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Abstract. This paper presents a novel concept of semi-autonomous navigatiene & mobile robot evolves
autonomously under the monitoring of a human user. The user prosigtesctive commands to the robot
whenever he disagrees with the robot’s navigational choices. Thesaaods are not related to navigational
values like directions or goals, but to the relevance of the robot’s actiote toverall task. A binary error
signal is used to correct the robot’s decisions and to bring it to the degieddocation. This simple interface
could easily be adapted to input systems designed for disabled pedptégthem a convenient alternative
to existing assistive systems. After a description of the whole conceptcas$focus is given to the decisional
process, which takes into account in a Bayesian way the environmesgiyer by the robot and the user
generated signals in order to propose a navigational strategy to the luseai he strength and advantages
of the proposed semi-autonomous concept are illustrated with two exgras{eywords Semi-autonomous
navigation, error signal, probabilistic reasoning, human-machine attena
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Figure 1: Scheme of the proposed semi-autonomous navigeadiacept.

1 Introduction

Despite substantial advances in the field of robotics, alstaégory of end-users could benefit more from
intelligent assistive systems designed for them, namelgrgl or disabled persons. Today, most of these
systems are focused on people able to manipulate joystidkish cannot be properly controlled for paralysed
or may present difficulties for elderly people.

Shared-control, collaborative control and semi-autonasncontrol are available strategies in order for
a human user to operate a robotic device (see section 2).tHeygeith an appropriate protocol for action
selection, these control architectures and the user inmies could be optimised for elderly or disabled
persons.

But the simpler the interface in terms of information flowrfréhe human to the machine, the more steps are
required to select the desired command. In this paper, waogea novel system for an efficient asynchronous
human-machine interaction designed for simple interfdikessingle buttons, sip and puff systems and even
the promising non-invasive brain-computer interfacesl@GNe want to rely mainly on the machine and give
instructions only at key-points during the execution ofsktdnstead of providing navigational commands, like
in current semi-autonomous systems where the robot is antons on a relative short path but then requires a
user input for the next movement to execute, we will providmitoring signals about the robot’s performance
at solving the wished navigational task.

We define our semi-autonomous framework based on monitsigmals as follows:

A semi-autonomous system is a robotic device, endowed wiitn@mous capabilities, inter-
acting with a human user who emits corrective monitoringalg whenever necessary to achieve
the goal.

This definition implies to have a fully autonomous agent dblexecute navigational movements, as de-
picted on the right part of figure 1. Depending on the locatp®ed environment, the system chooses what
action to execute. This controller's decision will be conmitated to the human user by the mean of visual,
audio or tactile cues. Based on this information, the uséhave the possibility to emit a corrective signal in
case of disapproval, which will prevent the execution ofgtheposed action and trigger a new choice from the
controller. The human-machine interaction is shown oneiffteplart of figure 1.
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A binary error-related signal will be first provided througkeyboard interface. In future research, we plan
to use an equivalent BCI signal. This paper describes ouraetonomous navigation system and the related
controller able to drive the user to the desired location effecient way based solely on error signals. In
order to face incomplete knowledge and anticipate the taiogy inherent with the future brain computer in-
terface, the whole system and especially the controllepareabilistic and designed within a formal Bayesian
Programming framework.

In section 2, we will present related work. We will then déserour semi-autonomous concept and the
Bayesian controller in section 3. After showing some pralamy results in section 4, we will conclude by a
summary and an outlook about the future work.

2 Related work

2.1 Humans controlling robotic devices

There are numerous applicationssbfared-control strategie®r telemanipulated robots [8], surgical opera-
tions [16] and powered wheelchairs (review in [17]), which widely used robotic platforms for researches in
this field.

Robots and robotic wheelchairs can be distinguished by tajointomponents:

Motion decision A widely used technique is to take a decision given the sgrisformation and the user’s
commands usingayes’ ruleg5, 19]. Some systems [2, 23] usesami-autonomousamework, yet different
from our definition: the user provides to the robot a dirattior the next movement at each relevant posi-
tion in the environment. The TAO wheelchair [10] hasubsumptive reasonimgystem that allows the most
appropriate reactive behavior to emerge.

Motion generation Besides the purelseactive behaviorsf the TAO wheelchair, the are two main methods.
The behavior-basednotion generation matches sensory inputs to motor comm@i®&i20]. Theplanner-
basedone takes into account the vehicle’s kinematics and theosgrisputs to generate the best trajectory
leading to a provided or inferred goal [5].

