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Chapter 4  

How does a dictation machine recognize speech? 

This Chapter is not about how to wreck a nice beach45 

T. Dutoit (°), L. Couvreur (°), H. Bourlard (*) 

(°) Faculté Polytechnique de Mons, Belgium 

(*) Ecole Polytechnique Fédérale de Lausanne, Switzerland 

There is magic (or is it witchcraft?) in a speech recognizer that transcribes 

continuous radio speech into text with a word accuracy of even not more 

than 50%. The extreme difficulty of this task, tough, is usually not 

perceived by the general public. This is because we are almost deaf to the 

infinite acoustic variations that accompany the production of vocal sounds, 

which arise from physiological constraints (co-articulation), but also from 

the acoustic environment (additive or convolutional noise, Lombard 

effect), or from the emotional state of the speaker (voice quality, speaking 

rate, hesitations, etc.)46. Our consciousness of speech is indeed not 

stimulated until after it has been processed by our brain to make it appear 

as a sequence of meaningful units: phonemes and words.  

In this Chapter we will see how statistical pattern recognition and 

statistical sequence recognition techniques are currently used for trying to 

mimic this extraordinary faculty of our mind (4.1). We will follow, in 

Section 4.2, with a MATLAB-based proof of concept of word-based 

automatic speech recognition (ASR) based on Hidden Markov Models 

(HMM), using a bigram model for modeling (syntactic-semantic) language 

constraints. 

                                                      
45 It is, indeed, about how to recognize speech. 
46 Not to mention inter-speaker variability, nor regional dialects. 
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4.1 Background – Statistical Pattern Recognition 

Most modern ASR systems have a pipe-line block architecture (see Fig. 

4.1).  

The acoustical wave is first digitized, usually with a sampling frequency 

of 8 kHz for telephone applications and 16 kHz for multimedia 

applications. A speech detection module then detects segments of speech 

activity in the digital signal: only these segments that compose the speech 

signal are transmitted to the following block. The purpose of speech 

detection is to reduce the computational cost and the probability of ASR 

error when unexpected acoustic events happen. Doing this automatically, 

however, is by itself a difficult problem. Speech detection is sometimes 

implemented manually: the speaker is asked to push a button while 

speaking in order to activate the ASR system (push-to-talk mode).  

 

Fig. 4.1 Classical architecture of an automatic speech recognition system 

The acoustical analysis module processes the speech signal in order to 

reduce its variability while preserving its linguistic information. A time-

frequency analysis is typically performed (using frame-based analysis, 

with 30 ms frames shifted every 10 ms), which transforms the continuous 

input waveform into a sequence X = [x(1), x(2), . . . , x(N)] of acoustic 
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feature vectors x(n)47. The performances of ASR systems (in particular, 

their robustness, i.e. their resistance to noise) are very much dependent on 

this formatting of the acoustic observations. Various types of feature 

vectors can be used, such as the LPC coefficients described in Chapter 1, 

although specific feature vectors, such as the Linear Prediction Cepstral 

Coefficients (LPCC) or the Mel Frequency Cepstral Coefficients (MFCC; 

Picone 1993), have been developed in practice for speech recognition, 

which are somehow related to LPC coefficients. 

The acoustic decoding module is the heart of the ASR system. During a 

training phase, the ASR system is presented with several examples of 

every possible word, as defined by the lexicon. A statistical model (4.1.1) 

is then computed for every word such that it models the distribution of the 

acoustic vectors. Repeating the estimation for all the words, we finally 

obtain a set of statistical models, the so-called acoustic model, which is 

stored in the ASR system. At run-time, the acoustic decoding module 

searches the sequence of words whose corresponding sequence of models 

is the “closest” to the observed sequence of acoustic feature vectors. This 

search is complex since neither the number of words, nor their 

segmentation, are known in advance. Efficient decoding algorithms 

constrain the search for the best sequence of words by a grammar, which 

defines the authorized, or at least the most likely, sequence of words. It is 

usually described in terms of a statistical model: the language model. 

In large vocabulary ASR systems, it is hard if not impossible to train 

separate statistical models for all words (and even to gather the speech data 

that would be required to properly train a word-based acoustic model). In 

such systems, words are described as sequences of phonemes in a 

pronunciation lexicon, and statistical modeling is applied to phonemic 

units. Word-based models are then obtained by concatenating the 

phoneme-based models. Small vocabulary systems (<50 words), on the 

contrary, usually consider words as basic acoustic units and therefore do 

not require a pronunciation lexicon.  

4.1.1 The statistical formalism of ASR 

The most common statistical formalism of ASR48, which we will use 

throughout this Chapter, aims to produce the most probable word sequence 

                                                      
47 Although x(n) is a vector, it will not be written with a bold font in this Chapter, 

to avoid overloading all equations.  
48 There are numerous textbooks that explain these notions in detail. See for 

instance (Gold and Morgan 2000), (Bourlard and Morgan 1994) or (Bourlard 
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W
*
 given the acoustic observation sequence X. This can be expressed 

mathematically by the so-called Bayesian, or Maximum a Posteriori 

(MAP) decision rule as: 

* arg max ( | , )
i

i
W

W P W X   (4.1)49 

where Wi represents the i-th possible word sequence and the conditional 

probability is evaluated over all possible word sequences50, and   

represents the set of parameters used to estimate the probability 

distribution. 

Since each word sequence Wi may be realized as an infinite number of 

possible acoustic realizations, it is represented by its model M(Wi), also 

written Mi  for the sake of simplicity, which is assumed to be able to 

produce all such possible acoustic realizations. This yields: 

 

* arg max ( | , )
i

i
M

M P M X   (4.2) 

where M
*
 is (the model of) the sequence of words representing the 

linguistic message in input speech X, Mi is (the model of) a possible word 

sequence Wi, P(Mi | X,) is the posterior probability of (the model of) a 

word sequence given the acoustic input X, and the maximum is evaluated 

over all possible models (i.e., all possible word sequences).  

Bayes‟ rule can be the applied to (4.2), yielding: 

( | , ) ( | )
( | , )

( | )

i i
i

P X M P M
P M X

P X

 
 


 (4.3) 

                                                                                                                          
2007). For a more general introduction to pattern recognition, see also (Polikar 

2006) or the more complete (Duda et al. 2000). 
49  In equation (4.1), Wi and X are not random variables: they are values 

taken by their respective random variables. As a matter of fact, we will often use 

in this Chapter a shortcut notation for probabilities, when this does not bring 

confusion. The probability P(A=a|B=b) that a discrete random variable A takes 

value a given the fact that random variable B takes value b will simply be 

written P(a|b). What is more, we will use the same notation when A is a 

continuous random variable for referring to probability density pA|B=b (a)).  
50  It is assumed here that the number of possible word sequences is finite, 

which is not true for natural languages. In practice, a specific component of the 

ASR, the decoder, takes care of this problem by restricting the computation of 

(4.1) for a limited number of most probable sequences. 
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where ( | , )iP X M   represents the contribution of the so-called acoustic 

model (i.e., the likelihood that a specific model Mi has produced the 

acoustic observation X), ( | )iP M   represents the contribution of the so-

called language model (i.e., the a priori probability of the corresponding 

word sequence), and P(X| ) stands for the a priori probability of the 

acoustic observation. For the sake of simplicity (and tractability of the 

parameter estimation process), state-of-the-art ASR systems always 

assume independence between the acoustic model parameters, which will 

now be denoted A  and the parameters of the language model, which will 

be denoted L . 

Based on the above, we thus have to address the following problems: 

 Decoding (recognition): Given an unknown utterance X, find the 

most probable word sequence W
*
 (i.e., the most probable word 

sequence model M
*
) such that: 

* ( | , ) ( | )
arg max

( | , )i

i A i L

M A L

P X M P M
M

P X

 


 
 (4.4) 

Since during recognition all parameters A  and L  are frozen, 

probability ( | , )A LP X    is constant for all hypotheses of word 

sequences (i.e., for all choices of i) and can thus be ignored, so that 

(4.4) simplifies to: 

* arg max ( | , ) ( | )
i

i A i L
M

M P X M P M    (4.5) 

 Acoustic modeling: Given (the model of) a word sequence, Mi, 

estimate the probability ( | , )i AP X M   of the unknown utterance 

X. 

 This is typically carried out using Hidden Markov Models 

(HMM; see Section 4.1.3). It requires to estimate the acoustic model 

A . At training time, a large amount of training utterances Xj (j = 

1,… , J) with their associated models Mj  are used to estimate the 

optimal acoustic parameter set 
*

A , such that: 
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*

1

1

arg max ( | , )

arg max log( ( | , ))

A

A

J

A i A

j

J

i A

j

P X M

P X M

 

 

  

 




 (4.6) 

which is referred to as the Maximum Likelihood (ML), or Maximum 

Log Likelihood criterion51. 

 Language modeling: The goal of the language model is to estimate 

prior probabilities of sentence models ( | )i LP M  . 

At training time, the language model parameters L  are 

commonly estimated from large text corpora. The language model is 

most often formalized as word-based Markov models (See Section 

4.1.2), in which case L  is the set of transition probabilities of 

these chains, also known as n-grams. 

