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Abstract. The modulation spectrum is an efficient representation for describing dynamic infor-
mation in signals. In this work we investigate how to exploit different elements of the modulation
spectrum for extraction of information in automatic recognition of speech (ASR). Parallel and
hierarchical (sequential) approaches are investigated. Parallel processing combines outputs of
independent classifiers applied to different modulation frequency channels. Hierarchical process-
ing uses different modulation frequency channels sequentially. Experiments are run on a LVCSR
task for meetings transcription and results are reported on the RT05 evaluation data. Processing
modulation frequencies channels with different classifiers provides a consistent reduction in WER
(2% absolute w.r.t. PLP baseline). Hierarchical processing outperforms parallel processing. The
largest WER reduction is obtained trough sequential processing moving from high to low modu-
lation frequencies. This model is consistent with several perceptual and physiological studies on
auditory processing.
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1 Introduction

Conventional speech recognition features are based on short-time Fourier transform (STFT) of short
(20-30 ms) segments of speech signal. STFT is able to extract instantaneous levels of individual
frequency components of the signal. The information about the spectral dynamics is typically carried
in so called dynamic features, representing temporal differentials of the spectral trajectory at the given
instant.

An alternative is to use long segments of spectral energy trajectories obtained by STFT i.e. the
modulation spectrum of the signal (see [1],[2]). Several studies have been carried out to evaluate the
importance of the different parts of the modulation spectrum for ASR applications [3] showing that
frequency range in between 1-16Hz with emphasis on 4 Hz is critical for speech recognition. However
in those work, modulation frequencies have been studied with uniform resolution.

The use of multiple resolution filter-bank in ASR has been addressed in [4]. Filter-bank consists
of a set of multi-resolution RASTA filters (MRASTA) with constant bandwidth on a logarithmic
scale and is qualitatively consistent with model proposed in [5]. Other studies that consider multiple
resolution modeling with Gabor filters includes [6] and [7]. All those works used a single classifier for
the whole range of modulation frequencies.

Some studies suggest processing of modulation spectrum in separate frequency channels. Thus, [8]
observes that different levels in the hierarchy of auditory processing emphasize different segments of
modulation frequency range, the higher processing level emphasizing lower modulation frequencies.

This paper investigates if there is any advantage in ASR in processing different parts of the
modulation frequencies in separate frequency channels. Further we also study if the different parts of
the modulation spectrum should be processed in parallel or sequentially (hierarchically). An Artificial
Neural Network classifier (NN)(the feed-forward Multi-Layer Perceptron) is applied for estimating
phonemes posterior probabilities.

We limit our investigation to only two separate modulation frequency channels that consider
respectively high and low frequencies.

The parallel processing uses a separate NN classifier for high and low frequencies. Classifiers
outputs are then combined together using a merger neural network in order to provide a single phoneme
posterior estimates . This topology is depicted in figure 3.

The hierarchical processing uses a hierarchy of classifiers that incorporates sequentially different
modulation frequency bands at different processing levels. This architecture is similar to the one we
proposed in [9] for incorporating different feature sets trough a hierarchy of neural networks and it
is depicted in figure 4. Hierarchical classifiers are very common in the field of computer vision and
recently some studies have been proposed on their application to simple phoneme recognition task [7].

We study the ASR performance on Large Vocabulary Conversational Speech (LVCSR) task for
transcription of meetings. Training data consists in 100 hours of meetings and results are reported on
RT05 evaluation data. The paper is organized as follows: in section 2 we describe multiple resolution
RASTA filtering (MRASTA), in section 3 we describe data and system used for experiments, in sections
4 and 5 we describe respectively parallel and hierarchical processing of modulation frequencies with
results on RT05 evaluation data and in section 6 we discuss conclusions on this work.

2 MRASTA processing

In this section, we describe MRASTA filtering [4] which has been proposed as extension of RASTA
filtering. MRASTA filters extract different modulation frequencies using a set of multiple resolution
filters.

Feature extraction is composed of the following parts: critical band auditory spectrum is extracted
from short time Fourier transform of a signal every 10 ms. A one second long temporal trajectory in
each critical band is filtered with a bank of band-pass filters. Those filters represent first derivatives
G1 = [g1σi

] (equation 1) and second derivatives G2 = [g2σi
](equation 2) of Gaussian functions with
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Figure 1: Set of temporal filter obtained by first (G1 left picture) and second (G2 right picture) order
derivation of Gaussian function. G1 and G2 are successively split in two filter bank (G1-low and
G2-low, dashed line) and (G2-high and G2-high continuous line) that filter respectively high and low
modulation frequencies.
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Figure 2: Normalized frequency response of G1 (left picture) and G2 (right picture). G1 and G2 are
successively split in two filter bank. G1-low and G2-low (dashed lines) emphasize low modulation
frequencies while G1-high and G2-high emphasize high modulation frequencies

variance σi varying in the range 8-130 ms (see figure 1). In effect, the MRASTA filters are multi-
resolution band-pass filters on modulation frequency, dividing the available modulation frequency
range into its individual sub-bands.

g1σi
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i
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with σi = {0.8 , 1.2 , 1.8 , 2.7 , 4 , 6}.

