top 10, simply because the relevance set is larger and not because of any property
of the ranking approach.
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Table 3: Selecting the block size over (Q3S, ;4> Piyia)-

The other hyperparameters (kernel and learning parameters) are set to their optimal validation value.

block size \ 32 48 64 96 128 192 256
blocks per pic. | 345 135 77 28 15 3 2
AvgP (valid.) | 26.1 253 273 253 223 178 183

Break-Even Point (BEP), often called R-Precision, measures the percentage Pr(|R(q)|) of relevant pictures
within the top | R(¢)| ranking positions, where | R(q)| is the number of relevant pictures for the evaluated query
q. Contrary to P10, this measure does not overweight queries with many relevant pictures.
Average Precision (AvgP) is the standard measure used for retrieval benchmark [2], and it corresponds to the
average of the precision at each position where a relevant picture appears, AvgP = m > PER(Q) Pr(rk(q,p)),
where rk(q, p) is the rank of picture p for query gq.

In the following, we report the performance of PAMIR and the alternative models as the average of these
measures over the sets of test queries Q% and QL.

5.2 Hyperparameter Selection

This section studies the enfluence of the hyperparameters on PAMIR performance. The feature extractor param-
eters, the type of kernel used, and the learning algorithm parameters are selected through validation: the model
is trained with different parameter values over the training set and the parameters achieving the highest average
precision over the validation set. For Core15™11 all types of parameters are validated. For Core1379¢, only
the learning parameters are validated for efficiency reasons, keeping the feature extractor and kernel parameters
to the value selected over Core15mat!,

Feature extraction requires to select the block segmentation parameters (block size and block overlap) and
the number of clusters used for color quantization. The block size determines the trade-off between obtaining
local information (with small blocks) and extracting reliable statistics for each block (with large blocks), this
parameter is selected through validation. Block overlap is set to half the block size such that all pixels belong
to the same number of blocks, to avoid the predominance of pixels located at the block borders. The number
of color bins is set to 50, as a trade-off between extracting a compact block representation and obtaining a
perceptually good image reconstruction. Table 3 reports the validation performance for different block sizes.
These results show that large blocks (> 128 pixels) are not suitable for our retrieval problem. In fact, it seems
that considering less than 15 local descriptors per image does not provide PAMIR with enough statistics to
address the retrieval task. The performance is stable for small blocks, between 32 and 96 pixels, with a slight
advantage for 64 pixel blocks. We therefore pick this latter value for evaluation.

The selection of the kernel is also performed through validation. In fact, the different kernels comparing
bag-of-local descriptors have been proposed recently and few studies focused on the empirical comparison
of these approaches [15]. Table 4 reports the best validation performance for each kernel, along with its
parameters. Among the three kernels evaluated, the visterm kernel is clearly yielding the best performance,
followed by the match kernel and then the Expected Likelihood Kernel. These results yields several remarks.

The Expected Likelihood Kernel (ELK) over Gaussian mixtures surprisingly yields its best results with
only a single Gaussian per picture. This observation is not in line with the handwritten digit recognition
experiments reported in [30]. Even if the differences in the datasets and the tasks performed might explain this
difference, we further investigated on this point. In fact, the non-convex Expectation-Maximization procedure
seems to explain the failure of ELK over Gaussian mixtures. The fitting of a mixture over the same picture
with different initializations yield similar distributions in terms of data likelihood. However, these distributions
are not equivalent for ELK evaluations and large relative variations are observed for a given pair of pictures,
depending on the initialization of the Expectation-Maximization procedure for these pictures. This effect could
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Table 4: Selecting the kernel over (Q24, Piiia)-

Vi

The other hyperparameters (feature extractor and learning parameters) are set to their optimal validation value.

Kernel AvgP | Parameters
Exp. Likelihood 23.1 num. of Gaussians per picture (1)
Match 25.6 stdv of the local RBF kernel (5)

Visterm-Linear 27.3 codebook size (10, 000)

Table 5: Selecting the parameters of the learning procedure.

The other hyperparameters (feature extractor and kernel parameters) are set to their optimal Core 15721 vali-
dation value.