4.1.2 Markov models 

A Markov model is the simplest form of a Stochastic Finite State 

Automaton (SFSA). It describes a sequence of observations X = [x(1), x(2), 

… , x(N)] as the output of a finite state automaton (Fig. 4.2) whose internal 

states {q1, q2, … , qK} are univocally associated with possible observations 

{x1, x2, … , xK} and whose state-to-state transitions are associated with 

probabilities: a given state qk always outputs the same observation xk, 

except initial and final states (qI and qF, which output  nothing); the 

transition probabilities from any state sum to one. The most important 

constraint imposed by a (first order) Markov model is known as the  

: the probability of a state (or that of the associated observation) only 

depends on the previous state (or that of the associated observation). 

                                                      
51 Although both criteria are equivalent, it is usually more convenient to work with 

the sum of log likelihoods. As a matter of fact, computing products of 

probabilities (which are often significantly lower than one) quickly exceeds the 

floating point arithmetic precision. Even the log of a sum of probabilities can be 

estimated, when needed, using log likelihoods (i.e., without having to compute 

likelihoods at any time), using: 

 (log log )log( ) log( ) log 1 b aa b a e      
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Fig. 4.2 A typical Markov model52. The leftmost and rightmost states are the 

initial and final states. Each internal state qk in the center of the figure is 

associated to a specific observation xk (and is labeled as such). Transition 

probabilities are associated to arcs (only a few transition probabilities are shown). 

The probability of X given such a model reduces to the probability of 

the sequence of states [qI, q(1), q(2), …, q(N), qF] corresponding to X, i.e. 

to a product of transition probabilities (including transitions from state qI 

and transitions to state qF): 

2

( ) ( (1) | ) ( ( ) | ( 1)) ( | ( ))
N

I F

n

P X P q q P q n q n P q q N


 
  

 
  (4.7) 

where q(n) stands for the state associated with observation x(n). Given the 

one-to-one relationship between states and observations, this can also be 

written as: 

                                                      
52 The model shown here is ergodic: transitions are possible from each state to all 

other states. In practical applications (such as in ASR, for language modeling), 

some transitions may be prohibited. 
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2

( ) ( (1)| ) ( ) | ( 1) | ( )
N

n

P X P x I P x n x n P F x N


 
  

 
  (4.8) 

where I and F stand for the symbolic beginning and end of X. 

The set of parameters, represented by the (K×K)-transition probability 

matrix and the initial and final state probabilities: 

 ( | ), ( | ), ( | ) , with , in (1,... )k I k l F lP q q P q q P q q k l K  (4.9) 

is directly estimated on a large amount of observation sequences (i.e., of 

state sequences, since states can be directly deduced from observations in a 

Markov model), such that: 

* arg max ( | )P X


    (4.10) 

This simply amounts to estimating the relative counts of observed 

transitions53, i.e.: 

( | ) lk
k l

l

n
P q q

n
  (4.11) 

where nlk stands for the number of times a transition from state ql to state 

qk occurred, while nl represents the number of times state ql was visited. 

Markov models are intensively used in ASR for language modeling, in 

the form of n-grams, to estimate the probability of a word sequence W = 

[w(1), w(2), . . ., w(L)] as: 

   

 

2

( ) (1) | ( ) | ( 1), ( 2),... ( 1) .

| ( )

L

l

P W P w I P w l w l w l w l n

P F w L



 
     

 


 (4.12)54 

In particular, bigrams further reduce this estimation to: 

     
2

( ) (1) | ( ) | ( 1) | ( )
L

l

P W P w I P w l w l P F w L


 
  

 
  (4.13) 

                                                      
53 This estimate is possibly smoothed in case there is not enough training data, so 

as to avoid forbidding state sequences not found in the data (those which are 

rare but not impossible). 
54 In this case, states are not associated to words, but rather to sequences of n-1 

words. Such models are called N
th

 order Markov models. 
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In this case, each observation is a word from the input word sequence W, 

and each state of the model (except I and F) is characterized by a single 

word, which an observed word could possibly follow with a given 

probability. 

As Jelinek (1991) pointed out: “That this simple approach is so successful 

is a source of considerable irritation to me and to some of my colleagues. 

We have evidence that better language models are obtainable, we think we 

know many weaknesses of the trigram model, and yet, when we devise 

more or less subtle methods of improvement, we come up short.” 

Markov models cannot be used for acoustic modeling, as the number of 

possible observations is infinite. 

4.1.3 Hidden Markov models 

Modifying a Markov model by allowing several states (if not all) to output 

the same observations with state-dependent emission probabilities (Fig. 

4.3), turns it into a hidden Markov model (HMM, Rabiner 1989). In such a 

model, the sequence of states cannot be univocally determined from the 

sequence of observations (such a SFSA is called ambiguous). The HMM is 

thus called “hidden” because there is an underlying stochastic process (i.e., 

the sequence of states) that is not observable, but affects the sequence of 

observations.  

While Fig. 4.3 shows a discrete HMM, in which the number of possible 

observations is finite, continuous HMMs are also very much used, in 

which the output space is a continuous variable (often even multivariate). 

Emission probabilities are then estimated by assuming they follow a 

particular functional distribution: P(xm|qk) is computed analytically (it can 

no longer be obtained by counting). In order to keep the number of HMM 

parameters as low as possible, this distribution often takes the classical 

form of a (multivariate, d-dimensional) Gaussian55: 

1

1/ 2/ 2

( | ) ( , , )

1 1
exp ( ) ( )

2(2 )

k k k

T

k k kd

k

P x q N x

x x



 




 

 
     

 

 (4.14) 

where μk and k respectively denote the mean vector and the covariance 

matrix associated with state qk. When this model is not accurate enough, 

                                                      
55 Gaussian PDFs have many practical advantages: they are entirely defined by 

their first two moments and are linear once derivated. 
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mixtures of (multivariate) Gaussians (Gaussian mixture model, GMM) are 

also used, which allow for multiple modes56: 

1

( | ) ( , , )
G

k kg kg kg

g

P x q c N x 


   (4.15) 
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P(qF|q3) 
 

 

Fig. 4.3 A typical (discrete) hidden Markov model. The leftmost and rightmost 

states are the initial and final states. Each state qk in the center of the figure is 

associated to several possible observations (here, to all observations {x1, x2, … , 

xM}) with the corresponding emission probability. Transition probabilities are 

associated to arcs (only a few transition probabilities are shown). The HMM is 

termed as discrete because the number of possible observations is finite. 

                                                      
56 It is also possible (and has proved very efficient in ASR) to use artificial neural 

networks (ANN) to estimate emission probabilities (Bourlard and Wellekens 

1990, Bourlard and Morgan 1994). We do not examine this option here. 
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where G is the total number of Gaussian densities and ckg are the mixture 

gain coefficients (thus representing the prior probabilities of Gaussian 

mixture components). These gains must verify the constraint: 

1

1 1,...,
G

kg

g

c k K


    (4.16) 

Assuming the total number of states K is fixed, the set of parameters  of 

the model comprises all the Gaussian means and variances, gains, and 

transition probabilities.  

Two approaches can be used for estimating ( | , )P X M  .  

In the full likelihood approach, this probability is computed as a sum on 

all possible paths of length N. The probability of each path is itself 

computed as in (4.7): 

   

     
2

( | , ) (1) | (1) | (1) .

( ) | ( 1) ( ) | ( ) | ( )

j I j

paths j

N

j j j F j

n

P X M P q q P x q

P q n q n P x n q n P q q N


 

 
 

 





 

(4.17) 

where qj(n) stands for the state in {q1, q2, … , qK} which is associated with 

x(n) in path j. In practice, estimating the likelihood according to (4.17) 

involves a very large number of computations, namely O(NK
N
), which can 

be avoided by the so-called forward recurrence formula with a lower 

complexity, namely O(K
2
N). This formula is based on the recursive 

estimation of an intermediate variable n(l): 

 ( ) (1), (2),..., ( ), ( )n ll P x x x n q n q    (4.18) 

n(l) stands for the probability that a partial sequence [x(1), x(2), . . . , x(n)] 

is produced by the model in such a way that x(n) is produced by state ql. It 

can be obtained by using (Fig. 4.4): 

 

 

 

1

1

1

1

1

( ) ( (1) | ) | ( 1,..., )

2,..., ( 1,..., )

( ) ( ( ) | ) ( ) |

( | , ) ( ) ( ) |

l l I

K

n l n l k

k

K

N N F k

k

l P x q P q q l K

for n N and l K

l P x n q k P q q

P X M F k P q q



 

 









 

 



  





 
(4.19) 
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In the Viterbi approximation approach, the estimation of the data 

likelihood is restricted to the most probable path of length N generating the 

sequence X: 

 

     

1

2

( | , ) max (1) | ) ( | (1) .

( ) | ( 1) | ( ) | ( )

j j
paths j

N

j j n j F j

n

P X M P q I P x q

P q n q n P x q n P q q N


 

 
 

 


 

(4.20

) 

and the sums in (4.19) are replaced by the max operator. Notice it is also 

easy to memorize the most probable path given some input sequence by 

using (4.19) and additionally keeping in memory, for each n= (1,…,N) and 

for each l=(1,…,K), the value of k producing the highest term of n+1(l) in 

(4.19). Starting from the final state (i.e., the one leading to the highest term 

for N+1(F)), it is then easy to trace back the best path, thereby associating 

one "best" state to each feature vector.  

