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Abstract. In this work we analyze and combine evidences from different classifiers for phoneme
recognition using information from the confusion matrices. Speech signals are processed to extract
the Perceptual Linear Prediction (PLP) and Multi-RASTA (MRASTA) features. Neural network
classifiers with different architectures are built using these features. The classifiers are analyzed
using their confusion matrices. The motivation behind this analysis is to come up with some ob-
jective measures which indicate the complementary nature of information in each of the classifiers.
These measures are useful for combining a subset of classifiers. The classifiers can be combined
using different combination schemes like product, sum, minimum and maximum rules. The signif-
icance of the objective measures is demonstrated in terms the results of combination. Classifiers
selected through the proposed objective measures seem to provide the best performance.
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1 Introduction

In Automatic Speech Recognition (ASR) an important objective is to obtain information about the un-
derlying phoneme sequences from the acoustic signal. For this, the acoustic signal is first transformed
into a sequence of feature vectors using different representations of speech signal like Mel-Frequency
Cepstral Coefficients (MFCCs), Perceptual Linear Prediction (PLP) and Multi-RASTA (MRASTA)
schemes [1–3, 13]. The extracted features are then used for building classifiers, and these classifiers
are used for recognizing the phonemes. The performance of the classifiers depends both on the type
of feature selected, and also on the approach taken for building the classifier. However, in practice, it
is observed that any one type of feature or approach for building a classifier may not yield the best
performance. Attempts have been made to build multiple classifiers for the same acoustic signal using
different features and classifiers and then combine them to obtain a better classifier. It is known that
careful choice of features and individual classifiers may yield better performance than the individual
classifier [4–6]. To choose the individual classifiers, one thumb rule is to group only those classifiers
which have complementary information. How to know the complementary nature of information in
the classifier? One immediate answer is to select features obtained from different signal processing
methods and/or classifiers [7].

Alternatively, if we are given only a set of classifiers, is it possible to derive some objective measures
to indicate the complementary nature of information among the selected subset of classifiers? This
may help us in selecting a subset of classifiers without having to know the details of the classifier. We
believe that the confusion matrix may provide valuable information for detecting the complementary
nature of information present in a set of classifiers. The objective measures derived helps us to take
decision to include or not an individual classifier for obtaining the combined classifier. The rest of
the paper is organized as follows: Section 2 describes the different classifiers used in the present work.
These include one frame PLP, nine frame PLP, MRASTA and context based phoneme classifiers [7].
Section 3 describes the analysis of the confusion matrices from different classifiers from the point of
phoneme recognition performance. Objective measures are proposed for measuring the complementary
information. Section 4 describes the selection of a subset of classifiers using the proposed objective
measures. The effectiveness of the proposed objective measures is demonstrated in terms of the
performance of the combined classifier. The work is summarized in Section 5, and scope for future
work is discussed in this section.

2 Classifiers for Phoneme Recognition

2.1 Database

We have used TIMIT speech database for this study [8]. It consists of speech from 630 speakers,
out of which 438 are male and 192 are female speakers. Each of the speakers have spoken 10 speech
sentences, out of which 2 sentences are common across all the speakers. Therefore, in total we have
6300 sentences, and out of this about 70% of the data is used for training, and rest is used for testing.
To avoid biasing during training and testing, the common sentences are removed from the database,
and hence we are left with 5040 speech utterances, out of which 3696 speech utterances are used for
training, and 1344 are used for testing. The TIMIT database is hand labeled using 61 phonetic labels,
and are merged into 39 labels in the present work as discussed in [9,11]. The label representing silence
region /sil/ is not used in evaluating the classifier, since it occurs maximum number of times, and
hence is well trained. Thus we are left with 38 classes for the study. We are building 39 class classifier,
but using output only from 38 classes for further analysis and combining.

2.2 One Frame PLP (PLP-1) based phoneme recognition system

Speech signal is processed by the PLP analysis in frames of 25 msec with a shift of 10 msec to extract
13 PLP based cepstral coefficients, and their first and second order derivatives for each frame. Thus
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we have feature vectors of 39 dimension for building the phoneme classifier. A Multi-Layer Perceptron
(MLP) of three layers with dimensions 39:1000:39 is trained using the PLP feature vectors extracted
from the 3696 speech utterances [12]. The trained MLP is tested using 39 dimension feature vectors
extracted from the 1344 test speech utterances. The trained MLP gives posterior probabilities for each
of the 39 classes, which are then decoded in the hybrid HMM/ANN approach to find the phoneme
sequences [11]. The phoneme recognition performance of the system is given in Table 1. The average
phoneme recognition accuracy given in the table is computed using the relation

R(%) = (1 − (I + S + D)/N) × 100 (1)

where, R is the average phoneme recognition accuracy, I, S,D and N are the total number of insertions,
substitutions, deletions and actual phoneme examples, respectively, across the 38 classes for all the
testing speech data.