Dataset Aggressiveness ¢ Num. of iter. n
Corelmatt 0.1 2.53 x 10°
Corelhar9e 0.1 1.55 x 107

possibly be reduced through averaging, if one fits multiple mixtures per picture. However, such a solution
would be too costly for large datasets.

The performance of the match kernel is reported to be higher than the ELK. The match kernel relies on
a minor kernel to compare pairs of local descriptors. In our experiments, the linear kernel, the Radial Basis
Function (RBF) kernel, and the polynomial kernel have been tried as minor kernels. Table 4 reports results only
for the RBF kernel, which yielded the highest validation performance. Regarding efficiency, the match kernel
is computationally demanding as it needs to compare all pairs of local descriptors between two pictures.

The visterm kernel is reported to yield the highest validation performance and optimal performance is
reached with a codebook of 10,000 prototypes. Moreover, the visterm approach also yields a more efficient
model, compared to the other kernels. In fact, the visterm framework represents the pictures as bag-of-visterms
vectors, where the linear kernel is applied. This means that the picture vectors can be pre-computed, as soon
as the pictures are available. Then, model training and testing only require the evaluations of the linear kernel
between sparse vectors. Such an operation can be performed efficiently as its complexity only depends on the
number of non-zero components of the vectors (bounded by 77, the number of blocks per image), not on the
data dimension (10, 000, the codebook size) [2]. Furthermore, the linear kernel allows for handling w explicitly,
which involves much less computation than handling support sets.

The training parameters of PAMIR are the number of iterations n and the aggressiveness c. Both of them
sets the trade-off between the two learning objectives, i.e. minimizing the training loss and identifying a large
margin model. Table 5 reports the selected values. For both Core1#*9¢ and Corel5"2!!, the number of
iterations is significantly lower than the number of training constraints (e.g. for Corel15™!! 253 x 10°
iterations should be compared to 1.45 x 10® training constraints). The algorithm hence converges before
examining all the training set, which is certainly due to some redundancy in the training data. This highlights the
efficiency of the PA approach, compared to other optimization techniques for SVM-like problems, as discussed
in Section 3.

To conduct a fair comparison, the alternative models have been trained over the same local descriptors and
their hyperparameters have been selected with the same validation procedure. Namely, we selected the block
size (for all models), the visual codebook size (for CMRM, CMTT and PLSA), and the kernel along with the
corresponding parameters (for concept classification SVM) based solely on the validation set of Core15ma1L,
while all other parameters have been validated for both Core15™@!! and Core12*9¢, see Table 6. Note that
Table 6 does not report the regularization parameter (C) for the SVM as it has been individually tuned for each
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Table 6: Hyperparameters for CMRM, CMTT, PLSA and SVM

Model Dataset Hyperparameters

CMRM Corel®™!  block size (192), visual codebook size (3,000), smoothing parameters (oo = 0.5, 8 = 0.1)
Corel™@r9¢  block size (192), visual codebook size (3,000), smoothing parameters (o = 0.2, 3 = 0.1)
CMTT Corel®™!l  block size (256), visual codebook size (2,000), number of singular values kept (50)
Corell@r9¢  block size (256), visual codebook size (2,000), number of singular values kept (1,000)
PLSA Corel®™!!  block size (32), visual codebook size (50,000), number of aspects (400)
Corel®@r9®  block size (32), visual codebook size (50,000), number of aspects (600)
SVM  Corel®®@ll  Dblock size (48), kernel (visterm kernel with a 20,000-visterm codebook)
Corel®@r9®  block size (48), kernel (visterm kernel with a 20,000-visterm codebook)

Table 7: Indexing times for PAMIR and the alternatives models

Execution times have all been measured in seconds on the same machine (AMD Athlon64, 2.4Ghz, 2GB
RAM).

‘ CMRM CMTT PLSA SVM PAMIR
Corelsmall 3 9 240 687 17
Corelharee 849 4,099 1,025 24,650 450

term.