 

q1 

q2 

q3 

qK 

q1 n(l) 

n-1(1) 

n-1(2) 

n-1(3) 

n-1(K) 

P(ql|qk) 

 

 

P(xn|ql) 

 

 

Fig. 4.4 Illustration of the sequence of operations required to compute the 

intermediate variable n(l) 

HMMs are intensively used in ASR acoustic models where every 

sentence model Mi is represented as a HMM. Since such a representation is 

not tractable due to the infinite number of possible sentences, sentence 

HMMs are obtained by compositing sub-sentence HMMs such as word 

HMMs, syllable HMMs or more generally phoneme HMMs. Words, 

syllables, or phonemes are then generally described using a specific HMM 

topology (i.e. allowed state connectivity) known as left-to-right HMMs 
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(Fig. 4.5), as opposed to the general ergodic topology shown in Fig. 4.3. 

Although sequential signals, such as speech, are nonstationary processes, 

left-to-right HMMs assume that the sequence of observation vectors is a 

piecewise stationary process. That is, a sequence X = [x(1), x(2), . . . , x(N)]  

is modeled as a sequence of discrete stationary states with instantaneous 

transitions between these states.  

4.1.4 Training HMMs 

HMM training is classically based on the Maximum Likelihood criterion: 

the goal is to estimate the parameters of the model which maximize the 

likelihood of a large number of training sequences Xj (j = 1,… , J). For 

Gaussian HMMs (which we will examine here, as they are used in most 

ASR systems), the set of parameters to estimate comprises all the Gaussian 

means and variances, gains (if GMMs are used), and transition 

probabilities. 

 

 q1 
 

I 
 

F 
 q2 

 q3 

   
 

Fig. 4.5 A left-to-right continuous HMM, shown here with (univariate) continuous 

emission probabilities (which look like mixtures of Gaussians). In speech 

recognition, this could be the model of a word or of a phoneme which is assumed 

to be composed of three stationary parts. 

Training algorithms 

A solution to this problem is a particular case of the Expectation-

Maximization (EM) algorithm (Moon 1996). Again, two approaches are 

possible.  

In the Viterbi approach (Fig. 4.6), the following steps are taken: 

1. Start from an initial set of parameters 
(0)

. With a left-to-right 

topology, one way of obtaining such a set is by estimating the 
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parameters from a linear segmentation of feature vector sequences, 

i.e., by assuming that each training sequence Xj (j = 1,… , J) is 

produced by visiting each state of its associated model Mj  the same 

amount of times. Then apply the expectation step to this initial linear 

segmentation. 

2. (Expectation step) Compute transition probabilities as in (4.11). Obtain 

emission probabilities for state k by estimating the Gaussian 

parameters in (4.14) or the GMM parameters in (4.15) and (4.16) from 

all feature vectors associated to state k in the training sequences (see 

below).  

2. (Maximization step) For all training utterances Xj and their associated 

models Mj find the maximum likelihood paths ("best" paths), 

maximizing P(Xj|Mj) using the Viterbi recursion, thus yielding a new 

segmentation of the training data. This step is often referred to “forced 

alignment”, since we are forcing the matching of utterances Xj on 

given models Mj. 

3. Given this new segmentation, collect all the vectors (over all 

utterances Xj) associated with states qk and reestimate emission and 

transition probabilities as in the expectation step. Iterate as long as the 

total likelihood of the training set increases or until the relative 

improvement falls below a pre-defined threshold. 

 

 

Initial linear 

segmentation of the 

training sequences  

Expectation 
Step 

Maximization 
Step 

( | )

( | )

k

l k

P x q

P q q

 

New segmentation of 

the training sequences   

Fig. 4.6 The Expectation-Maximization (EM) algorithm, using the Viterbi 

approach. 

In the Forward-Backward, or Baum-Welch approach¸ all paths are 

considered. Feature vectors are thus no longer univocally associated to 

states when reestimating the emission and transitions probabilities: each of 

them counts for some weight in the reestimation of the whole set of 

parameters.  



How does a dictation machine recognize speech?      117 

The convergence of the iterative processes involved in both approaches 

can be proved to converge to a local optimum (whose quality will depend 

on the quality of the initialization). 

 

 

Estimating emission probabilities 

In the Viterbi approach, one needs to estimate the emission probabilities 

of each state qk, given a number of feature vectors {x1k, x2k, …, xMk} 

associated to it. The same problem is encountered in the Baum-Welch 

approach, with feature vector partially associated to each state. We will 

explore the Viterbi case here, as it is easier to follow57. 

When a multivariate Gaussian distribution N(k,k) is assumed for some 

state qk, the classical estimation formulas for the mean and covariance 

matrix, given samples xik stored as column vectors, are: 

1

1 M

k ik

i

x
M




   

1

1
( )( )

1

M
T

k ik k ik k

i

x x
M

 


   

    

(4.21) 

It is easy to show that 
k  is the maximum likelihood estimate of 

k . The 

ML estimator of 
k , though, is not exactly the one given by (4.21): the 

ML estimator normalizes by M instead of (M-1). However it is shown to 

be biased when the exact value of 
k  is not known, while (4.21) is 

unbiased.  

When a multivariate GMM distribution is assumed for some state qk, 

estimating its weights ckg, means 
kg  and covariance matrices 

kg  for 

g=1, …, G as defined in (4.15), cannot be done analytically. The EM 

algorithm is used again for obtaining the maximum likelihood estimate of 

the parameters, although in a more straightforward way than above (there 

is not such a thing as transition probabilities in this problem). As before, 

two approaches are possible: the Viterbi-EM approach, in which each 

feature vectors is associated to one of the underlying Gaussians, and the 

EM approach, in which each vector is associated to all Gaussians, with 

some weight (for a tutorial on the EM algorithm, see Moon 1996, Bilmes 

1998). 

The Viterbi-EM and EM algorithms are very sensitive to the initial 

values chosen for their parameters. In order to maximize their chances to 

                                                      
57 Details on the Baum-Welch algorithm can be found in (Bourlard, 2007). 
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converge to a global maximum of the likelihood of the training data, the k-

means algorithm is sometimes used for providing a first estimate of the 

parameters. Starting from an initial set of G prototype vectors, this 

algorithm iterates on the following steps: 

1. For each feature vector xik  (i=1, …, M), compute the squared Euclidian 

distance from the k
th
 prototype, and assign xik to its closest prototype. 

2. Replace each prototype with the mean of the feature vectors assigned 

to it in step 1. 

Iterations are stopped when no further assignment changes occur. 

4.2 MATLAB proof of concept: ASP_dictation_machine.m 

Although speech is by essence a non-stationary signal, and therefore calls 

for dynamic modeling, it is convenient to start this script by examining 

static modeling and classification of signals, seen as a statistical pattern 

recognition problem. We do this by using Gaussian multivariate models in 

Section 4.2.1 and extend it to Gaussian Mixture Models (GMM) in Section 

4.2.2. We then examine, in Section 4.2.3, the more general dynamic 

modeling, using Hidden Markov Models (HMM) for isolated word 

classification. We follow in Section 4.2.4 by adding a simple bigram-based 

language model, implemented as a Markov model, to obtain a connected 

word classification system. We end the Chapter in Section 4.2.5 by 

implementing a word-based speech recognition system58, in which the 

system does not know in advance how many words each utterance 

contains. 

4.2.1 Gaussian modeling and Bayesian classification of vowels 

We will examine here how Gaussian multivariate models can be used for 

the classification of signals. 

A good example is that of the classification of sustained vowels, i.e., of 

the classification of incoming acoustic feature vectors into the 

corresponding phonemic classes. Acoustic feature vectors are generally 

highly multi-dimensional (as we shall see later), but we will work in a 2D 

space, so as to be able to plot our results. 

                                                      
58 Notice that we will not use the words classification and recognition 

indifferently. Recognition is indeed more complex than classification, as it 

involves the additional task of segmenting an input stream into segments for 

further classification.  
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In this Chapter, we will work on a hypothetic language, whose phoneme 

set is only composed of four vowels {/a/, /e/, /i/, /u/}, and whose lexicon 

reduces to {"why" /uai/, "you" /iu/, "we" /ui/, "are" /ae/, "hear" /ie/, "here" 

/ie/}. Every speech frame can then be represented as a 2-dimensional 

vector of speech features in the form of pairs of formant values (the first 

and the second spectral formants, F1 and F2; see Chapter 1, Section 1.1). 

Our first task will be to classify vowels, by using Gaussian probability 

density functions (PDF) for class models and Bayesian (MAP) decision. 

Let us load a database of features extracted from the vowels and words of 

this language59. Vowel samples are grouped in matrices of size N x 2, 

where each of the N rows is a training example and each example is 

characterized by a formant frequency pair [F1, F2]. Supposing that the 

whole database covers adequately our imaginary language, it is easy to 

compute the prior probability P(qk) of each class qk (qk in {/a/,/e/,/i/,/u/}). 

The most common phoneme in our hypothetic language is /e/. 

 
load data; % vowels={a,e,i,u}; 
 
N_samples=0; 
for j=1:4 
    N_samples = N_samples+size(vowels{j}.training,1); 
end; 
for j=1:4 
    prior(j) = size(vowels{j}.training,1)/N_samples; 
end; 
prior 

 
 
prior =  0.1500    0.4000    0.1500    0.3000 
 

As can be seen in Fig. 4.7 (left), our four vowel classes have serious 

overlap in the 2D vector space. 

 
plot(vowels{1}.training(:,1),vowels{1}.training(:,2),'k+'); 
hold on; 
plot(vowels{2}.training(:,1),vowels{2}.training(:,2),'r*'); 
plot(vowels{3}.training(:,1),vowels{3}.training(:,2),'gp'); 
plot(vowels{4}.training(:,1),vowels{4}.training(:,2),'bs'); 
 

 

Let us now assume that we are asked to identify an unknown vowel 

from its (F1, F2) features. One way of solving this problem is by 

performing multivariate Gaussian modeling of each class, i.e., finding the 

mean and covariance matrices of the data in each class. 

