
 
 

E
S

E
A

R
C

H
R

E
P

R
O

R
T

I
D

I
A

P

Av. des Prés−Beudin 20

IDIAP Research Institute
1920 Martigny − Switzerland

www.idiap.ch

Tel: +41 27 721 77 11 Email: info@idiap.ch
P.O. Box 592
Fax: +41 27 721 77 12

Filter Bank Design based on

Minimization of Individual

Aliasing Terms for Minimum

Mutual Information Subband

Adaptive Beamforming
Kenichi Kumatani a John McDonough b

Stefan Schacht b Dietrich Klakow b

Philip N. Garner a Weifeng Li a

IDIAP–RR 07-77

January 2008

a IDIAP Research Institute, Martigny, Switzerland
b Spoken Language Systems at Saarland University in Saarbrücken, Germany





IDIAP Research Report 07-77

Filter Bank Design based on Minimization of

Individual Aliasing Terms for Minimum Mutual

Information Subband Adaptive Beamforming

Kenichi Kumatani John McDonough Stefan Schacht Dietrich Klakow

Philip N. Garner Weifeng Li

January 2008

Abstract.

This paper presents new filter bank design methods for subband adaptive beamforming. In this
work, we design analysis and synthesis prototypes for modulated filter banks so as to minimize
each aliasing term individually. We then drive the total response error to null by constraining
these prototypes to be Nyquist(M) filters. Thereafter those modulated filter banks are applied to
a speech separation system which extracts a target speech signal. In our system, speech signals are
first transformed into the subband domain with our filter banks, and the subband components are
then processed with a beamforming algorithm. Following beamforming, post-filtering and binary
masking are further performed to remove residual noises.

We show that our filter banks can suppress the residual aliasing distortion more than conventional
ones. Furthermore, we demonstrate the effectiveness of our design techniques through a set of
automatic speech recognition experiments on the multi-channel speech data from the PASCAL
Speech Separation Challenge. The experimental results prove that our beamforming system with
the proposed filter banks achieves the best recognition performance, a 39.6 % word error rate
(WER), with half the amount of computation of that of the conventional filter banks while the
perfect reconstruction filter banks provided a 44.4 % WER.
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1 Introduction

There has been great interest in subband adaptive processing applications. Subband adaptive filtering
can reduce the computational complexity associated with time domain adaptive filters and improve the
convergence property in estimating filter coefficients [1]. However, the filter bank design for adaptive
filtering poses problems not encountered in more traditional applications such as speech coding. In [2],
de Haan et al. noted that perfect reconstruction (PR) filter banks were not suitable for beamforming
applications because PR is achieved through alias cancellation [3, §5], which can reconstruct an input
signal correctly only if the outputs of the individual subbands are not subject to arbitrary magnitude
scaling and phase shifts. They also proposed a method to design analysis and synthesis prototypes for
modulated filter banks so as to minimize the weighted combination of the response error and aliasing
distortion. The filter banks proposed in [2] are referred as de Haan filter banks here.

In this work, we drive the response error defined in [2] to null by constraining the analysis and
synthesis prototypes to be Nyquist(M) filters [3, §4.6.1]. Thereafter, the minimization of the aliasing
distortions is shown to reduce to the solution of an eigenvalue problem in the case of the analysis
prototype, and to the solution of a set of linear equations in the case of the synthesis prototype.
We also discuss the performance limitation of our filter banks due to numerical problems caused by
singular matrices, and propose an alternate solution for the special case which can eliminate not only
the total response error but also residual aliasing distortion completely. The filter banks proposed
here are applied to minimum mutual information (MMI) beamforming where the active weight vectors
are estimated so that mutual information of two beamforming outputs is minimized [4]. After that,
the separated speech is further processed with Zelinski post-filtering and binary masking [5] in order
to remove diffuse noises and a residual interference signal.

We show the effectiveness of our methods through speech recognition experiments on the far-field
speech data from the PASCAL Speech Separation Challenge. The data were recorded in a reverberant
room, not artificially convoluted with measured room impulse responses and the position of speaker’s
head varies as well as speaking volume.

The balance of this work is organized as follows. In Section 2, we review the definition of a
modulated filter bank. Section 3 considers the design of suitable analysis and synthesis prototypes for
the modulated filter banks. In particular, Sections 3.1 and 3.2 briefly present the design methods of [2]
for prototypes, and then show how slight modifications of those techniques can produce prototypes
with zero response error and minimal aliasing distortions. In Section 4, we first compare the residual
aliasing distortion of our method with de Haan filter banks. We then describe the configurations for
speech recognition experiments and compare our design technique with that originally proposed in [2]
as well as the popular paraunitary PR design. Finally, in Section 5 we present our conclusions and
plans for future work.