Before presenting the generalization performance, we briefly compare the computational time required by
the different models, for both indexing and retrieval. Table 7 reports the indexing times needed by PAMIR
and the alternative models. Indexing corresponds to all the computations performed prior to the submission
of the test queries, once the test pictures are available, excluding the operations related to feature extraction,
such as visterm quantization. Indexing can hence be performed off-line, before the user can interact with the
system. In the case of PAMIR, it includes the training step, plus the mapping of each test picture to the text
space. For bi-modal generative models (CMRM, CMTT and PLSA), it corresponds to model training, plus
the inference of p(t|p) for each vocabulary term ¢ and each test picture p. In the case of concept classification
SVM, it corresponds to the training of an SVM for each vocabulary term, and the classification of each test
image according to each of the trained SVMs. Table 7 shows that our efficient training procedure yields an
indexing time of the same order as the most efficient model, CMRM. This table also shows that SVM for
concept classification is especially costly: this approach involves training a model for each vocabulary term,
and each model training has a complexity that grows at least quadratically with the training set size [24]. This
makes the application of this technique challenging for large datasets such as Core1™@*9¢, Of course, the
reported times highly depend on implementation details and optimization tricks?, and should be considered
carefully. It should also be noted that the reported times correspond to a single run of training, while, in a real-
world usage scenario, a variable number of runs might be required depending on the number of hyperparameter
values selected for validation. However, the results clearly indicate that indexing a corpus with PAMIR is not
more costly than indexing a corpus with the other models. After indexing, all models then need to compute
the dot-product matching between the submitted query and the textual representations inferred from the text
pictures, before ranking the obtained scores. All models hence yield the same retrieval time, 0.34 msec per
query for Core15ma@! and 7.94 msec per query for Core1379¢, on our reference machine, see Table 8. This
hence means that all models can be used interactively by the user, without any perceived delay.

2Qur implementation of PAMIR is available at www . idiap.ch/pamir/.



18 IDIAP-RR 07-38

Table 8: Retrieval times for PAMIR and the alternatives models

All models have the same retrieval complexity. Execution times have all been measured on the same machine
(AMD Athlon64, 2.4Ghz, 2GB RAM).

‘ CMRM CMTT PLSA SVM PAMIR
Corelsmall 0.34 ms per que
Corelltaree 7.94 ms per que

Table 9: Averaged Performance on Core15™!! Test Queries

Bold numbers report when a model outperforms all others according to the Wilcoxon test at the 95% confidence
level.

CMRM CMTT PLSA SVM PAMIR
AvgP (%) 19.2 19.8 20.7 22.0 26.3
BEP (%) 13.1 13.7 12.8 13.8 17.4
P10 (%) 7.8 7.6 8.7 9.3 10.0

5.3 Experimental Results

This section evaluates PAMIR and the alternative models over the test parts of Core1°™#1! and Core13r9e,

Table 9, which reports the results over Corel15™!1 shows that PAMIR outperforms all the alternative
evaluated models. Compared to the best alternative, SVM, a relative improvement of 21% is reported for
AvgP (26.3% for PAMIR versus 22.0% for SVM). Improvements are also observed for the other measures,
P10 and BEP, which means that the use of PAMIR is advantageous for both users focussing on the first
positions of the ranking (as shown by P10 results) or users focussing on the whole ranking (as shown by
AvgP results). One should note that the relatively low values reported for the P10 results does not indicate
a failure of the models but reflects the difficulty of the task: in fact, the optimal value for P10 is 20.2% due
to the low number of relevant pictures per query. This therefore means that the PAMIR user focussing only
on the first ten results will retrieve about half the pictures he would have retrieved using the ideal ranker. In
order to verify whether the observed advantage on the average results could be due to a few queries, we further
ran the Wilcoxon signed rank test to compare PAMIR and each alternative model [38]. This test examines the
distribution of the differences in the score obtained for each query and verifies whether it is symmetric around
zero, which would mean that PAMIR has actually no advantage over the alternative approach. The test rejected
this hypothesis at the 95% confidence level for all alternative models and all measures, as indicated by the bold
numbers in the tables.