 

                                                      
59 These samples were actually generated from statistical models of the vowels, 

which we chose for tutorial purposes. See Appendix 1 in the 

ASP_dictation_machine.m script, and the gendata.m file.  
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MATLAB function involved: 
 

 plot_2Dgauss_pdf(mu,sigma) plots the mean and standard deviation 

ellipsis of the 2D Gaussian process that has mean mu  and covariance 

matrix sigma, in a 2D plot. 

 
for j=1:4 
    mu{j}=mean(vowels{j}.training)'; 
    sigma{j}=cov(vowels{j}.training); 
    plot_gauss2D_pdf(mu{j},sigma{j}) 
end; 

 

     

Fig. 4.7 Left: Samples of the four vowels {/a/, /e/, /i/, /u/} of our imaginary 

language in the (F1,F2) plane, superimposed with the standard deviation ellipsis of 

their 2D Gaussian model. Right: 2D Gaussian estimates of the PDF of these 

vowels in the (F1,F2) plane. 

Fig. 4.7 shows that /i/, for instance, has its mean F1 at 780 Hz and its 

mean F2 at 1680 Hz 60. The covariance matrix for the /i/ class is almost 

diagonal (the scatter plot for the class has its principal axes almost parallel 

to the coordinate axes, which implies that F1 and F2  are almost 

uncorrelated; see Appendix 1 of the ASP_dictation_machine.m file). Its 

diagonal elements are thus close to the square of the length of the 

halfmajor and halfminor axes of the standard deviation ellipsis: 76 Hz and 

130 Hz, respectively. 

 

                                                      
60 These values are the ones fixed in our imaginary language; they do not 

correspond to those of English vowels at all. 
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mu{3} 
sqrtm(sigma{3}) 

 
ans =   1.0e+003 * 
    0.7814    1.6827 
 
ans = 
   75.3491   -4.4051 
   -4.4051  125.5608 
 
 

Let us estimate the likelihood of a test feature vector given the Gaussian 

model of class /e/, using the classical Gaussian PDF formula. The feature 

vector is shown as a black dot in Fig. 4.7. 

 
sample=[650 1903]; 
x = sample-mu{2}; 
likelihood = exp(-0.5* x* inv(sigma{2}) *x') / sqrt((2*pi)^2 … 
             * det(sigma{2})) 
 
plot(sample(1),sample(2),'ko','linewidth',3) 

 
likelihood =  7.1333e-007 

 

The likelihood of this vector is higher in class /i/ than in any other class 

(this is also intuitively obvious from the scatter plots shown previously), as 

shown below. 

 

MATLAB function involved: 
 

 gauss_pdf(x,mu,sigma) returns the likelihood of sample x (NxD) 

with respect to a Gaussian process with mean mu (1xD) and covariance 

sigma (DxD). When a set of samples is provided as input, a set of 

likelihoods is returned. 

 
for j=1:4 
    likelihood(j) = gauss_pdf(sample,mu{j},sigma{j}); 
end; 
likelihood 

 
likelihood =  1.0e-005 * 
 
    0.0000    0.0713    0.1032    0.0000 

 

Likelihood values are generally very small. Since we will use products 

of them in the next paragraphs, we will systematically prefer their log-

likelihood estimates. 

 
log(likelihood) 

 
ans =  -29.3766  -14.1533  -13.7837  -36.9803 
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Since not all phonemes have the same prior probability, Bayesian 

(MAP) classification of our test sample is not equivalent to finding the 

class with maximum likelihood. Posterior probabilities P(class|sample) 

must be estimated by multiplying the likelihood of the sample by the prior 

of each class, and dividing by the marginal likelihood of the sample 

(obtained by summing its likelihood for all classes). Again, for 

convenience, we compute the log of posterior probabilities. The result is 

that our sample gets classified as /e/ ratter than as /i/, because the prior 

probability of /e/ is much higher than that of /i/ in our imaginary language. 

 
marginal=sum(likelihood); % is a constant 
log_posterior=log(likelihood)+log(prior)-log(marginal) 

 
log_posterior =  -18.0153   -1.8112   -2.4224  -24.9258 
 

Notice that the marginal likelihood of the sample is not required for 

classifying it, as it is a subtractive constant for all log posterior 

probabilities. We will not compute it in the sequel. 

Multiplying likelihoods by priors can be seen as a weighting which 

accounts for the intrinsic frequency of occurence of each class. Plotting the 

posterior probability of classes in the (F1, F2) plane gives a rough idea of 

how classes are delimited (Fig. 4.7, right).  

 

MATLAB function involved: 
 

 mesh_2Dgauss_pdf(mu,sigma,prior,gridx,gridy,ratioz) plots 

the PDF of a 2D-Gaussian PDF in a 3D plot. mu (1x2) is the mean of the 

density, sigma (2x2) is the covariance matrix of the density. prior is a   

scalar used as a multiplicative factor on the value of the PSD. gridx and 

gridy must be vectors of the type (x:y:z) ratioz is the (scalar) aspect 

ratio on the Z axis. 

 
hold on; 
for j=1:4 
    mesh_gauss2D_pdf(mu{j},sigma{j},prior(j),0:50:1500, ... 
        0:50:3000, 7e-9); 
    hold on; 
end; 

 

One can easily compare the performance of max likelihood vs. max 

posterior classifiers on test data sets taken from our four vowels (and 

having the same prior distribution as from the training set). The error rate 

is smaller for Bayesian classification: 2.4% vs. 2.2%. 
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MATLAB function involved: 
 

 gauss_classify(x,mus,sigmas,priors) returns the class of the 

point x (1xD) with respect to Gaussian classes, using Bayesian 

classification. mus is a cell array of the (1xD) means, sigmas is a cell 

array of the (DxD) covariance matrices. priors is a vector of Gaussian 

priors. When a set of points (NxD) is provided as input, a set of classes is 

returned. 
 
total=0; 
errors_likelihood=0; 
errors_bayesian=0; 
for i=1:4 
    n_test=size(vowels{i}.test,1); 
    class_likelihood=gauss_classify(vowels{i}.test,mu,… 
        sigma,[1 1 1 1]); 
    errors_likelihood=errors_likelihood… 
        +sum(class_likelihood'~=i); 
    class_bayesian=gauss_classify(vowels{i}.test,mu,… 
        sigma,prior); 
    errors_bayesian=errors_bayesian… 
        +sum(class_bayesian'~=i); 
    total=total+n_test; 
end; 
likelihood_error_rate=errors_likelihood/total 
bayesian_error_rate=errors_bayesian/total 

 
likelihood_error_rate = 0.0240 
bayesian_error_rate   = 0.0220 

4.2.2 Gaussian Mixture Models (GMM) 

In the previous section, we have seen that Bayesian classification is based 

on the estimation of class PDFs. Up to now, we have modeled the PDF for 

each class /a/, /e/, /i/, /u/ as a Gaussian multivariate (one per class). This 

implicitly assumes that the feature vectors in each class have a (uni-modal) 

normal distribution, as we used the mean and cov functions, which return 

the estimates of the mean and covariance matrix of supposedly Gaussian 

multivariate data samples. It turns out that the vowel data we used had 

actually been sampled according to Gaussian distributions, so that this 

hypothesis was satisfied. 

Let us now try to classify the words of our imaginary language, using 

the same kind of approach as above. We will use 100 samples of the six 

words {"why" /uai/, "you" /iu/, "we" /ui/, "are" /ae/, "hear" /ie/, "here" 

/ie/}61 in our imaginary language, for which each speech frame is again 

                                                      
61 Again, the phonetic transcriptions of these words are not those of English (while 

they remain easy to remember for tutorial purposes).  
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characterized by an [F1, F2] feature vector. These samples (Fig. 4.8) are 

stored in the words variable. 

 
for i=1:6 
    subplot(2,3,i) 
    plot(words{i}.training_all(:,1),… 
        words{i}.training_all(:,2),'+'); 
    title(words{i}.word); 
hold on; 
end; 

Notice that "you" and "we" have the same statistical distribution, 

because of their phonemic content (in our imaginary language): /iu/ and 

/ui/. Notice also that "hear" and "here" also have the same distribution, 

because they have exactly the same phonemic transcription: /ie/. We will 

come back to this later. 

 

Fig. 4.8 Samples of the six words {"why" /uai/, "you" /iu/, "we" /ui/, "are" /ae/, 

"hear" /ie/, "here" /ie/} of our imaginary language in the (F1,F2) plane. 

We are now facing a PDF estimation problem: the PDF of the data in 

each class in no longer Gaussian. This is typical of practical ASR systems: 

in word-based ASR, each class accounts for the realization of several 

phonemes and is thus better described as a multi-modal distribution, i.e. a 

distribution with several maxima. The same holds for phoneme-based ASR 
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as well. As a matter of fact, speech is very much submitted to 

coarticulation, which often results in several modes for the acoustic 

realization of each phoneme, as a function of the phonetic context in which 

it appears. 

If we apply a uni-modal Gaussian model to word "why", for instance, 

we get a gross estimation of the PDF (Fig. 4.9, left). This estimation does 

not correctly account for the fact that several areas in the (F1, F2) plane are 

more densely crowded. The maximum value of the Gaussian PDF is very 

low, since it spans more of the (F1, F2) space than it should (and the 

integral is constrained to one). 