Unlike in [4], filter-banks G1 and G2 are composed of six filters rather than eighth, leaving out the
two filters with longest impulse responses. In the modulation frequency domain, they correspond to a
filter-bank with equally spaced filters on a logarithmic scale (see figure 2). Identical filters are used for
all critical bands. Thus, they provide a multiple-resolution representation of the time-frequency plane.
Additionally, local frequency slopes are computed at each critical band by frequency differentiation
over the three neighboring critical bands (for details see [4]). Thus the feature vector is composed of
336 components. The resulting multiple resolution representation of the critical-band time-frequency
plane is used as input for a Neural Network that estimates posterior probabilities of phonetic targets.
Phoneme posterior probabilities are then transformed using TANDEM scheme [10] (i.e. according to
a Log/KLT transform) and used as features in conventional HMM based system, described in the next
section.

Filter-Banks G1 and G2 cover the whole range of modulation frequencies. We are interested in
processing separately different parts of the modulation spectrum and we limit the investigation to two
parts. Filter-Banks G1 and G2 (6 filters each) are split in two separate filter bank G1-low, G2-low and
G1-high and G2-high that filter respectively high and low modulation frequencies. We define G-high
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Figure 3: Parallel processing of modulation spectrum frequencies.

Figure 4: Hierarchical processing of modulation spectrum frequencies. Contrarily to parallel processing
the order in which modulation frequencies are processed matters.

and G-low as follows:

G-high = [G1-high,G2-high] = [g1σi
, g2σi

] (3)

with σi = {0.8 , 1.2 , 1.8}

G-low = [G1-low,G2-low] = [g1σi
, g2σi

] (4)

with σi = {2.7 , 4 , 6}

Filters G1-high and G2-high are short filters (figure 1 continuous lines) and they process high mod-
ulation frequencies (figure 2 continuous lines). Filters G1-low and G2-low are long filters (figure 1
dashed lines) and they process low modulation frequencies (figure 2 dashed lines). We present in the
following experiments to asses if their combination should happen in parallel or sequential fashion.

Features PLP MRASTA G-high G-low Comb G-high/G-low Hier G-high to G-low Hier G-low to G-high
WER 42.4 45.8 45.9 50.0 41.4 40.0 45.8

Table 1: Summary of RT05 WER for all experiments.

3 System description

Experiments are run with the AMI LVCSR system for meeting transcription described in [11]. The
training data for this system comprises of individual headset microphone (IHM) data of four meeting
corpora; the NIST (13 hours), ISL (10 hours), ICSI (73 hours) and a preliminary part of the AMI
corpus (16 hours). Acoustic models are phonetically state tied triphone models trained using stan-
dard HTK maximum likelihood training procedures. The recognition experiments are conducted on
the NIST RT05s [12] evaluation data. We use the reference speech segments provided by NIST for
decoding. The pronunciation dictionary is same as the one used in AMI NIST RT05s system [11].
Juicer large vocabulary decoder [13] is used for recognition with a pruned trigram language model.

Table 2 reports results for the PLP plus dynamic features system and the MRASTA-TANDEM
system. Both these baseline feature sets are obtained by training a single Neural Network on the
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whole training set in order to obtain estimates of phoneme posteriors.

Features TOT AMI CMU ICSI NIST VT
PLP 42.4 42.8 40.5 31.9 51.1 46.8

MRASTA 45.8 47.6 41.9 37.1 53.7 49.7

Table 2: RT05 WER for Meeting data: baseline PLP system and MRASTA features

4 Parallel Processing

In the first set of experiments, a separate neural network for estimating phoneme posterior probabilities
is trained for each part of the modulation spectrum. Those outputs can be combined together to
provide a single phoneme posterior estimation. The process is depicted in figure 3.

In a first step the auditory spectrum is filtered with filter-banks G-high and G-low. This will
provide two representations of the auditory spectrum at different time resolutions. Two independent
neural networks are trained on high and low modulation frequencies; their output is recombined using
a neural network merger classifier. The merger neural network takes as input 9 consecutive frames
from previous neural networks. Final posterior distributions are transformed using the TANDEM
scheme for use in the LVCSR system.

Table 3 shows results for high and low modulation frequencies and for combination of high/low
frequencies.