In order to compare the models over difficult and easy queries, we split the set of test queries into an ‘easy’
set, containing the queries with 3 or more relevant pictures in Py, and a ‘difficult’ set, containing the queries
with only one or two relevant pictures in PgZ. Table 10 reports the average precision obtained over the two
sets. PAMIR is shown to be the best model over both sets and its advantage is reported to be greater over the
‘difficult’ set (on this set, the relative AvgP improvement compared to SVM, the second best model, is +29%,
as compared to +3.2% over the ‘easy’ set). This outcome is certainly due to PAMIR ranking criterion, since
previous work showed that similar criteria for classification are especially adapted to unbalanced problems, i.e.
classification tasks with a low percentage of positive examples [37].

As a further comparison, Table 11 reports the average precision obtained over single and multiple-word
queries separately. Several previous papers focused on single-word queries only, e.g. [23, 31, 35], and reporting
those results allows for direct comparison with this literature. The single-word queries correspond to an easier
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Table 10: AvgP (%) for Easy and Difficult Queries of Core15mall

The ‘easy’ query set contains the 421 test queries with 3 or more relevant pictures, while the ‘difficult’ query
set contains the 1,820 test queries with only 1 or 2 relevant pictures. Bold numbers report when a model
outperforms all others according to the Wilcoxon test at the 95% confidence level.

CMRM CMTT PLSA SVM PAMIR
Easy Queries 34.0 31.3 380 419 43.3
Difficult Queries 15.8 17.2 16.7 17.3 224

Table 11: AvgP (%) on Single & Multi-Word Queries of Core15ma11

Corel5mall contains 179 test queries with a single word and 2,062 queries with more than one word. Bold
numbers report when a model outperforms all others according to the Wilcoxon test at the 95% confidence
level.

CMRM CMTT PLSA SVM PAMIR
Single-Word Que. 25.8 26.4 31.7 32.7 34.0
Multi-Word Que. 18.6 19.3 19.7  21.0 25.7

task since the average number of relevant pictures per query is 9.4 for the single-word queries, compared to
1.8 for the multiple-word queries. The results reported in Table 11 agree with this observation and all models
are reported to reach higher performance on the single-word queries compared to multiple-word queries. On
both query subsets, the advantage of PAMIR is confirmed. The PAMIR improvement is shown to be greater for
multiple-word queries (+22.3% relative improvement in AvgP compared to the second best model, SVM)
than for single-word queries (+4.0% relative improvement in AvgP compared to SVM). Two characteristics
of PAMIR might explain this outcome: PAMIR training criterion has shown to be adapted to retrieval problems
with few relevant pictures, which is the case of multiple-word queries. Moreover, PAMIR is the only model
trained over multiple-word queries, which certainly helps achieving better performance over such queries. In
fact, we observed that, for multiple-word queries, the other models often favor one of the query terms at the
expense of the others. Figure 4 shows, for instance, that SVM favors the term ‘car’ at the expense of ‘building’
for the query ‘building car’. On this example, the SVM ranking provides only one picture containing both
cars and buildings, while PAMIR succeed in retrieving all the 3 relevant pictures in the top 5 positions. The
PAMIR results even provide a non-relevant picture that could have been labeled relevant with looser labeling
instructions (see the fifth picture of the ranking). The other example on Figure 4 is a single word query, ‘petals’.
It yields good results for both models, which retrieve 3 relevant pictures out of 4 in the top 5 positions. One can
note a slight advantage for PAMIR that returns only flower-related pictures. Of course, these examples have
limited statistical values but they give an idea on the type of ranking the user is facing.

With our setup, some queries appear in both the test and train sets (for instance, single-word queries are
common to both sets). In order to verify the ability of PAMIR to generalize to new queries, we evaluated our
model on the 601 test queries, which are not present in the training set. These queries can be considered as
difficult, not only because the model has not seen pictures relevant to them during training, but also because
they have very few relevant documents (1.03 on average). This second aspect can easily by explained if one
remark that test queries with many relevant test pictures are also likely to have at least one relevant picture
within the training data, which means that such queries are likely to belong to the training set as well. The
results over this set of queries confirm the results observed on the whole set (see Table 12) and PAMIR is
reported to outperform the alternative according to all measures. Moreover, for all models, the performance is
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Table 12: Results over Test-Only Queries of Core 151! Queries

Among the 2, 241 test queries of Core15™31! 601 queries are not appearing in the training or in the validation
set. Bold numbers report when a model outperforms all others according to the Wilcoxon test at the 95%
confidence level.