2.3 Nine Frame PLP (PLP-9) based phoneme recognition system

To improve the performance of the phoneme recognition system, one approach followed is to exploit
the context information by training the neural network for each frame using context of a few frames
and in the present work a context of 9 frames is used [3,7]. The motivation for this approach is that,
the neural network not only adjusts the weights according to the spectral information available in the
current frame, but also according to the spectral information available in the adjacent frames. The
network structure used is 351:1000:39. The input dimension 351 is due to nine frames (39 × 9). The
phoneme recognition performance of the system is given in Table 1. As it can be observed, the PLP-9
classifier shows a significant improvement in performance compared to PLP-1 classifier.

2.4 MRASTA based phoneme recognition system

Multi-RASTA features also have been proposed as robust features for ASR tasks [3]. Since they are
derived over long term temporal trajectories, they exhibit robustness to channel distortions. Recently
it is also demonstrated that MRASTA has complementary information compared to the PLP features
[7]. Hence classifiers can also be built using MRASTA as features. The speech signals are processed in
frames of 25 msec with a shift of 10 msec to extract 19 critical band energies for every 10 msec. The
critical band energies are temporally filtered by a set of 16 first and second order Gaussian derivatives.
The 16 filters differ in the temporal resolution achieved by varying the width/spread of the Gaussian
function [11]. The temporally filtered sequences are then subjected to first order frequency domain
filtering. In this way we will have 576 (16 × 19 + 17 × 16) features for every 10 msec. The MLP
of structure 576:1000:39 is trained using the MRASTA features derived from the training data. The
phoneme recognition performance of this system is given Table 1. The performance of MRASTA
is significantly better than the PLP-1 case, but lower than the PLP-9 case. However, as it will be
demonstrated later, since it is built using different feature compared to PLP, it pairs up well with
other classifiers to provide improved performance in the combined system.

2.5 Context-based Phoneme recognition system

When we consider PLP-9 based phoneme recognition system, the PLP features are extracted from all
the frames of the given phoneme speech, and the MLP is trained. Some phonemes may have longer
duration and different acoustic characteristics at different locations, and hence training only one MLP
by using all the frames may not able to effectively capture all the information present in each phoneme.
Alternatively, each phoneme duration may be divided into three equal regions, one indicating the left
context of phoneme, the second indicating the right context and the third representing the middle
context. Separate models may be trained for each context, and the evidences may be further combined
to obtain phoneme class [10, 11]. Three MLPs with structure 351:1000:39 are trained. The evidence
available at the output of each classifier are then merged to get phoneme evidence in a nonlinear
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fashion using another MLP of dimension 120:3000:39. The phoneme recognition performance of this
system is given in Table 1. As it can be observed from the table, this classifier provides slightly
improved performance over PLP-9 classifier.

Table 1: Phoneme Recognition Performance of Different Phoneme Classifiers. In total there are 42557
phoneme examples (N) in the testing data for the 38 classes considered. In the table the abbreviations
A, I, D and S indicate the number of phonemes detected, inserted, deleted and substituted and R
indicate the phoneme recognition accuracy.

Type of A I D S R
Classifier

PLP-1 27747 1388 5821 8989 61.94%
PLP-9 30111 1500 4686 7760 67.23%
MRASTA 29126 1798 4884 8574 64.22%
CONTEXT 31168 2226 3578 7811 68.01%

3 Analysis of Confusion Matrix

Complementary information may be available in terms of features and/or classifiers. If we have access
only to the classifier outputs, then how to select a subset of classifiers for combination? The output
of the classifier in the form of confusion matrix provides valuable information to indicate its behavior
with respect to the classification task. We may also find some relation between the two classifiers by
visually comparing their confusion matrices. However, it will be nice to have some objective measures
obtained from the confusion matrix, which can give information about the classifier and also pair of
classifiers. Some objective measures may be derived for each classifier, and also for a pair of selected
classifiers. In this work, the objective measures which indicate information about the properties of a
given confusion matrix are termed as Intra-Confusion Objective Measures, and those which indicate
about properties of a pair of confusion matrices are termed as Inter-Confusion Objective Measures.

3.1 Intra-Confusion Objective Measures

3.1.1 Classification Accuracy

The classification accuracy of a classifier can be measured as the ratio of the sum of principal diagonal
values to the total sum of values in the confusion matrix. If C indicate the confusion matrix, the
classification accuracy Ac can be defined as

Ac =

∑N

i=1
Cii∑N

i=1

∑N

j=1
Cij

(2)

where N is the number of rows or columns in the confusion matrix. For given task, the classifier
should have as high values of Ac as possible. Since this seldom happens in practice, classifiers with
higher values of Ac are preferred. This is desirable, if you want to select the best classifier for grouping.
Alternatively, if you want to choose more than one classifier for further combination, then other factors
also need to be considered.

