
TROPER
HCRAESER

PAIDI

SUPPORT VECTOR MACHINES WITH A
REJECT OPTION

Yves Grandvalet        Joseph Keshet
Alain Rakotomamonjy        Stéphane Canu

Idiap-RR-01-2009

JANUARY 2009

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12  info@idiap.ch  www.idiap.ch





Support Vector Machines with a Reject Option

Yves Grandvalet 1, 2, Alain Rakotomamonjy 3, Joseph Keshet 2 and Stéphane Canu 3
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Abstract

We consider the problem of binary classification where the classifier may abstain
instead of classifying each observation. The Bayes decision rule for this setup,
known as Chow’s rule, is defined by two thresholds on posterior probabilities.
From simple desiderata, namely the consistency and the sparsity of the classifier,
we derive the double hinge loss function that focuses on estimating conditional
probabilities only in the vicinity of the threshold points of the optimal decision
rule. We show that, for suitable kernel machines, our approach is universally
consistent. We cast the problem of minimizing the double hinge loss as a quadratic
program akin to the standard SVM optimization problem and propose an active set
method to solve it efficiently. We finally provide preliminary experimental results
illustrating the interest of our constructive approach to devising loss functions.

1 Introduction

In decision problems where errors incur a severe loss, one may have to build classifiers that abstain
from classifying ambiguous examples. Rejecting these examples has been investigated since the
early days of pattern recognition. In particular, Chow (1970) analyses how the error rate may be
decreased thanks to the reject option.

There have been several attempts to integrate a reject option in Support Vector Machines (SVMs),
using strategies based on the thresholding of SVMs scores (Kwok, 1999) or on a new training cri-
terion (Fumera & Roli, 2002). These approaches have however critical drawbacks: the former is
not consistent and the latter leads to considerable computational overheads to the original SVM
algorithm and lacks some of its most appealing features like convexity and sparsity.

We introduce a piecewise linear and convex training criterion dedicated to the problem of classi-
fication with the reject option. Our proposal, inspired by the probabilistic interpretation of SVM
fitting (Grandvalet et al., 2006), is a double hinge loss, reflecting the two thresholds in Chow’s rule.
Hence, we generalize the loss suggested by Bartlett and Wegkamp (2008) to arbitrary asymmetric
misclassification and rejection costs. For the symmetric case, our probabilistic viewpoint motivates
another decision rule. We then propose the first algorithm specifically dedicated to train SVMs with
a double hinge loss. Its implementation shows that our decision rule is at least at par with the one of
Bartlett and Wegkamp (2008).

The paper is organized as follows. Section 2 defines the problem and recalls Bayes rule for binary
classification with a reject option. The proposed double hinge loss is derived in Section 3, together
with the decision rule associated with SVM scores. Section 4 addresses implementation issues: it
formalizes the SVM training problem and details an active set algorithm specifically designed for
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training with the double hinge loss. This implementation is tested empirically in Section 5. Finally,
Section 6 concludes the paper.

2 Problem Setting and the Bayes Classifier

Classification aims at predicting a class label y ∈ Y from an observed pattern x ∈ X . For this
purpose, we construct a decision rule d : X → A, where A is a set of actions that typically consists
in assigning a label to x ∈ X . In binary problems, where the class is tagged either as +1 or −1, the
two types of errors are: (i) false positive, where an example labeled−1 is predicted as +1, incurring
a cost c−; (ii) false negative, where an example labeled +1 is predicted as −1, incurring a cost c+.

In general, the goal of classification is to predict the true label for an observed pattern. However,
patterns close to the decision boundary are misclassified with high probability. This problem be-
comes especially eminent in cases where the costs, c− or c+, are high, such as in medical decision
making. In these processes, it might be better to alert the user and abstain from prediction. This
motivates the introduction of a reject option for classifiers that cannot predict a pattern with enough
confidence. This decision to abstain, which is denoted by 0, incurs a cost, r− and r+ for examples
labeled −1 and +1, respectively.

The costs pertaining to each possible decision are recapped on the right-
hand-side. In what follows, we assume that all costs are strictly positive:

c− > 0 , c+ > 0 , r− > 0 , r+ > 0 . (1)

Furthermore, it should be possible to incur a lower expected loss by
choosing the reject option instead of any prediction, that is

c− r+ + c+ r− < c− c+ . (2)

d
(x

)

y
+1 −1

+1 0 c−

0 r+ r−

−1 c+ 0

Bayes’ decision theory is the paramount framework in statistical decision theory, where decisions
are taken to minimize expected losses. For classification with a reject option, the overall risk is

R(d) = c+ EXY [Y = 1, d(X) = −1] + c− EXY [Y = −1, d(X) = 1] +
r+ EXY [Y = 1, d(X) = 0] + r− EXY [Y = −1, d(X) = 0] , (3)

where X and Y denote the random variable describing patterns and labels.