 
 
training_set=words{1}.training_all; 
test_set=words{1}.test_all; 
mu_all=mean(training_set); 
sigma_all=cov(training_set); 
 
plot(training_set(:,1),training_set(:,2),'+'); 
hold on; 
mesh_gauss2D_pdf(mu_all,sigma_all,... 
        1, 0:50:1500, 0:50:2500,7e-9); 

 

Fig. 4.9 Left: 2D Gaussian estimation of the PDF of the word "why" in the (F1,F2) 

plane. Right: The same PDF estimated from a GMM estimate (using a mixture of 

3 Gaussians). 

The total log likelihoods of the training and test data given this Gaussian 

model are obtained as sum of the log likelihoods of all feature vectors. 

 
log_likelihood_training=… 
   sum(log(gauss_pdf(training_set,mu_all,sigma_all))) 
log_likelihood_test=… 
   sum(log(gauss_pdf(test_set,mu_all,sigma_all))) 

 
log_likelihood_training =  -7.4102e+004 
log_likelihood_test = -8.3021e+004 
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One way of estimating a multi-modal PDF is by clustering data, and 

then estimate a uni-modal PDF in each cluster. An efficient way to do this 

(using a limited number of clusters) is by using K-means clustering. 

Starting with k prototype vectors or centroids, this algorithm first 

associates each feature vector in the training set to its closest centroid. It 

then replaces every centroid by the mean of all feature vectors that have 

been associated to it. The algorithm iterates by re-associating each feature 

vector to one of the newly found centroids, and so on until no further 

change occurs. 

 

 

 

MATLAB function involved: 
 

 [new_means,new_covs,new_priors,distortion]= ...     

kmeans(data,n_iterations,n_clusters) , where data is the matrix of 

observations (one observation per row) and n_clusters is the desired 

number of clusters, returns the mean vectors, covariance matrices, and 

priors of k-means clusters. distortion is an array of values (one per 

iteration) of sum of squared distances between the data and the mean of 

their cluster. The clusters are initialized with a heuristic that spreads them 

randomly around mean(data). The algorithm iterates until convergence is 

reached or the number of iterations exceeds n_iterations. Using 

kmeans(data,n_iterations,means), where means is a cell array 

containing initial mean vectors, makes it possible to initialize means. 

 plot_kmeans2D(data,means) plots the clusters associated with 

means in data samples, using a Euclidian distance. 

 
% Initializing prototypes "randomly" around the mean 
initial_means{1} = [0,1] * sqrtm(sigma_all) + mu_all; 
initial_means{2} = [0,0] * sqrtm(sigma_all) + mu_all; 
initial_means{3} = [1,2] * sqrtm(sigma_all) + mu_all; 
 
[k_means,k_covs,k_priors,totalDist]=kmeans(training_set,… 
   1000,initial_means); 
 
plot_kmeans2D(training_set, k_means); 

 

The K-means algorithm converges monotonically, in 14 iterations, to a 

(local) minimum of the global distortion defined as the sum of all distances 

between feature vectors and their associated centroids (Fig. 4.10, left). 

 
plot(totalDist,'.-'); 
xlabel('Iteration'); ylabel('Global LS criterion'); grid on; 
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Fig. 4.10 Applying the k-means algorithm (with k=3) to the sample feature vectors 

for word "why". Left: Evolution of the total distortion; Right: Final clusters 

The resulting sub-classes, though, do not strictly correspond to the 

phonemes of "why" (Fig. 4.10, right). This is because the global criterion 

that is minimized by the algorithm is purely geometric. It would actually 

be very astonishing in these conditions to find the initial vowel sub-

classes. This is not a problem, as what we are trying to do is to estimate the 

PDF of the data, not to classify it into "meaningful" sub-classes. Once 

clusters have been created, it is easy to compute the corresponding 

(supposedly uni-modal) Gaussian means and covariance matrices for each 

cluster (this is actually done inside our kmeans function), and to plot the 

sum of their PDFs, weighted by their priors. This produces an estimate of 

the PDF of our speech unit (Fig. 4.9, right). 

 

MATLAB function involved: 
 

 mesh_GMM2D_pdf(mus,sigmas,weights,gridx,gridy,ratioz) 
plots the PDF of a 2D Gaussian Mixture Model PDF in a 3D plot. mus is a 

cell array of the (1x2) means, sigmas is a cell array of the (2x2) covariance 

matrices. weights is a vector of Gaussian weights. gridx and gridy must 

be vectors of the type (x:y:z) ratioz is the (scalar) aspect ratio on the Z 

axis; 

 
plot(training_set(:,1),training_set(:,2),'+'); 
hold on; 
mesh_GMM2D_pdf(k_means,k_covs,k_priors, ... 
        0:50:1500, 0:50:2500,2e-8); 
hold off; 
 

The total log likelihoods of the training and test data are obtained as 

above, except we now consider that each feature vector "belongs" to each 

cluster with some weight equal to the prior probability of the cluster. Its 
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likelihood is thus computed as a weighted sum of likelihoods (one per 

Gaussian). 

 

MATLAB function involved: 
 

 GMM_pdf(x,mus,sigmas,weights) returns the likelihood of sample x    

(1xD) with respect to a Gaussian Mixture Model. mus is a cell array of the    

(1xD) means, sigmas is a cell array of the (DxD) covariance matrices. 

(1xD) weight is a vector of Gaussian weights. When a set of samples 

(NxD) is provided as input, a set of likelihoods is returned. 

 
log_likelihood_training=… 
   sum(log(GMM_pdf(training_set,k_means,k_covs,k_priors))) 
log_likelihood_test=… 
   sum(log(GMM_pdf(test_set,k_means, k_covs, k_priors))) 

 
log_likelihood_training = 
 -7.1310e+004 
 
log_likelihood_test = 
 -7.9917e+004 
 

The K-means approach used above is not optimal, in the sense that it is 

based on a purely geometric convergence criterion. The central algorithm 

for training GMMs is based on the EM (Expectation-Maximization) 

algorithm. As opposed to K-means, EM truly maximizes the likelihood of 

the data given the GMM parameters (means, covariance matrices, and 

weights). Starting with k initial uni-modal Gaussians (one for each sub-

class), it first estimates, for each feature vector, the probability of each 

sub-class given that vector. This is the Estimation step, which is based on 

soft classification: each feature vector belongs to all sub-classes, with 

some weights. In the Maximization step, the mean and covariance of each 

sub-class is updated, using all feature vectors and taking those weights into 

account. The algorithm iterates on the E and M steps, until the total 

likelihood increase for the training data falls under some threshold. 

The final estimate obtained by EM, however, only corresponds to a 

local maximum of the total likelihood of the data, whose value may be 

very sensitive to the initial uni-modal Gaussian estimates provided as 

input. A frequently used value for these initial estimates is precisely the 

one provided by the K-means algorithm. 

Applied to the sample feature vectors of "why", the EM algorithm 

converges monotonically, in 7 steps, from the K-means solution to a (local) 

maximum of the total likelihood of the sample data (Fig. 4.11).  

 

 

 



How does a dictation machine recognize speech?      129 

MATLAB function involved: 
 

 [new_means,new_sigmas,new_priors,total_loglike]= ...     

GMM_train(data,n_iterations,n_gaussians), where data is the matrix 

of   observations (one observation per row) and n_gaussians is the desired 

number of clusters, returns the mean vectors, covariance matrices, and 

priors of GMM Gaussian components. total_loglike is an array of 

values (one per iteration) of the total likelihood of the data given the GMM 

model. GMMs are initialized with a heuristic that spreads them randomly 

around mean(data). The algorithm iterates until convergence is reached or 

the number of iterations exceeds n_iterations. 

GMM_train(data,n_iterations,means,covs,priors) makes it possible 

to initialize the means, covariance matrices, and priors of the GMM 

components. 

 plot_GMM2D(data, means, covs) shows the standard deviation 

ellipsis of the Gaussian components of a GMM defined by means and 

covs, on a 2D plot, together with data samples.  

 
[means,covs,priors,total_loglike]=GMM_train(training_set,… 
   100,k_means,k_covs,k_priors); 
 
plot(training_set(:,1),training_set(:,2),'+'); 
plot_GMM2D(training_set,means,covs); 
 
plot(total_loglike,'.-'); 
xlabel('Iteration'); ylabel('Global Log Likelihood'); grid on; 
 

The total log likelihoods of the training and test data given this GMM 

model are obtained as above. The increase compared to estimating the 

GMM parameters from K-means clustering is small, but this is due to the 

oversimplified PDF we are dealing with. GMMs are very much used in 

speech recognition for acoustic modeling. 

 
log_likelihood_training=… 
   sum(log(GMM_pdf(training_set,means,covs,priors))) 
log_likelihood_test=… 
   sum(log(GMM_pdf(test_set,means,covs,priors))) 
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Fig. 4.11 Applying the EM algorithm (with 3 Gaussians) to the sample feature 

vectors for word "why". Left: Evolution of the total log likelihood of the data; 

Right: Standard deviation ellipses of the three Gaussian components. Notice we do 

not set colors to feature vectors, as EM precisely does not strictly assign Gaussians 

to feature vectors.  

log_likelihood_training = 
 -7.1191e+004 
 
log_likelihood_test = 
 -7.9822e+004 

 

Now let us try to recognize sample words in {"why", "you", "we", "are", 

"hear", "here"}. We now use the sequence of feature vectors from our 

unknown signal (instead of a single vector as before), estimate the joint 

likelihood of all vectors in this sequence given each class, and obtain the 

posterior probabilities in the same way as above. If we assume that each 

sample in our sequence is independent from the others (which is in 

practice a rather bold claim, even for stationary signals; we will come back 

to this in the next section when introducing dynamic models), then the 

joint likelihood of the sequence is simply the product of the likelihoods of 

each sample. 