In general, the user has significant control over the whedichut the user's commands are overridden
when a danger of collision is detected, thus forbidding theelchair to approach an obstacle even if wanted.
On the contrarygollaborative controbystems [9] use a dialog-based coordination strategy,extherrobot

evolves autonomously and asks the human for assistanceneeeied.

2.2 Human-machine interaction

Common input systems for human-machine interaction raraye keyboards, joysticks and touch screens up
to devices more adapted to disabled persons, like voice @ndneye-tracking or sip and puff systems [18, 23].

In recent years, a novel technology has been studied, namaly-computer interfaces (BCls). The non-
invasive, electroencephalography (EEG) based BClIs relyhendecoding of the brain activity in order to
manipulate robotic devices, virtual keyboards or more gar@mputer application [15, 22].

The work done by Ferrez and Malh [7] about the error potential is a recent addition to thailakle
decoded brain-commands for human robot interaction. Tbisrial indicates the human’s awareness of an
erroneous response made by the system when classifyingehétent. We will incorporate it into our system
in the course of our future research.

3 Novel semi-autonomous concept

3.1 Concept overview

Our semi-autonomous system is divided into different exténg layers, as depicted in figure 2.
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Figure 2: Scheme of the different layers and their relatioitkin the proposed semi-autonomous navigation
concept.

e Interaction Layer. This layer is in charge of the interaction between the huarahthe machine (de-
coding the user’s signals) and between the machine and tharh(providing a feedback of the system’s
status).

e Sensory Layer. This layer fuses in a probabilistic way multisensory imfiation in order to extract the
relevant features for the control of the system.

e Behavioral Layer. This layer implements a collection of a-priori or learneathaviors for dealing with
most navigational issues such as "corridor following”, ddéraversal” or "approaching a specific place”.

e Decision Layer. This layer is responsible of selecting the next best ben&viadopt, given the perceived
environment, the present used behavior and the signalsigdinam the user.

In the Sensory Layer, information coming from the robot'ssses are fused together into a Bayesian
occupancy grid providing an estimation of the obstacle pgék Out of this local map of the environment,
some basic features are extracted. As shown in figure 7b,répresent the directions and the associated
distances of the closest obstacles or of the middle of the thasersable space in three regions around the
robot: in front, on the left and on the right. We assume thatrtibot cannot go backwards. Some details about
the Interaction Layer and the feedback modalities are giveection 4. For a description on how the features
are associated to motor commands in a Bayesian way withiBehavioral Layer, please refer to [12].

After a presentation of the Bayesian programming framewank will describe in more detail the Deci-
sion Layer, starting with the implementation of an autonamoontroller and then enhancing it with semi-
autonomous capabilities.

3.2 Bayesian programming

The Bayesian programming framework (BP) [6, 12] has beeerldped for designing robust robotic systems
facing uncertain or incomplete knowledge. This framewadvjzles both formal and computational tools for
designing applications in a systematic way, as robot [4ah#]game programming [11] or CAD modeling [14].

1A behavior is a learned sensory-motor association [12].
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Figure 3: Structure of a Bayesian Program.

Sensor fusion with Bayesian occupancy grids, object trackinder partial occlusion and danger estimation
have also been done [4]. A Bayesian program, as representigdiie 3, is made up of two parts: a description
and a question.

Description. In the description part, we define all the known informatidiout the problem given a set of
experimental datd and preliminary knowledge. It represents a joint probability distribution specifigdthe
following components:

- A set of relevant variables (sensory, motor or internaestariables) on which the joint distribution is
defined.

- A decomposition of the joint distribution as a product ahpier terms, respecting the Bayesian rules.
- The parametric forms assigned to each of the terms appgeiarthe decomposition.

Question Given a distribution, it is possible to ask probabilistitegtions by partitioning the set of vari-
ables into "Search” (S), "Known” (K) and "Free” (F) varialsle

3.3 Autonomous Controller

Inspired from the work of Le Hy [11], we will describe our antamous controller by the following model in
the BP framework:

Relevant variables
F!: discretized distance features at timeomputed in the € [1, N;] regions around the robot;

Btand Bt : the set of different behaviors\, behaviors likeForward, turningLeft, turning Right
andStopping available at time¢ andt + 1.