3.1.2 Individual Class Accuracy Variance

The classification accuracy Ac gives information only about the average performance of the classifier.
It is possible that relatively high value of Ac is due to very high accuracy among some classes, and
very low among some other classes. However, what is desirable from the classifier is, it should provide
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high accuracy for all classes or at least the performance for all classes should be around the mean
value Ac. This information can be obtained by computing the individual class accuracy variance. If
Vc indicates the individual class accuracy variance, then it can be defined as

Vc =
N∑

i=1

(
Cii∑N

j=1
Cij

− Ac)
2 (3)

Thus a classifier with lowest variance for individual class accuracy is desirable in practice.

3.1.3 Weighted Confusion Index

In an ideal condition, there should not be any confusion among different classes. However, as the
name of the matrix indicates, there will be always confusion among different classes, and are indicated
by non-zero off diagonal entries. The summation of non-zero off diagonal elements weighted by the
maximum value (excluding the principal diagonal element) in each row gives an average information
about the confusion pattern exhibited by the classifier. The weighted confusion index Ic can be defined
as

Ic =
N∑

i=1

N∑

j=1

Cij

max{Cij}
fori 6= j (4)

In the ideal condition Ic will be zero. However, in practice, a classifier with Ic value as low as possible
is desirable.

3.1.4 Symmetric Class Confusion Difference

As mentioned earlier, there will be confusion among classes. However, for a given classifier the
confusion may have some regular structure. For instance, most of the examples of class i may be
confusing with j, and vice versa. Even though, such confusions are high, they can easily be merged
or train the classifier better by using additional information in the feature space, which distinguishes
the two classes. The classifier confusion behavior may therefore be computed by neglecting such high
numbers. One easy way is to consider the absolute difference between the ith row and column, and
sum them. By doing this, we will be computing the difference among the classes which are symmetric
to the principal diagonal, and hence this measure is termed as symmetric class confusion difference
(Dc). It may be defined as

Dc =

N∑

i=1

N∑

j=1

|Cij − Cji| (5)

By the way of computing, the high values which may be present among the symmetric classes will be
minimized, and hence a classifier with lower value of Dc is preferable in practice.

3.2 Inter-Confusion Objective Measures

3.2.1 Dissimilarity of Confusion Patterns

From the combination point of view, the two confusion matrices which have relatively less similarity
among the confusion patterns are preferred. This is because, if one classifier confuses, other should
not, then only they can aid each other to reduce confusion, when they are combined. A measure
can be computed for the same by considering respective rows in the two confusion matrices, which is
termed as dissimilarity of confusion patterns. The ith row of the confusion matrix Cx is compared
with the ith row of the confusion matrix Cy by using the correlation coefficient. Since the maximum
value for the correlation coefficient is unity, the similarity value subtracted from unity should give a
measure about the dissimilarity of the two patterns. This value accumulated over all the rows will
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give a measure of dissimilarity of confusion patterns. If Dxy indicates the dissimilarity measure of
confusion patterns, then it can be defined as

Dxy =

N∑

i=1

1 −
Cv(Cx

i , Cy
i )

Sd(Cx
i )Sd(C

y
i )

(6)

where, Cv is covariance, and Sd is standard deviation. If the two confusion patterns for comparison
are exactly similar, then the correlation coefficient will be unity, then Dxy will be zero. Accordingly,
we desire a higher value for Dxy. Hence a classifier pair X and Y having relatively more value for
Dxy is preferred for combination.

3.2.2 Distance of Confusion Patterns

From the combination point of view, two confusion matrices which have relatively more distance
among the confusion patterns are preferred. This is because, if the distance is large, then it indicates
that the patterns are not close in the confusion space, and hence when they combine, they may be
minimized, provided suitable combination scheme is used. A measure can be computed by considering
respective rows in the two confusion matrices, which is termed as distance of confusion patterns. The
Euclidian distance between the ith row of the confusion matrix Cx and the ith row of the confusion
matrix Cy is computed and accumulated over all the rows which will give a measure of the distance of
confusion patterns. If Exy indicates the distance measure of confusion patterns, then it can be defined
as

Exy =

N∑

i=1

N∑

j=1

(Cx
ij − Cy

ij)
2 (7)

If the two patterns are at the same place in the confusion space, then their Euclidian distance will
be zero. Hence, from the combination point the distance between the confusion patterns measured in
terms of Exy should be as high as possible.