We first estimate a GMM for each word, using 3 Gaussians per word.62 

The estimated GMMs are plotted in Fig. 4.12. 

 
   for i=1:6 

    
[GMMs{i}.means,GMMs{i}.covs,GMMs{i}.priors,total_loglike]=... 
       GMM_train(words{i}.training_all,100,3); 

   end; 
 

   for i=1:6 
subplot(2,3,i) 

                                                      
62 When 2 Gaussians are enough, one of the three ends up having very small 

weight. 
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plot(words{i}.training_all(:,1),… 
     words{i}.training_all(:,2),'+'); 
title(words{i}.word); 
hold on; 
mesh_GMM2D_pdf(GMMs{i}.means,GMMs{i}.covs,GMMs{i}.priors, ... 
         0:50:1500, 0:50:2500,8e-9); 

   end; 
 

Let us then try to recognize the first test sequence taken from "why" 

(Fig. 4.13). Since we do not know the priors of words in our imaginary 

language, we will set them all to 1/6. As expected, the maximum log 

likelihood is encountered for word "why": our first test word is correctly 

recognized. 

 
word_priors=ones(1,6)*1/6; 
test_sequence=words{1}.test{1}; 
for i=1:6 
    log_likelihood(i) = sum(log(GMM_pdf(test_sequence,... 
        GMMs{i}.means,GMMs{i}.covs,GMMs{i}.priors))); 
end; 
log_posterior=log_likelihood+log(word_priors) 
[maxlp,index]=max(log_posterior); 
recognized=words{index}.word 
 

log_posterior = 
 -617.4004 -682.0656 -691.2229 -765.6281 -902.7732 -883.7884 
 
recognized = why 

 

 

Fig. 4.12 GMMs estimated by the EM algorithm from the sample feature vectors 

of our six words:  "why", "you", "we", "are", "hear", "here" 
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Fig. 4.13 Sequence of feature vectors of the first sample of "why". The three 

phonemes (each corresponding to a Gaussian in the GMM) are quite apparent. 

Not all sequences are correctly classified, though. Sequence 2 is 

recognized as a "we". 
 
test_sequence=words{1}.test{2}; 
for i=1:6 
    log_likelihood(i) = sum(log(GMM_pdf(test_sequence,... 
        GMMs{i}.means,GMMs{i}.covs,GMMs{i}.priors))); 
end; 
log_posterior=log_likelihood+log(word_priors) 
[maxlp,index]=max(log_posterior); 
recognized=words{index}.word 

 
log_posterior = 
  1.0e+003 * 
   -0.6844   -0.6741   -0.6729   -0.9963   -1.1437   -1.1181 
 
recognized = we 

 

We may now compute the total word error rate on our test database.  

 

MATLAB function involved: 
 

 GMM_classify(x,GMMs,priors) returns the class of sample x with 

respect to GMM classes, using Bayesian classification. x {(NxD)} is a cell 

array of test sequences.  priors is a vector of class priors. The function 

returns a vector of classes. 

 
total=0; 
errors=0; 
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for i=1:6 
    n_test=length(words{i}.test); 
    class=GMM_classify(words{i}.test,GMMs,word_priors); 
    errors=errors+sum(class'~=i); 
    class_error_rate(i)=sum(class'~=i)/n_test; 
    total=total+n_test; 
 
    subplot(2,3,i); 
    hist(class,1:6); 
    title(words{i}.word); 
    set(gca,'xlim',[0 7]); 
 
end; 
overall_error_rate=errors/total 
class_error_rate 

 
overall_error_rate = 
    0.3000 
 
class_error_rate = 
    0.0800    0.4300    0.4400    0.0100    0.3900    0.4500 
 

Obviously, our static approach to word classification is not a success. 

Only 70% of the words are recognized. The rather high error rates we 

obtain are not astonishing. Except for "why" and "are", which have fairly 

specific distributions, "here" and "here" have identical PDFs, as well as 

"you" and "we".  These pairs of words are thus frequently mistaken for one 

another (Fig. 4.14). 

 

Fig. 4.14 Histograms of the outputs of the GMM-based word recognizer, for 

samples of each of the six possible input words. The integer values on the x axes  

refer to the index of the output word, in {"why", "you", "we", "are", "hear", 

"here"}. 
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4.2.3 Hidden Markov Models (HMM) 

In the previous Sections, we have seen how to create a model, either 

Gaussian or GMM, for estimating the PDF of speech feature vectors, even 

with complicated distribution shapes, and have applied it to the 

classification of isolated words. The main drawback of such a static 

classification, as it stands, is that it does not take time into account. For 

instance, the posterior probability of a sequence of feature vectors does not 

change when the sequence is time-reversed, as in words "you" /iu/ and 

"we" /ui/. This is due to the fact that our Bayesian classifier implicitly 

assumed that successive feature vectors are statistically independent. 

In this Section we will model each word in our imaginary language 

using a 2-state HMM (plus their initial and final states), except for "why", 

which will be modeled as a 3-state HMM. One should not conclude that 

word-based ASR systems set the number of internal HMM states for each 

word to the number of phonemes they contain. The number of states is 

usually higher than the number of phonemes, as phonemes are themselves 

produced in several articulatory steps which may each require a specific 

state. The reason for our choice is directly dictated by the fact that the test 

data we are using throughout this script was randomly generated by 

HMMs (see appendix 1 in the MATLAB script) in which each phoneme 

was produced by one HMM state modeled as a multivariate Gaussian. As a 

result, our test data virtually exhibits no coarticulation, and hence does not 

require more than one state per phoneme. 

We will make one more simplification here: that of having access to a 

corpus of pre-segmented sentences, from which many examples of our 6 

words have been extracted. This will make it possible to train our word 

HMMs separately. In real ASR systems, segmentation (in words or 

phonemes) is not known. Sentence HMMs are thus created by 

concatenating word HMMs, and these sentence HMMs are trained. Words 

(or phoneme) segmentation is then obtained as a by-product of this training 

stage. 

We start by loading our training data and creating initial values for the 

left-right HMM of each word in our lexicon. Each state is modeled using a 

Gaussian multivariate whose mean feature vector is set to a random value 

close to the mean of all feature vectors in the word. The elements trans(i,j) 

of the transition matrix give the probability of going from state qi to qj 

(state 1 being the initial state). Transitions probabilities betweeen internal 

(emiting) states are set to a constant value of 0.8 for staying in the same 

state, and 0.2 for leaving to the next state. 

 
% Initializing HMM parameters 
% "why" is a special case: it has 3 states 



How does a dictation machine recognize speech?      135 

mu=mean(words{1}.training_all); 
sigma=cov(words{1}.training_all); 
HMMs{1}.means = {[],mu,mu,mu,[]}; 
HMMs{1}.covs  = {[],sigma,sigma,sigma,[]}; 
HMMs{1}.trans = [ 0.0 1.0  0.0  0.0  0.0 
                          0.0 0.8  0.2  0.0  0.0 
                          0.0 0.0  0.8  0.2  0.0 
                          0.0 0.0  0.0  0.8  0.2 
                          0.0 0.0  0.0  0.0  1.0 ]; 
for i=2:6 
    mu=mean(words{i}.training_all); 
    sigma=cov(words{i}.training_all); 
    HMMs{i}.means = {[],mu,mu,[]}; 
    HMMs{i}.covs  = {[],sigma,sigma,[]}; 
    HMMs{i}.trans = [0.0 1.0   0.0   0.0 
                            0.0 0.8   0.2   0.0 
                            0.0 0.0   0.8   0.2 
                            0.0 0.0   0.0    1   ]; 
end 

 

Let us train our HMM models using the Baum-Welch (or Forward-

Backward) algorithm, which is a particular implementation of the EM 

algorithm we already used for training our GMMs in the previous Section. 

This algorithm will adapt the parameters of our word HMMs so as to 

maximize the likelihood of each training set given each HMM model. 
 

MATLAB function involved: 
 

 new_hmm = HMM_train_FB(data,old_hmm,dmin,qmax)| returns the 

Maximum Likelihood re-estimation of a Gaussian Hidden Markov Model 

(i.e., a single, possibly multivariate, Gaussian probability density function 

per state) based on the forward-backward algorithm (aka. Baum-Welch re-

estimation formulas). Note that most operations are performed in the log 

domain for accuracy63. dmin and qmax are respectively the minimum log-

likelihood relative improvement and the maximum number of iterations 

until convergence.   
 
for i=1:6 
  HMMs{i}=HMM_gauss_train(words{i}.training,HMMs{i},0.001,50); 
end; 
 

The word "why" is now correctly modeled as a sequence of 3 states, 

each with a Gaussian multivariate PDF, which matches those of the 

underlying phonemes in the word: /uai/ (Fig. 4.15). 

 
for i=2:4 
    subplot(1,3,i-1) 
    plot(words{1}.training_all(:,1),… 
         words{1}.training_all(:,2),'+'); 
    title(['state ' num2str(i-1)]); % emiting states only 

                                                      
63 This function uses a homemade logsum.m function, which computes the log of a 

sum of likelihoods from log-likelihoods, as mentioned in 4.1.1. 
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    hold on; 
    mesh_gauss2D_pdf(HMMs{1}.means{i},HMMs{1}.covs{i},1, ... 
         0:50:1500, 0:50:2500,1e-8); 
end; 

 

 

Fig. 4.15 PDF of the three Gaussian HMM states obtained from samples of "why". 