CMRM CMTT PLSA SVM PAMIR
AvgP (%) 127 129 1.1 101 161
BEP (%) 7.1 6.3 41 3.1 7.7
P10 (%) 2.5 2.7 29 25 35

Table 13: Averaged Performance on Corel™@*9°¢ Queries

Bold numbers report when a model outperforms all others according to the Wilcoxon test at the 95% confidence
level.

CMRM CMTT PLSA SVM PAMIR
AvgP (%) 2.11 223 261 360 3.65
BEP (%) 1.26 146 169 181  1.90
P10 (%) 1.44 149 179 226 253

much lower than for the ‘difficult’ query set (see Table 10), which indicates that generalization to new queries
deserves to be investigated further in the future.

Overall, the results over Core 1™ outline the advantage of PAMIR over the alternative solutions. This
outcome is certainly due to our discriminative learning strategy. The training of the other models either max-
imizes the joint picture/caption likelihood (CMTT, CMRM and PLSA) or minimizes the error rate of the per-
term classification problems (SVM for concept classification), while our model relies on a ranking criterion,
related to the final retrieval performance. This difference has shown to be especially helpful for both difficult
queries (queries with few relevant pictures) and multiple-word queries.

Table 13 reports the results of the experiments performed over Core1™@*9¢, The reported performance
over this set are much lower than for Core1°m!! which is not surprising considering the difficulty of the task.
In Corel1™@¥9¢ the relevant pictures account for 0.27 per thousand on average, which should be compared to
4.7 per thousand on average for Core15™2 Moreover, the limited amount of relevant material present in the
training set of Core1“3*9¢ also makes this task more difficult: in Core1™3*9¢, the average number of relevant
pictures per training query is 3.79, which should be compared to 5.33 for Core15™3!? (see Table 1 and 2).
Hence, the models trained over Core1™3*9¢ should address a more difficult ranking problem, while having
seen less relevant pictures to generalize from. In fact, the statistics of Core1™*9¢ make this task closer to
real world applications, such as image search for stock photography or news wire services, and the results over
Corel@9® are hence of a greater interest from a user perspective.

Although low, the results over Core1*2*9¢ are much higher than random performance for all models (e.g.
random performance is ~ 0.03% for P10 which is much lower than 1.44%, the worst P10 results, obtained
with CMRM). All approaches can hence leverage from the training data. In fact, even if the models are far from
optimal performance, they can still be useful to the user, as illustrated by the two queries shown on Figure 5.
The first example ‘tree snow people’ corresponds to a relatively easy query with 13 relevant pictures in the test
set. Like for the ‘building car’ example on Core1°™1! the SVM solution is dominated by one of the concepts,
‘snow’, at the expense of the others, and does not retrieve any relevant picture in the top 5. On the contrary,
PAMIR, which is directly trained from multiple-word queries, yields high performance with 3 relevant pictures
within the top 5 positions. The second query ‘zebra herd’ has less relevant pictures (4 in the test set). The
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petals building car
(4 relevant pictures in Pg,) (3 relevant pictures in Fg,)

PAMIR SVM PAMIR SVM

Figure 4: Example: the top 5 pictures obtained with PAMIR and SVM, for two queries over Corel5mall,
Higher resolution images, as well as other examples, are available at www.idiap.ch/pamir/.
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tree snow people zebra herd
(13 relevant pictures in P.) (4 relevant pictures in PL)
PAMIR SVM
T .

Figure 5: Example: the top 5 pictures obtained with PAMIR and SVM for two queries over Corel™@*9¢,
Higher resolution images, as well as other examples, are available at www.idiap.ch/pamir/.

results show a slight advantage for PAMIR: our model retrieves two relevant pictures at the third and fourth
positions, while the SVM retrieves one relevant picture at the fifth position. This example illustrates that both
models are often confused by similar pictures (savannah scenes in this case) for concepts with few training
instances (only 22 pictures contain zebras among the 14,861 pictures of PL_. ).