The Bayes classifier d∗ is defined as the minimizer of the risk R(d). Since the seminal paper of
Chow (1970), this rule is sometimes referred to as Chow’s rule:

d∗(x) =

{ +1 if P(Y = 1|X = x) > p+

−1 if P(Y = 1|X = x) < p−
0 otherwise ,

(4)

where p+ =
c− − r−

c− − r− + r+
and p− =

r−
c+ − r+ + r−

.

Note that, assuming that (1) and (2) hold, we have 0 < p− < p+ < 1.

One of the major inductive principle is the empirical risk minimization, where one minimizes the
empirical counterpart of the risk (3). In classification, this principle usually leads to a NP-hard
problem, which can be circumvented by using a smooth proxy of the misclassification loss. For
example, Vapnik (1995) motivated the hinge loss as a “computationally simple” (i.e., convex) surro-
gate of classification error. The following section is dedicated to the construction of such a surrogate
for classification with a reject option.

3 Training Criterion

One method to get around the hardness of learning decision functions is to replace the conditional
probability P(Y = 1|X = x) with its estimation P̂(Y = 1|X = x), and then plug this estimation
back in (4) to build a classification rule (Herbei & Wegkamp, 2006). One of the most widespread
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Figure 1: Double hinge loss function `p−,p+ for positive (left) and negative examples (right), with
p− = 0.4 and p+ = 0.8 (solid: double hinge, dashed: likelihood). Note that the decision thresholds
f+ and f− are not symmetric around zero.

representative of this line of attack is the logistic regression model, which estimates the conditional
probability using the maximum (penalized) likelihood framework.

As a starting point, we consider the generalized logistic regression model for binary classification,
where

P̂(Y = y|X = x) =
1

1 + exp(−yf(x))
, (5)

and the function f : X → R is estimated by the minimization of a regularized empirical risk on the
training sample T = {(xi, yi)}n

i=1

n∑
i=1

`(yi, f(xi)) + λΩ(f) , (6)

where ` is a loss function and Ω(·) is a regularization functional, such as the (squared) norm of f in
a suitable Hilbert space Ω(f) = ‖f‖2H, and λ is a regularization parameter. In the standard logistic
regression procedure, ` is the negative log-likelihoood loss

`(y, f(x)) = log(1 + exp(−yf(x))) .

This loss function is convex and decision-calibrated (Bartlett & Tewari, 2007), but it lacks an ap-
pealing feature of the hinge loss used in SVMs, that is, it does not lead to sparse solutions. This
drawback is the price to pay for the ability to estimate the posterior probability P(Y = 1|X = x)
on the whole range (0, 1) (Bartlett & Tewari, 2007).

However, the definition of the Bayes’ rule (4) clearly shows that the estimation of P(Y = 1|X = x)
does not have to be accurate everywhere, but only in the vicinity of p+ and p−. This motivates the
construction of a training criterion that focuses on this goal, without estimating P(Y = 1|X = x)
on the whole range as an intermediate step. Our purpose is to derive such a loss function, without
sacrifying sparsity to the consistency of the decision rule.

Though not a proper negative log-likelihood, the hinge loss can be interpreted in a maximum a
posteriori framework: The hinge loss can be derived as a relaxed minimization of negative log-
likelihood (Grandvalet et al., 2006). According to this viewpoint, minimizing the hinge loss aims
at deriving a loose approximation to the the logistic regression model (5) that is accurate only at
f(x) = 0, thus allowing to estimate whether P(Y = 1|X = x) > 1/2 or not. More generally,
one can show that, in order to have a precise estimate of P(Y = 1|X = x) = p, the surrogate loss
should be tangent to the neg-log-likelihood at f = log(p/(1− p)).