The transition probabilities between the states of "why" have been 

updated by the Baum-Welch algorithm. 

 
HMMs{1}.trans 

 
ans = 
         0    1.0000         0         0         0 
         0    0.9970    0.0030         0         0 
         0         0    0.9951    0.0049         0 
         0         0         0    0.9387    0.0613 
         0         0         0         0    1.0000 
 
 

As a result of this better modeling, the total likelihood of the data for 

word "why" is higher than with our previous static GMM model. The 

previous model can actually be seen as a single-state HMM, whose 

emission probabilities are modeled by a GMM.  

 
log_likelihood_training=0; 
for i=1:length(words{1}.training) 
    training_sequence=words{1}.training{i}; 
    log_likelihood_training=log_likelihood_training+... 
        HMM_gauss_loglikelihood(training_sequence,HMMs{1}); 
end; 
  
log_likelihood_test=0; 
for i=1:length(words{1}.test) 
    test_sequence=words{1}.test{i}; 
    log_likelihood_test=log_likelihood_test+... 
        HMM_gauss_loglikelihood(test_sequence,HMMs{1}); 
end; 
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log_likelihood_training 
log_likelihood_test 
  

log_likelihood_training = -6.7144e+004 
log_likelihood_test = -7.5204e+004 

 

HMM-based isolated word classification can now be achieved by 

finding the maximum of the posteriori probability of a sequence of feature 

vectors given all 6 HMM models. The 2nd test sequence for "why" (which 

was not correctly recognized using GMMs and a single state) now passes 

our classification test. 

 
word_priors=ones(1,6)*1/6; 
 
test_sequence=words{1}.test{2}; 
for i=1:6 
   log_posterior(i) = HMM_gauss_loglikelihood(... 
       test_sequence, HMMs{i})+log(word_priors(i)); 
end 
log_posterior 
[tmp,index]=max(log_posterior); 
recognized=words{index}.word 

 
log_posterior = 
  1.0e+003 * 
   -0.6425   -1.0390   -0.6471   -1.0427   -1.1199   -1.1057 
 
recognized = why 
 

The HMM model does not strictly assign states to feature vectors: each 

feature vector can be emitted by any state with a given probability. It is 

possible, though, to estimate the best path through the HMM given the 

data, by using the Viterbi algorithm (Fig. 4.16). 

 

MATLAB function involved: 

 

 plot_HMM2D_timeseries(x,stateSeq) plots a two-dimensional 

sequence x (one observation per row) as two separate figures, one per 

dimension. It superimposes the corresponding state sequence stateSeq as 

colored dots on the observations. x and stateSeq must have the same 

length. 

 
best_path=HMM_gauss_viterbi(test_sequence,HMMs{index}); 
plot_HMM2D_timeseries(test_sequence,best_path); 

 

 

We may now compute the total word error rate again. 
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Fig. 4.16 Best path obtained by the Viterbi algorithm, from the sequence of 

feature vectors of "why" in Fig. 4.13. 

 

MATLAB function involved: 
 

 HMM_gauss_classify(x,HMMs,priors) returns the class of sample x 

with respect to HMM classes, using Bayesian classification. HMM states 

are modeled by a Gaussian multivariate. x (NxD) is a cell array of test 

sequences. priors is a vector of class priors. The function returns a vector 

of classes. 

 
total=0; 
errors=0; 
for i=1:6 
    n_test=length(words{i}.test); 
    class=HMM_gauss_classify(words{i}.test,HMMs,word_priors); 
    errors=errors+sum(class'~=i); 
    class_error_rate(i)=sum(class'~=i)/n_test; 
    total=total+n_test; 
 
    subplot(2,3,i); 
    hist(class,1:6); 
    title(words{i}.word); 
    set(gca,'xlim',[0 7]); 
 
end; 
overall_error_rate=errors/total 
class_error_rate 
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overall_error_rate = 0.1600 
class_error_rate = 
         0         0         0         0    0.4400    0.5200 
 

 

Fig. 4.17 Histograms of the outputs of the HMM-based word classifier, for 

samples of each of the six possible input words.  

Notice the important improvement in the classification of "you" and 

"we" (Fig. 4.17), which are now modeled as HMMs with distinctive 

parameters. 84% of the (isolated) words are now recognized. The 

remaining errors are due to the confusion between "here" and "hear". 

4.2.4 N-grams 

In the previous Section, we have used HMM models for the words of our 

imaginary language, which led to a great improvement in isolated word 

classification. It remains that "hear" and "here", having strictly identical 

PDFs, cannot be adequately distinguished. This kind of ambiguity can only 

be resolved when words are embedded in a sentence, by using constraints 

imposed by the language on word sequences, i.e. by modeling the syntax 

of the language. 

We will now examine the more general problem of connected word 

classification, in which words are embedded in sentences. This task 

requires adding a language model on top of our isolated word classification 

system. For convenience, we will assume that our imaginary language 



140      T. Dutoit, L. Couvreur, H. Bourlard 

imposes the same syntactic constraints as English. A sentence like "you are 

hear" is therefore impossible and should force the recognition of "you are 

here" wherever a doubt is possible. In this first step, we will also assume 

that word segmentation is known (this could easily be achieved, for 

instance, by asking the speaker to insert silences between words and 

detecting silences based on energy levels).  

Our data file contains a list of 150 such pre-segmented sentences. Let us 

plot the contents of the first one ("we hear why you are here", Fig. 4.18). 

 
for i=1:length(sentences{1}.test) 
    subplot(2,3,i); 
    test_sequence=sentences{1}.test{i}; % ith word 
    plot(test_sequence(:,1),'+-'); 
    hold on; 
    plot(test_sequence(:,2),'r*-'); 
    title(['Word' num2str(i)]); 
end; 

 

We model the syntactic constraints of our language by a bigram model, 

based on the probability of pairs of successive words in the language. Such 

an approach reduces the language model to a simple Markov model. The 

component bigram(i,j) of its transition matrix gives P(wordi|wordj): the 

probability that the j
th
 word in the lexicon is followed by the i

th
 word.  

Clearly, "You are hear" is made impossible by bigrams(5,6)=0. 

 
 

 

Fig. 4.18 Sequences of feature vectors for the six (pre-segmented) words in the 

first test sentence.  
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% states = I U {why,you,we,are,hear,here} U F 
% where I and F stand for the begining and the end of a 
sentence 
 
bigrams = ... 
    [0   1/6  1/6  1/6  1/6  1/6  1/6  0  ; % P(word|I) 
     0   0    1/6  1/6  1/6  1/6  1/6  1/6; % P(word|"why") 
     0   1/5  0    0    1/5  1/5  1/5  1/5; % P(word|"you")  
     0   0    0    0    1/4  1/4  1/4  1/4; % P(word|"we")  
     0   0    1/4  1/4  0    0    1/4  1/4; % P(word|"are")  
     0   1/4  1/4  0    0    0    1/4  1/4; % P(word|"hear")  
     0   0    1/4  1/4  1/4  0    0    1/4; % P(word|"here")  
     0   0    0    0    0    0    0     1]; % P(word|F)  

 

Let us now try to classify a sequence of words taken from the test set. 

We start by computing the log likelihood of each unknown word given the 

HMM model for each word in the lexicon. Each column of the log 

likelihood matrix stands for a word in the sequence; each line stands for a 

word in the lexicon {why,you,we,are,hear,here}. 

 
n_words=length(sentences{1}.test); 
log_likelihoods=zeros(6,n_words); 
 
for j=1:n_words 
    for k=1:6 % for each possible word HMM model 
       unknown_word=sentences{1}.test{j}; 
       log_likelihoods(j,k) = HMM_gauss_loglikelihood(... 
          unknown_word,HMMs{k}); 
    end; 
end; 
 
log_likelihoods 

 
log_likelihoods = 
 
  1.0e+003 * 
 
   -0.2754   -0.3909   -0.2707   -0.4219   -0.6079   -0.5973 
   -1.4351   -1.4067   -1.3986   -0.9186   -0.7952   -0.7977 
   -0.6511   -0.8062   -0.7147   -0.9689   -0.8049   -0.8024 
   -0.5203   -0.4208   -0.5043   -0.6925   -0.5306   -0.5284 
   -0.9230   -1.0715   -1.0504   -0.5506   -0.6912   -0.6935 
   -0.2510   -0.2772   -0.2400   -0.2851   -0.1952   -0.1953 
 
 

With the approach we used in the previous Section, we would classify 

this sentence as "we hear why you are hear" (by choosing the max 

likelihood candidate for each word independently of its neighbors). 

 
[tmp,indices]=max(log_likelihoods); 
for j=1:n_words 
    recognized_sequence{j}=words{indices(j)}.word; 
end; 
recognized_sequence 

 
recognized_sequence =  
    'we'    'hear'    'why'    'you'    'are'    'hear' 
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We implement our language model as a Markov model on top of our 

word HMMs. The resulting model for the sequence to recognize is a 

discrete HMM, in which there are as many internal states as the number of 

words in the lexicon (six in our case). Each state can emit any of the 

n_words input words (which we will label as '1', '2', ... 'n_words'), with 

emission probabilities equal to the likelihoods computed above. Bigrams 

are used as transition probabilities. Finding the best sequence of words 

from the lexicon given the sequence of observations [1, 2, ..., n_words] is 

obtained by looking for the best path in this model, using the Viterbi 

algorithm again. 