3.2.3 Binary Difference in Confusion Patterns

From the combination point of view, the difference in confusion pattern between the two confusion
matrices should be as high as possible. This is because, it indicates that the two classifiers are
different or have different features employed for classification. Hence we may get maximum benefit
by combining such classifiers. This can be computed by first converting the given confusion matrices
into matrices having only zeros and ones as entries. This is to make sure that the actual values are
not important, but only the distribution of their pattern. After this, the difference between the two
confusion matrices is taken to find out how different the two matrices confusion pattern. If Cxb and
Cyb are the modified matrices of Cx and Cy having only ones and zeros as entries, and Pxy indicates
the confusion pattern between the two matrices, then it can be defined as

Pxy =
N∑

i=1

N∑

j=1

(Cxb
ij − Cyb

ij ) (8)

As per the design of the measure, the two confusion matrices having relatively maximum Pxy are
preferred for combining.

4 Selection of Classifiers and Combining Evidences

The intra-confusion objective measures defined in the earlier section are computed for the four classi-
fiers described in Section 2 and are listed in Table 2. The inter-confusion objective measures defined
in the earlier section computed for the different classifier pairs are listed in Table 3.
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Table 2: The intra-confusion objective measures computed for the confusion matrices of different
phoneme classifiers. The abbreviations Ac, Vc, Ic and Dc indicate classification accuracy, individual
class accuracy variance, weighted confusion index and symmetric class confusion difference, respec-
tively.

Type of Ac Vc Ic Dc

Classifier

PLP-1 63.14% 1.54 114.00 7870

PLP-9 68.52% 0.82 118.32 5132

MRASTA 66.28% 0.91 130.03 5558

CONTEXT 69.60% 0.70 118.65 5430

Table 3: The inter-confusion objective measures computed for the confusion matrices of different
pair of classifiers. The abbreviations Dxy, Exy and Pxy indicate dissimilarity of confusion patterns,
distance of confusion patterns and binary difference in confusion patterns, respectively.

Type of Dxy Exy Pxy

Classifier

PLP-1 & PLP-9 2.09 8.71 280

PLP-1 & MRASTA 2.47 10.13 327

PLP-1 & CONTEXT 2.89 10.19 309

PLP-9 & MRASTA 2.56 11.59 309

PLP-9 & CONTEXT 1.80 7.85 265

MRASTA & CONTEXT 3.33 13.25 336

From the point of view of selection of individual best classifier, the intra-confusion measures Ac,
Vc, Ic and Dc are preferred. The classifier which gives highest rank for majority of these measures
may be chosen as the best classifier. Accordingly, if we observe Table 2, the first best classifier is
the CONTEXT classifier, the second best is PLP-9, the third best is MRASTA and the last one is
PLP-1. Alternatively, when we go for combining the classifiers, then apart from the above measures,
we also have to obtain their values for inter-confusion measures Dxy, Exy and Pxy as given in Table 3.
The classifier pair which gives highest rank for majority of these measures may be chosen as the best
classifier pair for further combination. As it can be observed from the Table 3, the best classifier team
will be formed using MRASTA and CONTEXT, which is guaranteed to provide the best performance
compared to all other classifier teams.

We have combined different classifier teams using simple combination schemes like product, sum,
minimum and maximum schemes [4–6]. The combined classifier system results are given in Table 4.
As it can be observed from the results, the classifier formed using MRASTA and CONTEXT yields
the best performance, immaterial of whatever the combination used for constructing the combined
classifier.
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Table 4: The performance of different classifier teams under different combination schemes. The
entries in the table are expressed in percentage (%). The abbreviations P , S, Mi and Mx indicate
product, sum, minimum and maximum combination schemes, respectively.

Type of P S Mi Mx

Classifier

PLP-1 & PLP-9 66.22 66.54 66.86 65.96

PLP-1 & MRASTA 66.82 66.44 67.31 65.52

PLP-1 & CONTEXT 66.59 67.54 67.80 67.08

PLP-9 & MRASTA 68.25 68.47 68.95 67.76

PLP-9 & CONTEXT 67.34 68.83 68.77 68.44

MRASTA & CONTEXT 68.75 69.25 69.54 68.77

5 Summary and Conclusions

The objective of this work was to analyze the confusion matrices of different classifiers and come
up with some objective measures which help in selecting a best subset of classifiers for combination.
Accordingly a set of intra-confusion and inter-confusion objective measures are proposed. Using
the proposed objective measures a subset of classifiers namely MRASTA and CONTEXT from the
whole set is chosen. It is experimentally demonstrated that this pair provides the best performance,
immaterial of the combination scheme used.

As it can be observed from the experimental results, the improvement due to combination is
not very significant. This is because our objective was only to analyze and develop some objective
measures and we have made no attempt to optimize individual classifiers. A careful effort in this
direction may further improve the performance of the combined system significantly.
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