Like for Core15™1L  the results in Table 13 clearly show the advantage of PAMIR over the other ap-
proaches. In fact, model comparison yields similar conclusions over Core15™!! and Corel1t@*9¢: CMTT
and CMRM reach comparable performance levels, PLSA performs better than the other generative models,
but not as well as the SVM. Again, PAMIR yields the best results. Furthermore, the Wilcoxon test over
Corel™@r9¢ concludes that PAMIR significantly outperforms each alternative, at the 95% confidence level,
for P10 and BEP. For AvgP, the test concludes that PAMIR outperforms all generative models (CMTT,
CMRM and PLSA), and yields an AvgP similar to the SVM’s. Overall, the results over both sets are consis-
tent and show the advantage of our discriminative model over the alternatives.

6 Conclusions

We have proposed a discriminative approach to the retrieval of images from text queries. In such a task, the
model receives a picture corpus P and a text query ¢. It should then rank the pictures of P such that the
pictures relevant to ¢ appear above the others. Contrary to previous approaches that generally rely on an
image auto-annotation framework, our learning procedure aims at selecting the model parameters likely to
yield a high ranking performance over the unseen test data. For that purpose, we introduced a loss inspired
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from ranking SVM [25] and formalized the notion of margin for our retrieval problem. We then introduced a
learning algorithm building upon Passive-Aggressive (PA) minimization [12]. The resulting model, Passive-
Aggressive Model for Image Retrieval (PAMIR), has several advantages: its learning objective is related to the
final retrieval performance, its training procedure is efficient for learning over large datasets, and the model
parameterization can benefit from effective picture kernels recently introduced in the computer vision litera-
ture [27, 30, 48]. These advantages actually yield a model effective in practice, as shown by our experiments
over stock photography data. For instance, over the standard Corel benchmark [14], PAMIR yields 26.3%
average precision, which should be compared to 22.0% for SVM for concept classification, the best alternative.
Our model has notably shown to be especially advantageous over multiple-word queries and difficult queries
with few relevant pictures.

Although it outperforms the alternative models, PAMIR is far from reaching perfect performance, especially
over the challenging Core1™2*9¢ data. Therefore, we plan to investigate several directions to improve our
model. First, we plan to modify PAMIR loss function to focus mainly on the top of the ranking, as most users
examine only the first results. An approach derived from [26] could be applied to optimize measures like P10.
The loss could also be modified to optimize measures considering relevance assessments with gradual relevance
levels, such as Discounted Cumulative Gain [47]. Another useful extension would be the prediction of a cut-
off rank, that is, a ranking position below which the user is unlikely to encounter any relevant documents.
Solutions inspired from [7] could help solving this problem. Finally, we also plan to investigate further on the
use of kernels for local features. We want to model the spacial relationships between local features [39], and
adopt a multi-resolution approach [18].

The proposed model, along with the reported results, hence advocate for addressing the image retrieval
problem through a discriminative ranking approach, and open several possible directions of research to fully
benefit from this formalism.

Appendix

This appendix shows that an upper bound on the norm ||w?|| grows with the number of iterations i of the Passive
Aggressive algorithm. Precisely, it shows that ||w?|| < 2 ¢ p i, where p corresponds to the radius of the training
data p = max(g p)e Dy, V(4 P)-

The proof, inspired from [11], is conducted by induction over the iteration . At the first iteration, the
property is satisfied, since w® = 0. The update rule of w’ also preserves the property. If we assume the
property to be verified at iteration i — 1, i.e. |[wi™t|| < 2¢p (i — 1), we have ||wi]| < 2cp (i — 1) + || 70¢]],
according to the update rule (10). By definition, 7; is positive and smaller than ¢ and hence ||w'|| < 2cp (i —
1) + c||v*||. Furthermore, v' is defined as v(¢*, p**) —y(q%, p*~ ), which implies that ||v¢|| < 2p. Consequently,
||lw?|| < 2 ¢ pi. This concludes the proof.
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