As shown below, we now correctly classify our test sequence as "we 

hear why you are here". 

 

MATLAB function involved: 
 

 [state,likelihood] = HMM_viterbi(transition,emission) 
performs the Viterbi search (log version) of the best state sequence for  a 

discrete Hidden Markov Model.  

    transition: (K+2)x(K+2) matrix of transition probabilities, 

                    first and last rows correspond to initial and 

                    final (non-emitting) states. 

    emission:  NxK matrix of state-conditional emission 

                    probabilities corresponding to a given sequence 

                    of observations of length N. 

    state:  (Nx1) vector of state-related indexes of best sequence.  

    likelihood: best sequence likelihood. 

 
best_path=HMM_viterbi(log(bigrams),log_likelihoods); 
for j=1:n_words 
    recognized_sequence{j}=words{best_path(j)}.word; 
end; 
recognized_sequence 

 
recognized_sequence =  
    'we'    'hear'    'why'    'you'    'are'    'here' 
 

We may finally compute the word error rate on our complete test data. 

 
n_sentences=length(sentences); 
 
total=0; 
errors=0; 
class_error_rate=zeros(1,6); 
class=cell(6); % empty cells 
 
for i=1:n_sentences 
 
    n_words=length(sentences{i}.test); 
    log_likelihoods=zeros(6,n_words); 
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    for j=1:n_words 
        unknown_word=sentences{i}.test{j}; 
        for k=1:6 % for each possible word HMM model 
           log_likelihoods(j,k) = HMM_gauss_loglikelihood(... 
              unknown_word,HMMs{k}); 
        end; 
    end; 
 
    best_path=HMM_viterbi(log(bigrams),log_likelihoods); 
 
    for j=1:n_words 
        recognized_word=best_path(j); 
        actual_word=sentences{i}.wordindex{j}; 
        class{actual_word}= [class{actual_word}, … 
                             recognized_word]; 
 
        if (recognized_word~=actual_word) 
            errors=errors+1; 
            class_error_rate(actual_word)=… 
                class_error_rate(actual_word)+1; 
        end; 
    end; 
 
    total=total+n_words; 
 
end; 
 
overall_error_rate=errors/total 
class_error_rate 

 
overall_error_rate = 0.1079 
 
class_error_rate = 
     0     0     0     0    37    31 
 

We now have an efficient connected word classification system for our 

imaginary language. The final recognition rate is now 89.2%. Errors are  

still mainly due to "here" being confused with "hear" (Fig. 4.19). As a 

matter of fact, our bigram model is not constrictive enough. It still allows 

non admissible sentences, such as in sentence #3: "why are you hear". 

Bigrams cannot solve all "hear" vs. "here" ambiguities, because of the 

weaknesses of this poor language model. Trigrams could do a much better 

job ("are you hear", for instance, will be forbidden by a trigram language 

model), at the expense of additional complexity. 
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Fig. 4.19 Histograms of the outputs of the HMM-based word classifier, after 

adding a bigram language model.   

4.2.5 Word-based continuous speech recognition 

In this Section, we will relax the pre-segmentation constraint, which will 

turn our classification system into a true word-based speech recognition 

system (albeit still in our imaginary language). 

The discrete sentence HMM we used previously implicitly imposed 

initial and final states of word HMMs to fall after some specific feature 

vectors64. When word segmentation is not known in advance, the initial 

and final states of all word HMMs must be erased, for the input feature 

vector sequence to be properly decoded into a sequence of words. 

The resulting sentence HMM is a Gaussian HMM (as each word HMM 

state is modeled as a Gaussian) composed of all the word HMM states, 

connected in a left-right topology inside word HMMs, and connected in an 

ergodic topology between word HMMs. For the six words of our language, 

this makes 13 internal states, plus the sentence-initial and sentence-final 

states. The transition probabilities between word-internal states are taken 

from the previously trained word HMMs, while the transition probabilities 

between word-final and word-initial states are taken from our bigram 

model. 

 

                                                      
64 The sentence HMM therefore had to be changed for each new incoming 

sentence. 
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sentence_HMM.trans=zeros(15,15); 
 
% word-initial states, including  sentence-final state; 
word_i=[2 5 7 9 11 13 15];  
word_f=[4 6 8 10 12 14]; % word-final states; 
 
% P(word in sentence-initial position) 
sentence_HMM.trans(1,word_i)=bigrams(1,2:8); 
 
% copying trans. prob. for the 3 internal states of "why" 
sentence_HMM.trans(2:4,2:4)=HMMs{1}.trans(2:4,2:4); 
 
% distributing P(new word|state3,"why") to the first states of 
% other word models, weighted by bigram probabilities. 
sentence_HMM.trans(4,word_i)=... 
    HMMs{1}.trans(4,5)*bigrams(2,2:8); 
 
% same thing for the 2-state words 
for i=2:6 
   sentence_HMM.trans(word_i(i):word_f(i),word_i(i):word_f(i))=... 
       HMMs{i}.trans(2:3,2:3); 
   sentence_HMM.trans(word_f(i),word_i)=... 
       HMMs{i}.trans(3,4)*bigrams(i+1,2:8); 
end; 
 

The emission probabilities of our sentence HMM are taken from the 

word-internal HMM states. 

 
k=2; 
sentence_HMM.means{1}=[]; % sentence-initial state 
for i=1:6 
    for j=2:length(HMMs{i}.means)-1 
        sentence_HMM.means{k}=HMMs{i}.means{j}; 
        sentence_HMM.covs{k}=HMMs{i}.covs{j}; 
        k=k+1; 
    end; 
end; 
sentence_HMM.means{k}=[]; % sentence-final state 

 

We search for the best path in our sentence HMM65 given the sequence 

of feature vectors of our test sequence, with the Viterbi algorithm, and plot 

the resulting sequence of states (Fig. 4.20). 

 

MATLAB function involved: 
 

 [states,log_likelihood] = HMM_gauss_viterbi(x,HMM) returns 

the best state sequence and the associated log likelihood of the sequence of    

feature vectors x (one observation per row) with respect to a Markov    

model HMM defined by:         
    HMM.means        
    HMM.covs        
    HMM.trans     

                                                      
65 The new sentence model is no longer sentence-dependent: the same HMM can 

be used to decode any incoming sequence of feature vectors into a sequence of 

words.  
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This function implements the forward recursion to estimate the likelihood 

on the best path. 

 
n_words=length(sentences{1}.test); 
complete_sentence=[]; 
for i=1:n_words 
    complete_sentence=[complete_sentence ; ...   
       sentences{1}.test{i}]; 
end; 
 
best_path=HMM_gauss_viterbi(complete_sentence,sentence_HMM); 
plot_HMM2D_timeseries(complete_sentence,best_path); 
 
state_sequence=best_path(diff([ 0 best_path])~=0)+1; 
word_indices=state_sequence(ismember(state_sequence,word_i)); 
[tf,index]=ismember(word_indices,word_i); 
 
recognized_sentence={}; 
for j=1:length(index) 
    recognized_sentence{j}=words{index(j)}.word; 
end; 
recognized_sentence 

 
recognized_sentence =  
    'we'    'hear'    'why'    'you'    'are'    'here' 
 

We may finally compute again the word error rate on our complete test 

data (this is done in the accompanying MATLAB script). The final error 

rate of our word-based continuous speech recognizer is about 86.8%. This 

is only 2.4% less than when using pre-segmented words, which shows the 

efficiency of our sentence HMM model for both segmenting and 

classifying words. In practice, non segmented data is used for both training 

and testing, which could still slightly increase the word error rate. 

 

Fig. 4.20 Best path obtained by the Viterbi algorithm, from the sequence of 

feature vectors of the first test sentence. 
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4.3 Going further  

Dictation machines still differ from this proof-of-concept in several 

ways. Mel Frequency Cepstral Coefficients (MFCCs) are used in place of 

our (F1, F2) formants for the acoustic model. Their first and second time-

derivatives are added as features, as a simple way of accounting for the 

correlation between feature vectors within HMM states. Moreover, given 

the number of possible words in natural languages (several tens of 

thousands), ASR systems involve one additional layer in the statistical 

description of sentences: that of phonemes. The word HMMs we have 

trained above are replaced by phoneme HMMs. Word HMMs are 

themselves composed of phoneme HMMs (in the same way as we have 

built our sentence HMM from word HMMs), and additional pruning 

mechanisms are used in the decoder to constrain the search for the best 

sequence of words from the input feature vector sequence. 

Several MATLAB-based HMM toolboxes are publicly available, such 

as Kevin Murphy's (Murphy 2005), Steinar Thorvaldsen's (Thorvaldsen 

2005, applied to biology), or Olivier Cappé's (Cappé 2001). MATLAB 

also provides its own HMM toolbox under the Statistics Toolbox. The 

most famous HMM toolbox, originally developed for large vocabulary 

speech recognition, is the HTK toolkit developed at Cambridge University 

(in ANSI C; Young et al. 2006). 

4.4 Conclusion  

In this Chapter, we have seen how GMMs are used for the classification of 

(supposedly stationary) signals, and how HMMs provide a means of 

modeling non-stationary signals as sequences of stationary states. We have 

also implemented a simple bigram model, whose coupling with our word 

HMMs has resulted in a unique sentence HMM, able to perform 

continuous speech recognition, i.e., to find how many words are present in 

an incoming stream of feature vectors, and which words they are.  
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