Features TOT AMI CMU ICSI NIST VT
G-high 45.9 48.7 41.9 37.3 53.3 49.2
G-low 50.0 51.9 47.6 40.7 57.5 53.1

Combination 41.4 42.7 38.3 32.5 47.4 47.1

Table 3: RT05 WER for high, low modulation frequencies and combination

Features obtained using filter-bank G-high have the same overall performance of full MRASTA
filter-bank. However, features obtained using G-low have noticeably worse performance. The combi-
nation of high and low modulation frequencies using a merger classifier reduces WER by 4.4% w.r.t.
the single classifier scheme and outperforms by 1% the PLP baseline. This experiment shows that
separate processing of different modulation frequency channels is beneficial compared to using a single
modulation frequency channel. The improvement is verified on all RT05 subsets.

5 Hierarchical processing

In this section, we consider hierarchical (sequential) processing of modulation frequencies. In these
experiments we will use two separate modulation frequency channels as described above. The pro-
posed system is depicted in figure 4. Critical band auditory spectrogram is processed through a first
modulation filter bank followed by a NN to obtain phoneme posteriors. These posteriors are then
concatenated with features obtained by processing the spectrogram with a second filter-bank. These
two concatenated vectors then form an input to a second phoneme posterior-estimating NN. In such
a way, phoneme estimates from the first net are modified by a second net using an evidence from a
different range of modulation frequencies. This NN topology is similar to the one we used in [9].

In contrary to parallel processing , the order in which modulation frequencies are presented does
make a difference. In table 4 we report WER for features obtained both moving from high to low and
from low to high modulation frequencies.

Moving in the hierarchy from low frequencies to high frequencies yields similar performance as a
single MRASTA neural network. On the other hand, moving from high to low modulation frequencies
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Features TOT AMI CMU ICSI NIST VT
G-low to G-high 45.8 48.3 43.5 37.0 52.5 48.5
G-high to G-low 40.0 40.5 37.3 32.2 47.8 42.9

Table 4: RT05 WER for Hierarchical modulation frequencies processing: from low to high and from
high to low frequencies.

produce a significant reduction of 5.8% into final WER w.r.t. single classifier approach. This is
consistent with physiological experiments in [8] in which it is shown that different levels of auditory
processing may attend different rates of the modulation spectrum, the higher levels emphasizing lower
modulation frequency rates.

To verify that improvements in the previous structure is coming from the sequential processing of
modulation frequencies and not simply from a hierarchy of Neural Networks we carry out an additional
experiment. Posterior features from the single MRASTA neural network that processes all frequency
modulation simultaneously are presented as input to a second NN. The second NN does not use
additional input but only re-processes a block of concatenated posterior features.

Features TOT AMI CMU ICSI NIST VT
Hier Posterior 44.2 46.2 41.9 34.6 51.3 48.1

Table 5: RT05 WER for hierarchical modeling.

Table 5 reports WER on RT05. Hierarchical processing improves performances w.r.t. MRASTA
of 1.6% absolute. However it does not reach WER of architecture in figure 4. This means that the
improvements are actually coming from the sequential processing of modulation frequencies and not
from the hierarchical classifier itself.

6 Summary and Discussions

Motivated by some recent findings in physiology [14] and psychophysics [5] [8] of auditory processing,
we investigated parallel and hierarchical processing of different parts of the modulation spectrum.
Modulation frequency filter-bank applied in these experiments has been proposed earlier in [4] for
ASR application and is referred as MRASTA. In previous related works, experiments have been
conducted using a single classifier.

The current work differs in exploring multiple classifying channels and explores both parallel and
hierarchical processing architectures using TANDEM approach. Table 1 summarize results of all
previous experiments.

Baseline PLP system outperforms the single net MRASTA features. For the further experiments,
MRASTA filter bank is separated into two set of filter banks referred as G-low and G-high. In parallel
architecture (see figure 3) two independent Neural Networks are trained on G-low and G-high and their
outputs combined. This approach reduces WER of 4.4% absolute w.r.t. the single Neural Network
approach and outperforms baseline PLP system by 1%.

Further, we investigated the use of hierarchical processing as in figure 3 in which different modu-
lation frequencies are processed in a hierarchical fashion. When the classification is done first on the
high modulation frequency data and the output from this classifier is combined with data from lower
modulation frequency range, a 5.8% improvement is obtained (this system also outperforms baseline
PLP system by 2.4%), while when processing order goes from low to high frequencies, overall WER
is similar to the use of MRASTA with a single NN classifier.

In order to verify that the improvement is actually coming from processing different modulation
frequencies at different level of the hierarchy we reprocessed MRASTA posteriors with another NN
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without adding any additional input from the time-frequency plane. This reduces WER by 1.6% but
does not achieve recognition rates of architecture in figure 4.

To summarize, separate processing of modulation frequencies lowers considerably WER compared
to approaches that uses single classifier. Out of the two proposed methods, hierarchical processing is
outperforming parallel processing. Improvements are verified on all subset of the RT05 evaluation data.
We found that the best performance is obtained when the classification is first done on high modulation
frequencies and data from low modulation frequency range are added to phoneme posteriors from the
first probability estimation step. This is in principle consistent with hierarchical processing observed
in mammalian auditory system [8].
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