2 Modulated Filter Banks

Figure 1 shows a schematic of a modulated filter bank with M subbands and a decimation factor of D.
Following [2], we define the impulse responses h[n] and g[n] for analysis and synthesis prototypes

respectively, and express those modulated versions according to

hm[n] = h[n]W−mn
M ↔ Hm(z) = H(zWm

M ) (1)

gm[n] = g[n]W−mn
M ↔ Gm(z) = G(zWm

M ) (2)

where WM = e−j2π/M denotes the M -th root of unity.
As indicated in Figure 1, the input spectrum X(z) is first processed with analysis filters Hm(z).

Then the decimators expand the filtered signals Vm(z). The decimated signal Xm(z) consists of the
sum of a stretched output of the m-th filter bank and D− 1 aliasing terms. At this point, the “fixed”
subband weights Fm can be applied to the decimated signals Xm(z). The expanders then compress
the weighted signals Ym(z). In the last step, the compressed signals Um(z) are processed with the
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Figure 1: Schematic of a modulated filter bank.

synthesis filters Gm(z) in order to suppress the spectral images created by expanders, and the outputs
of the synthesis filters are summed together.

Upon defining
Am,d(z) =

1

D
Fm H(zWm

MW d
D)G(zWm

M ), (3)

the relationship between the input and output signals can be written as

Y (z) =

D−1
∑

d=0

Ad(z)X(zW d
D) (4)

where
Ad(z) =

M−1
∑

m=0

Am,d(z). (5)

The transfer function A0(z) produces the desired signal, while the remaining transfer functions {Ad(z)}
for d = 1, . . . ,D − 1 give rise to the residual aliasing in the output signal.

3 Prototype Design

3.1 Analysis Prototype Design

In order to design the analysis prototype h[n], de Haan et al. [2] define the objective function

ǫh = αh + βh (6)

where the passband response error is

αh =
1

2ωp

∫ ωp

−ωp

∣

∣H(ejω) − e−jωτH
∣

∣

2
dω, (7)

and the inband-aliasing distortion is given by

βh =
1

2π

∫ π

−π

D−1
∑

d=1

∣

∣

∣
H(ejω/DW d

D)
∣

∣

∣

2

dω. (8)

In (7) the desired filter bank response corresponds to a pure delay of τH samples.

Defining h =
[

h[0] h[1] · · ·h[Lh − 1]
]T

, de Haan et al. [2] then demonstrate that the passband
response error can be expressed as

αh = hT Ah − 2hT b + 1 (9)

where the components of A and b can be expressed as

Ai,j =
sin(ωp(j − i))

ωp(j − i)
and bi =

sin(ωp(τH − i))

ωp(τH − i)
.
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The inband-aliasing term (8) can be expressed as

βh = hT Ch (10)

where the components of C can then be expressed as

Ci,j =
ϕ[j − i] sin

(

π(j−i)
D

)

π(j − i)

and

ϕ[n] = D

∞
∑

k=−∞

δ[n − kD] − 1.

Combining all terms above, they then seek to minimize the objective function

ǫh = αh + βh = hT (A + C)h − 2hT b + 1 (11)

Nyquist(M) Filters

The impulse response of a Nyquist(M) or M -th band filter [3, §4.6.1] satisfies

h[Mn] =

{

c, n = md

0, otherwise
(12)

If H(z) is the Nyquist(M) filter, then the output of analysis filter bank would be equivalent to the
input delayed by mdM samples; see McDonough et al. [6] for the proof.

Notice that (12) represents a much stronger condition than that aimed at by the minimization
of (7), in that (12) implies the response error will vanish, not just for the pass band of a single
filter, but for the entire working spectrum, including the transition bands between the passbands of
adjacent filters. Hence, we replace the term αh in the optimization criterion (6) with a constraint of
the form (12), then minimize the inband-aliasing distortion subject to this constraint. The inband-
aliasing distortion reduces to (10), whose optimization clearly admits the trivial solution h = 0. To
exclude this solution, we impose the additional constraint hT h = 1, which is readily achieved through
the method of undetermined Lagrange multipliers. We posit the modified objective function

f(h) = hT Ch + λ(hT h − 1) (13)

where λ is a Lagrange multiplier. Then, by solving Ch = −λh, we can find the optimal prototype
h. Clearly h is an eigenvector of C. Moreover, in order to ensure h minimizes (10), it must be
the eigenvector associated with the smallest eigenvalue of C. Note that, in order to ensure that h
satisfies (12), we must delete those rows and columns of C corresponding to the components of h that
are identically zero. We then solve the eigenvalue problem (26) for the remaining components of h,
and finally reassemble the complete prototype by appropriately concatenating the zero and non-zero
components. This is similar to the construction of the eigenfilter described in [3, §4.6.1].