The general task the robot has to accomplish for the presahy & to go where there is the most free space
until it cannot go further. That is the reason why we care @filgut the distances inside of the three regions
and not about the directions. Note that the discretizecéss, allocated in five classes, are not measured
metrically but are relative to each other by taking into actdhe surrounding traversable space.

Decomposition of the joint distribution  The resulting joint distribution is decomposed into prabghdis-
tributions according to the Bayes rules and some conditiodapendence assumptions explained later:

P(F} B! BY) =
P(B') P(B"™*|BY) [, P(F!|B™)

P(B?) represents the prior knowledge about the behaviors at #ept time. P(B'™!|B!) represents the
probability of keeping the same behavior or switching tothao TheP(F}|B'*1) terms link the features to
the choice of the next behavior. These distributions allewtausimplify the dependencies between features.
This so-called "inverse programming” method works in th@agite way as Finite State Machine, where the
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BT/ B' Stop Right Forward Left
Stop 025 010 010 0.10
Right 0.25 0.36 0.25 0.24

Forward 0.25 0.30 0.40 0.30
Left 0.25 0.24 0.25 0.36

Table 1. P(B'*1|B).

Front distance B'*' Stop Right Forward Left

Low 0.2 035 0.06 0.35
Mid low 0.2 0.32 0.15 0.32
Medium 0.2 011 0.20 0.11
Mid high 0.2 011 0.29 0.11

High 0.2 011 0.30 0.11

Table 2: P(Distance in front|Bt1).

selection of a behavior would depend on the combinationl é¢atures. Here, it consists in giving probabilities
to the system about how a particular feature should look likgependently from the others, if we choose a
given next behavior. Powerful and easily maintainables si@lection method only adds one probability table
for each new feature, which reduces the computational cexitpl[11].

Forms and identification Al probability distributions are given as tables, excét3*) which is a uniform
distribution over all the behaviors. This is because we havea priori information about this value when
building the model. The content of the tables is set a pripthie programmer for the simple example shown in
section 4 and no identification phase took place. We wantdhetito drive towards the most free space until it
cannot go further. More complex applications may requiegriang techniques in order to capture probability
distributions that reflects the desired robot’s generabbrtur [11].

Table 1 shows the transition probabilities between the \deta (P(B!*!|B)). One can see that the
probability of staying in the same behavior is the highest @rat when turning, there is a higher probability
to return toForward than turning in the other direction. Note that each columtheftables sums up to 1, as
needed by the Bayes’ rules.

Table 2 is an example of a probabilistic table describingrfigence of a distance measuie(}|B!*1)).
The column corresponding to tiferward behavior should be read as follows: given that the choseaviah
is Forward, there is a high probability that the distance in front of theot is between medium and high.
Similarly, if the robot chose to gbeft (or Righf), there is a high probability that an obstacle is relativa@bse
in front.

The question we ask to the Bayesian progra? ($‘!|F} B'), i.e. what is the next behavior given the
present behavior and features. The Bayesian program fautiemomous controller is summarized in figure 4.
This controller is able to drive the robot towards the mosefspace without taking into account the user’s
destination.

3.4 Semi-Autonomous Controller

We will now present the modifications made to the previoudrodier for converting it into a semi-autonomous
controller where the human can interact with the robot.

The human user generates monitoring signals whenever tbaauy of the robot needs to be restricted.
As the monitoring signal is related to an error signal, we adad the notion of behavior’'s authorisation to the
autonomous controller. The recognition of an error signalil prevent the execution of the corresponding
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Relevant variables:
F!: discretized distance features
Bt, Bt . the set of current and
next behaviors
Decomposition:
P(F! B**1 BY) =
P(B") P(B*!|B") [[;, P(F}|B"")
Forms:
P(B?) : uniform distribution
others : probability tables
No identification (tables given)
Question:
(B |EY, BY)

Description
Specification

Program

Figure 4: Autonomous controller described in the BP forsrali

Authorisation Forward B*¥!  Stop Right Forward Left
0 0.5 0.5 0.0 0.5
1 0.5 0.5 1.0 0.5

Table 3: P(Authorisation Forward|B'*1).

selected behavior, therefore reducing the set of availablaviors. Given this additional information, the
Bayesian controller will be asked for a new solution, cquaexling to the next best behavior.