Following this simple constructive principle, we derive the double hinge loss, which aims at reliably
estimating P(Y = 1|X = x) at the threshold points p+ and p−. Furthermore, to encourage sparsity,
we set the loss to zero for all points classified with high confidence. This loss function is displayed in
Figure 1. Formally, for the positive examples, the double hinge loss satisfying the above conditions
can be expressed as

`p−,p+(+1, f(x)) = max
{
− (1− p−)f(x) + H(p−), −(1− p+)f(x) + H(p+), 0

}
, (7)
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and for the negative examples it can be expressed as
`p−,p+(−1, f(x)) = max

{
p+f(x) + H(p+), p−f(x) + H(p−), 0

}
, (8)

where H(p) = −p log(p)− (1− p) log(1− p). Note that, unless p− = 1− p+, there is no simple
symmetry with respect to the labels.

After training, the decision rule is defined as the plug-in estimation of (4) using the logistic regres-
sion probability estimation. Let f+ = log(p+/(1− p+)) and f− = log(p−/(1− p−)), the decision
rule can be expressed in terms of the function f as follows

dp−,p+(x; f) =

{ +1 if f(x) > f+

−1 if f(x) < f−
0 otherwise .

(9)

The following result shows that the rule dp−,p+(·; f) is universally consistent when f is learned by
minimizing empirical risk based on `p−,p+ . Hence, in the limit, learning with the double hinge loss
is optimal in the sense that the risk for the learned decision rule converges to the Bayes’ risk.
Theorem 1. Let H be a functional space that is dense in the set of continuous functions. Suppose
that we have a positive sequence {λn} with λn → 0 and nλ2

n/ log n →∞. We define f∗n as

arg min
f∈H

1
n

n∑
i=1

`p−,p+(yi, f(xi)) + λn‖f‖2H .

Then, limn→∞R(dp−,p+(X; f∗n)) = R(d∗(X)) holds almost surely, that is, the classifier
dp−,p+(·; f∗n) is strongly universally consistent.

Proof. Our theorem follows directly from (Steinwart, 2005, Corollary 3.15), since `p−,p+ is regular
(Steinwart, 2005, Definition 3.9). Besides mild regularity conditions that hold for `p−,p+ , a loss
function is said regular if, for every α ∈ [0, 1], and every tα such that

tα = arg min
t

α `p−,p+(+1, t) + (1− α) `p−,p+(−1, t) ,

we have that dp−,p+(tα,x) agrees with d∗(x) almost everywhere.

Let f1 = −H(p−)/p−, f2 = −(H(p+)−H(p−))/(p+ − p−) and f3 = H(p+)/(1− p+) denote
the hinge locations in `p−,p+(±1, f(x)). Note that we have f1 < f− < f2 < f+ < f3, and that

tα ∈


(−∞, f1] if 0 ≤ α < p−

[f1, f2] if α = p−
{f2} if p− < α < p+

[f2, f3] if α = p+

[f3,∞) if p+ < α ≤ 1

⇒ dp−,p+(tα,x) =


−1 if P(Y = 1|x) < p−

−1 or 0 if P(Y = 1|x) = p−
0 if p− < P(Y = 1|x) < p+

0 or + 1 if P(Y = 1|x) = p+

+1 if P(Y = 1|x) > p+

which is the desired result.

Note also that the analysis of Bartlett and Tewari (2007) can be used to show that minimizing `p−,p+

cannot provide consistent estimates of P(Y = 1|X = x) = p for p /∈ {p−, p+}. This property is
desirable regarding sparsity, since sparseness does not occur when the conditional probabilities can
be unambiguously estimated .

Note on a Close Relative A double hinge loss function has been proposed recently with a dif-
ferent perspective by Bartlett and Wegkamp (2008). Their formulation is restricted to symmetric
classification, where c+ = c− = 1 and r+ = r− = r. In this situation, rejection may occur
only if 0 ≤ r < 1/2, and the thresholds on the conditional probabilities in Bayes’ rule (4) are
p− = 1− p+ = r.

For symmetric classification, the loss function of Bartlett and Wegkamp (2008) is a scaled version
of our proposal that leads to equivalent solutions for f , but our decision rule differs. While our
probabilistic derivation of the double hinge loss motivates the decision function (9), the decision rule
of Bartlett and Wegkamp (2008) has a free parameter (corresponding to the threshold f+ = −f−)
whose value is set by optimizing a generalization bound.

Our decision rule rejects more examples when the loss incurred by rejection is small and fewer
examples otherwise. The two rules are identical for r ' 0.24. We will see in Section 5 that this
difference has noticeable outcomes.
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4 SVMs with Double Hinge

In this section, we show how the standard SVM optimization problem is modified when the hinge
loss is replaced by the double hinge loss. The optimization problem is first written using a compact
notation, and the dual problem is then derived.