3.2 Synthesis Prototype Design

In order to design the synthesis prototype, in [2], de Haan et al. take as an objective function

ǫg(h) = γg(h) + δg(h) (14)

where the total response error is defined as

γg(h) =
1

2π

∫ π

−π

∣

∣A0(e
jω) − e−jωτT

∣

∣

2
dω. (15)

τT is the total analysis-synthesis filter bank delay and the residual aliasing distortion is

δg(h) =
1

2π

D−1
∑

d=1

M−1
∑

m=0

∫ π

−π

∣

∣Am,d(e
jω)

∣

∣

2
dω. (16)
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Through manipulations similar to those used in deriving the quadratic objective criterion for the
analysis filter bank, it can be shown that

γg(h) = gT Eg − 2gT f + 1. (17)

The components of E and f are given by

Ei,j =
M2

D2

∞
∑

k=−∞

h∗[kM − i]h[kM − j] and fi =
M

πD
h[τT − i].

The quadratic form for the residual aliasing distortion is

δg(h) = gT Pg (18)

where the components of P are given by

Pi,j =
M

D2

∞
∑

l=−∞

h∗[l + j]h[l + i]ϕ[i − j].

In [2], de Haan et al. introduce a weighting factor v to emphasize either the total response error
(0 < v < 1) or residual aliasing distortion (v > 1):

ǫg(h) = γg(h) + vδg(h) = gT (E + vP)g − 2gT f + 1 (19)

Nyquist(M) Constraint

As with the analysis prototype, we impose the Nyquist(M) constraint on the complete analysis-
synthesis prototype (h ∗ g)[n] such that

(h ∗ g)[Mn] =

{

c, n = md

0, otherwise
(20)

in which case the total response error (15) must be identically zero. Subject to this constraint, we
minimize the residual aliasing distortion (19). Satisfaction of (20) clearly reduces to a set of linear
constraints of the form

HT g = c (21)

where
H = [h−m+1, . . . ,h0, . . . ,hm−1] , (22)

c = [0, . . . , c, . . . , 0]T , (23)

and hk is obtained by shifting a time-reversed version of h by kM samples and padding with zeros as
needed.

We can again resort to the method of undetermined Lagrange multipliers for this problem and
obtain a solution of a synthesis prototype:

g = P−1H
(

HT P−1H
)

−1

c. (24)

3.3 Alternate method for a special case

The optimal prototypes can be obtained by the methods mentioned above if matrices C and P are
not singular. However, the matrices are often singular when decimation factor D is small.

If C is singular, we can consider its nullspace, Cnull, which consists of column vectors q ∈ Rn :
Cq = 0. Obviously, inband-aliasing distortion (10) can be driven to null by an analysis prototype
which is represented as a linear combination of bases of the nullspace Cnull x. We can then use the
free parameters x for minimizing passband response error (9). Such a solution can be expressed as

h = Cnull(C
T
nullACnull)

−1CT
nullb (25)



6 IDIAP–RR 07-77

Figure 2: Residual aliasing distortion ǫg(h) for decimation factor D, which was calculated with the
number of subbands M = 512 and the filter length Lh = 1024. The values for D ≤ 64 were obtained
with the alternate method.

where rows and columns of Cnull, A and b corresponding to the components of h that are identically
zero are deleted, and h is reassembled so as to keep the Nyquist(M) constraint. For the synthesis
prototype design, we can also erase residual aliasing distortion (18) in a similar manner. Defining the
nullspace of P to be Pnull, we can express the synthesis prototype g = Pnully. Then by substituting
into (21), we have

y = (HT Pnull)+c (26)

where (·)
+

indicates the peseudoinverse of (·). If the number of column vectors of Pnull ≥ 2m − 1,
we can find a synthesis prototype g = Pnully with zero total response error and residual aliasing
distortion. In practice, when the inband-aliasing distortion is very small, P becomes computationally
singular.

4 Experiments

The residual aliasing distortion indicates how small the filter bank can keep the total response error
even if the PR property is destroyed by arbitrary magnitude scaling and phase shifts. Figure 2 presents
the residual aliasing distortions from (18), where de Haan filter banks are calculated with weighting
factor v = 1.0 and 100.0, respectively. It is clear from Figure 2 that the proposed filter banks can
provide better suppression performance for aliasing.