In other terms, the user has to authorise the behavior peopbg the controller. In our probabilistic
formulation, this notion of behavior authorisation copesds to additionaA§ boolean variables, one for each
possible behaviorA’, = 1 means that thg*" behavior is authorised at time A = 0 meaning the contrary.
The influence of th94§ terms on the choice of the behavior will be described in podisdic tables of the form
P(A!|B'*1), as the example given in table 3. One can see that the auttionigor theForward behavior has
no influence on the other behaviors (probability of 0.5 irhbzases) but that it strictly allows (probability of 1)
or prohibits to go forward.

Figure 5 shows a comparison between two controller outpiogstirst one without any restriction regard-
ing the authorised behaviors and the second one after tleessing of a user-generated error signal. The
authorisation is then reset to 1 after a fixed time or afteettexution of the allowed behavior.

The resulting version of the Bayesian controller for ourgmeed semi-autonomous navigation system using
monitoring signals is described in figure 6.

P(BMosem)  Stop Right Forward  Left
Alg=1 0.02443 0.2043€ 0.76636 0.00485
Ala=0 0.10458 0.87468 0.00000 0.02074

Figure 5: Comparison between two controller's output whekireg P(B*=") = P(B'*!|F!, B, Al = {1}),

k € {Stop, Right, Lef}, using a set of features coming from experimental data. Wtjgn= 1, all behaviors
are authorised; the selected behavidfasward. WhenAf,, = 0, theForward behavior has been forbidden;
the selected behavior Right
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Relevant variables:
F}! . discretized distance features
Bt, B**! . the set of current and
next behaviors
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P(F! B Bt Al) =
P(B') P(B*|B") [}, P(F}|B'*")
[ P(AY|BHY)
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Figure 6: Semi-autonomous controller described in the BRdism.

@ Robot

= Directions
- -~ Zone b\oundaries

(b)

Figure 7: (a) The Smartease Robot equipped with the Hokuysaseand feedback capabilities. (b) Example
of Bayesian occupancy grid with features superimposed(gesy: occupied, light grey: unknown, white:
empty).

4  Preliminary results

The semi-autonomous navigation (SAN) system was impleadeand tested on an real robotic platform. The
Smartease Robot, depicted on figure 7a, is a differentia&anobile platform designed for educational pur-
poses [3]. A Hokuyo PBS-03JN infrared range-finder was usaghé&jue input sensor (99 values covering a
field of view of 180 and ranging up to 3 meters [1]). The robot is covered with s#\eEDS, three of them,
placed in front and on the two sides, giving a feedback of tharoller’'s choice to the human user. Once
the human user disagrees with this choice, he presses a keydoan error signal. An example of the robot
sensory information and the extracted features is predémfegure 7b.

We designed three experiments in order to show progregdifiel capabilities of our SAN system. We
recorded 50 trials for each experimental condition and twnpared the duration of each trial and the num-
ber and nature of the user interventions. The translatiandlrotational speed limits were the same for all
conditions.
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Figure 8: (a) Maze-like environment for experiments A andaBaphical representation of the paths for Exp.
A (b) and B (c). A squarél indicates where the user provided an error signal to thesyand a star * where
he provided a direction.

4.0.1 Experiment A

A maze-like environment (figure 8a) is used for experimenhAiider to show the resulting general behavior
of the SAN system when driving alone with no user interven{gimilar as in figure 4).

The result corresponds to our expectations: the robot goays where there is the most free space (fig-
ure 8b).

4.0.2 ExperimentB

Within the same environment as for Exp. A, the second exparin(Exp. B) compares our SAN with user
interventions (figure 6) to an original SAN (i.e. a directiergiven at each place of interest) when solving a
simple navigational task, represented here as a sequeptaces to visit: B-N-O-C-D-P.

As represented in figure 8c, the task is solved by our SAN Bydétea similar amount of time (table 4a,
Student’s t-test for independent sampleés; = —0.9364, p > 0.05) as with an original SAN method, an
important characteristic for validating a new concept.

A particular advantage of the proposed system lies in theuatrend nature of commands required from the
user. While the original SAN requires six interventions (&mes a minimum of two bits), the new approach
requires an average of four binary error signals. The etprnivaf a three-fold decrease of the information
requirement may be of importance when dealing with simplerfaces (e.g. sip and puff systems) or low
throughput interfaces (e.g. BCIs). Note that at certaiarsgctions, the user may have to provide several error
signals (e.g. location O). This is explained as follows: wkiee robot is in situation O, facing P, and receives
an error signal, it turns right. But as it turns, the featweesponding to the left side of the robot increases and
becomes dominant, because it started to see a wall folloywéuElfree space in direction of P, thus making the
robot suddenly turn left. In order to go towards C, the usartbarovide an additional error signal. Due to the
imprecisions of the sensor and the Bayesian nature of theatlen, the robot doesn’t take twice the absolute
same path, thus explaining the difference of time to comeple¢ task and the number of user interventions.
Using a short-term memory for saving the local environmegether with the corresponding decision should
overcome these problems.