4.1 Optimization Problem

Minimizing the regularized empirical risk (6) with the double hinge loss (7–8) is an optimization
problem akin to the standard SVM problem. Let C be an arbitrary constant, we define D = C(p+−
p−), Ci = C(1 − p+) for positive examples, and Ci = Cp− for negative examples. With the
introduction of slack variables ξ and η, the optimization problem can be stated as

min
f,b,ξ,η

1
2
‖f‖2H +

n∑
i=1

Ciξi + D

n∑
i=1

ηi

s. t. yi(f(xi) + b) ≥ ti − ξi i = 1, . . . , n
yi(f(xi) + b) ≥ τi − ηi i = 1, . . . , n
ξi ≥ 0 , ηi ≥ 0 i = 1, . . . , n ,

(10)

where, for positive examples, ti = H(p+)/(1− p+), τi = −(H(p−)−H(p+))/(p− − p+), while,
for negative examples ti = H(p−)/p−, τi = (H(p−)−H(p+))/(p− − p+).

For functions f belonging to a Hilbert space H endowed with a reproducing kernel k(·, ·), efficient
optimization algorithms can be drawn from the dual formulation:

min
α,γ

1
2
γT Gγ − τT γ − (t− τ )T α

s. t. yT γ = 0
0 ≤ αi ≤ Ci i = 1, . . . , n
0 ≤ γi − αi ≤ D i = 1, . . . , n .

(11)

where y = (y1, . . . , yn)T , t = (t1, . . . , tn)T and τ = (τ1, . . . , τn)T are vectors of Rn and G is the
n × n Gram matrix with general entry Gij = yiyjk(xi,xj). Note that (11) is a simple quadratic
problem under box constraints. Compared to the standard SVM dual problem, one has an additional
vector to optimize, but, with the active set we developed, we only have to optimize a single vector of
Rn. The primal variables f and b are then derived from the Karush-Kuhn-Tucker (KKT) conditions.
For f , we have: f(·) =

∑n
i=1 γiyik(·,xi), and b is obtained in the optimization process described

below.

4.2 Solving the Problem

To solve (11), we use an active set algorithm, following a strategy that proved to be efficient in
SimpleSVM (Vishwanathan et al., 2003). This algorithm solves the SVM training problem by a
greedy approach, in which one solves a series of small problems. First, the repartition of training
examples in support and non-support vectors is assumed to be known, and the training criterion is
optimized considering that this partition fixed. Then, this optimization results in an updated partition
of examples in support and non-support vectors. These two steps are iterated until some level of
accuracy is reached.

Partitioning the Training Set The training set is partitioned into five subsets defined by the ac-
tivity of the box constraints of Problem (11). The training examples indexed by:

I0 , defined by I0 = {i|γi = 0}, are such that yi(f(xi) + b) > ti;
It , defined by It = {i|0 < γi < Ci}, are such that yi(f(xi) + b) = ti;
IC , defined by IC = {i|γi = Ci}, are such that τi < yi(f(xi) + b) ≤ ti;
Iτ , defined by Iτ = {i|Ci < γi < Ci + D}, are such that yi(f(xi) + b) = τi;
ID , defined by ID = {i|γi = Ci + D}, are such that yi(f(xi) + b) ≤ τi.

When example i belongs to one of the subsets described above, the KKT conditions yield that αi

is either equal to γi or constant. Hence, provided that the repartition of examples in the subsets I0,
It, IC , Iτ and ID is known, we only have to consider a problem in γ. Furthermore, γi has to be
computed only for i ∈ It ∪ Iτ .
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Updating Dual Variables Assuming a correct partition, Problem (11) reduces to the considerably
smaller problem of computing γi for i ∈ IT = It ∪ Iτ :

min
{γi|i∈IT }

1
2

∑
i∈IT ,j∈IT

γiγjGij −
∑
i∈IT

γisi

s. t.
∑
i∈IT

yiγi +
∑
i∈IC

Ciyi +
∑
i∈ID

(Ci + D) yi = 0 ,
(12)

where si = ti −
∑

j∈IC
CjGji −

∑
j∈ID

(Cj + D) Gji for i ∈ It and si = τi −
∑

j∈IC
CjGji −∑

j∈ID
(Cj + D) Gji for i ∈ Iτ . Note that the box constraints of Problem (11) do not appear here,

because we assumed the partition to be correct.