We performed far-field automatic speech recognition (ASR) experiments on development data from
the PASCAL Speech Separation Challenge (SSC); see Lincoln et al. [7] for a description of the data
collection apparatus. Prior to beamforming, we first estimated the speaker’s position with the Orion
source tracking system [8]. In addition to the speaker’s position, Orion is also capable of determining
when each speaker is active. This information is useful for speaker adaptation, given that utterances
spoken by one speaker were often much longer than those spoken by the other. Based on the average
speaker position estimated for each utterance, a beamformer was constructed. The active weights
were estimated so as to achieve the minimum mutual information (MMI) of the outputs from the
beamformers [4]. In this work, we assumed that subband snapshots were Gaussian-distributed. In
addition to MMI beamforming, Zelinski post-filtering and binary masking [5] were performed.

We did four decoding passes on the waveforms obtained with the beamforming algorithms described
above. Each pass of decoding used a different acoustic model or speaker adaptation scheme. Speaker
adaptation parameters were estimated using the word lattices generated during the prior pass. The
detail of the speech recognizer is presented in [9].
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Table 1: WERs without post-filtering for every filter bank design algorithm after every decoding
passes.

Filter bank Pass (%WER)
1 2 3 4

FFT 88.5 71.1 58.8 55.5
PR 87.7 65.2 54.0 50.7

De Haan 88.7 68.2 56.1 53.5
Nyquist(M) 88.5 67.0 55.6 52.5

Table 2: WERs with post-filtering and binary masking for every filter bank design algorithm after
every decoding passes. WERs of the Nyquist(M) FB with M = 512 & D = 64 were obtained with
the alternate method.

Filter bank Parameters Pass (%WER)
M D 1 2 3 4

PR 64 - 83.7 61.5 47.5 44.7
512 - 84.6 60.5 47.6 44.4

De Haan 64 32 82.4 59.2 46.2 43.3
512 256 83.9 59.1 43.2 41.3
512 128 81.6 58.9 43.2 40.3
512 64 82.7 57.7 42.7 39.6

Nyquist(M) 64 32 80.7 57.0 44.3 42.0
512 256 84.1 58.6 43.4 40.6
512 128 81.8 54.9 42.2 39.6
512 64 81.4 56.5 42.6 40.3

We first conducted speech recognition experiments on speech separated with MMI beamforming
only and investigated four methods : (1) normal frequency domain processing with a FFT [10], (2)
cosine modulated filter bank [3, 6], which yields PR under optimal conditions, (3) de Haan filter bank,
and (4) Nyquist(M) filter banks proposed here. Table 1 shows the word error rates (WERs) for every
filter bank when we set parameters for each filter bank to obtain the best recognition performance.
MMI beamforming with the PR filter banks provided the best recognition performance when post-
filtering was not applied. Although it certainly scaled magnitudes and shifted phases of input subband
components, we didn’t observe strong aliasing noises. We consider that MMI beamforming with a
Gaussian assumption can estimate active weight vectors while keeping aliasing cancellation. On the
other hand, de Haan filter banks have the total response error which could deteriorate the recognition
performance. FFT analysis achieved significantly worse performance than all the subband processing
methods.

Finally we ran recognition experiments on speech enhanced with post-filtering and binary masking
following MMI beamforming. In that case, the PR property was not kept because of the rapid change
of filter weights. We observed the aliasing distortions when the PR filter banks were used. In contrast,
de Haan and the proposed filter banks can suppress such aliasing noises because those filter banks are
designed so as to minimize aliasing terms individually. Table 2 shows the WERs for each filter bank
with different numbers of subbands M and decimation factors D. From Table 2, we can see that the
systems equipped with de Haan and Nyquist(M) filter banks can reduce the absolute WER by about
5% compared to those with the PR filter banks. This proves that the PR filter bank is not suitable for
adaptive processing. It is also clear from Table 2 that the proposed method achieved a bigger WER
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reduction than de Haan’s algorithm. In particular, the improvements of the recognition performance
are significant with M = 64 since differences of the residual aliasing and response errors between the
Nyquist(M) and de Haan filter banks are larger than those with M = 512. The proposed filter banks
achieved the best recognition performance, WER 39.6 % with the number of subbands M = 512 and
decimation factor D = 128. On the other hand, de Haan filter banks provided the same number with
M = 512 and D = 64. Therefore, our method can be thought of as halving the computational cost of
that of de Haan.

5 Conclusions

In this work, we have proposed a new design method for filter banks that is suitable for adaptive
processing. We have demonstrated the effectiveness of our design techniques through a set of au-
tomatic speech recognition experiments on the multi-channel speech data from the PASCAL Speech
Separation Challenge. The proposed method achieved the smallest WER (39.6 %) with half as much
computational costs as de Haan filter banks, while the PR filter provided a 44.4 % WER.
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