4.0.3 ExperimentC

In this experiment, the robot has to go from a start posit®)rt@ a goal position (G) through two possible paths,
the second one (Il) being shorter (figure 9a). The robot @gfirst autonomously using our SAN system and
finds its way from S to G; then, in a second experimental camithe user can provide monitoring signals
(figure 9b). As can be seen in table 4b, there is a probabifiighout 50% that it takes the longer path |
if the user does not intervene (actually, the robot wentethirmes more through path | than Il over the fifty
trials). This shows that there is no predefined preferregttion when facing a left/right choice with equivalent
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(@) (b)

Figure 9: (a) Experimental environment for experiment @ pessible ways for going to a same goal location.
(b) Graphical representation of the paths. The squaralicates where the user provided an error signal.

Condition Time [s] User interventions
mean std. dev. mean  std. dev.

Original SAN 46.4 1.4 6 0
SAN with error signals| 49.5 3.0 4.0 0.9

(a)
Condition Time [s] Percentage

mean std. dev.

SAN driving alone, path | 46.0 2.9 56
SAN driving alone, path Il 37.4 3.4 44
SAN with error signals, path 1| - - 0
SAN with error signals, path Il 36.9 2.0 100

(b)

Table 4: Numerical results for experiments B (a) and C (b)tr&#s were recorded for each experimental
condition.
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corresponding features. If the user provides an error kighen the robot is willing to take the path I, the path
Il is selected as only alternative for completing the tasks to mention that for this particular environment at
most one error signal per trial is needed. The human-madhiaection allows to optimise the task because
of the human’s knowledge included in the decisional prockesng the semi-autonomous robot choose the
optimal trajectory as shown in table 4b.

5 Conclusions and outlook

In this paper, we presented a novel concept for semi-autonemavigation and illustrated the strength of the
approach using preliminary experimental results. Withengroposed concept, the robot evolves autonomously
and the human user provides only monitoring signals wheessegy. Contrary to prior work in the field of
semi-autonomous navigation, these signals are not intetadlee directional control commands, but they are
related to the evaluation of the performance of the robagidab. Thus, our concept provides a reduced and
simplified human-machine interaction and has significanglger applicability for non-trained humans.

Using a well-defined Bayesian Programming formalism, weidles the composition of our general semi-
autonomous framework giving a special focus to the procésaking decisions in interaction with the en-
vironment and with the human. The proposed approach addguees the monitoring signals in order to
efficiently bring the robot to the desired destination, withrequiring sustained involvement from the human
user. The BP formalism also unifies the way of dealing withuheertainties of the perceived environment
and of the inferred human’s desired action. Furthermorejritegration of the uncertainties due to the future
human-machine interaction is made easier, as the EEG siglzasifier we will use in the next stages of this
research delivers a probability of having recognised aorsignal [7].

Experimental results showed that the proposed semi-antous system has similar performances com-
pared to full robot control in terms of completion and contipie time of a navigational task, while requiring
less information from the user. Furthermore, the humanhinadnteraction may exploit the user’s knowledge
to guide the decisions in ambiguous situations (i.e. clmpketween path | and Il in experiment C using only
the robot’s local sensory information).

The future improvements of the semi-autonomous Bayesiatialter include the teaching of the probabil-
ity tables to the robot by driving it through the environmand showing it how to behave in order to overcome
their actual manual filling [11, 12]. The addition of a sht@tm memory should allow to be consistent in the
chosen behaviors and overcome some contradicting desia®exposed in experiment B. We will also test our
system in complexer environments with more than threeradteres.

In the present implementation decisions are taken basedcahdensory readings and no learning occurs
when there is an error signal. This can be improved by endpthia system with spatial reasoning capabilities.
Thus, when navigating in frequently explored environmdetg. user’s apartment), the robot can build a
representation of the environment and learn transitiomgidities between places at each human-machine
interaction [21], depending on contextual informatiorelike user habits, the time of the day or other external
variables. Hence, acquiring relevant information aboustpoobable actions given a particular location that
can be directly integrated onto the Bayesian reasoningisyst
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