The solution of Problem (12) is simply obtained by solving the following linear system resulting
from the first-order optimality conditions:

∑
j∈IT

Gijγj + yiλ = si for i ∈ IT∑
i∈IT

yiγi = −
∑
i∈IC

Ciyi −
∑
i∈ID

(Ci + D) yi ,
(13)

where λ, which is the (unknown) Lagrange parameter associated to the equality constraint in (12),
is computed along with γ. Note that the |IT | equations of the linear system given on the first line
of (13) express that, for i ∈ It, yi(f(xi) + λ) = ti and for i ∈ Iτ , yi(f(xi) + λ) = τi. Hence, the
primal variable b is equal to λ.

Algorithm The algorithm, described in Algorithm 1, simply alternates updates of the partition of
examples in {I0, It, IC , Iτ , ID}, and the ones of coefficients γi for the current active set IT . As for
standard SVMs, the initialization step consists in either using the solution obtained for a different
hyper-parameter, such as a higher value of C, or in picking one or several examples of each class to
arbitrarily initialize It to a non-empty set, and putting all the other ones in I0 = {1, . . . , n} \ It.

Algorithm 1 SVM Training with a Reject Option
input {xi, yi}1≤i≤n and hyper-parameters C, p+, p−

initialize γold IT = {It, Iτ}, IT = {I0, IC , ID},
repeat

solve linear system (13) → (γi)i∈IT
, b = λ.

if any (γi)i∈IT
violates the box constraints (11) then

Compute the largest ρ s. t., for all i ∈ IT γnew
i = γold

i + ρ(γi − γold
i ) obey box constraints

Let j denote the index of (γnew
i )i∈IT

at bound,
IT = IT \ {j}, IT = IT ∪ {j}
γold

j = γnew
j

else
for all i ∈ IT do γnew

i = γi

if any (yi(f(xi) + b))i∈IT
violates primal constraints (10) then

select i with violated constraint
IT = IT \ {i}, IT = IT ∪ {i}

else
exact convergence

end if
for all i ∈ IT do γold

i = γnew
i

end if
until convergence

output f , b.

The exact convergence is obtained when all constraints are fulfilled, that is, when all examples be-
long to the same subset at the begining and the end of the main loop. However, it is possible to relax
the convergence criteria while having a good control on the precision on the solution by monitor-
ing the duality gap, that is the difference between the primal and the dual objectives, respectively
provided in the definition of Problems (10) and (11).
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Table 1: Performances in terms of average test loss, rejection rate and misclassification rate (re-
jection is not an error) with r+ = r− = 0.45, for the three rejection methods over four different
datasets.

.

Average Test Loss Rejection rate (%) Error rate (%)
Wdbc Naive 2.9 ± 1.6 0.7 2.6

B&W’s 3.5 ± 1.8 3.9 1.8
Our’s 2.9 ± 1.7 1.2 2.4

Liver Naive 28.9 ± 5.4 3.3 27.4
B&W’s 30.9 ± 4.0 34.5 15.4
Our’s 28.8 ± 5.1 7.9 25.2

Thyroid Naive 4.1 ± 2.9 0.9 3.7
B&W’s 4.4 ± 2.7 6.1 1.6
Our’s 3.7 ± 2.7 2.1 2.8

Pima Naive 23.7 ± 1.9 7.5 20.3
B&W’s 24.7 ± 2.1 24.3 13.8
Our’s 23.1 ± 1.3 6.9 20.0

Theorem 2. Algorithm 1 converges in a finite number of steps to the exact solution of (11).

Proof. The proof follows the ones used to prove the convergence of active set methods in general,
and SimpleSVM in particular, see Propositon 1 in (Vishwanathan et al., 2003)).

5 Experiments

We compare the performances of three different rejection schemes based on SVMs. For this purpose,
we selected the datasets from the UCI repository related to medical problems, as medical decision
making is an application domain for which rejection is of primary importance. Since these datasets
are small, we repeated 10 trials for each problem. Each trial consists in splitting randomly the
examples into a training set with 80 % of examples and an independent test set. Note that the
training examples were normalized to zero-mean and unit variance before cross-validation (test sets
were of course rescaled accordingly).

In a first series of experiments, to compare our decision rule with the one proposed by Bartlett and
Wegkamp (2008) (B&W’s), we used symmetric costs: c+ = c− = 1 and r+ = r− = r. We
also chose r = 0.45, which corresponds to rather low rejection rates, in order to favour different
behaviors between these two decision rules (recall that they are identical for r ' 0.24). Besides
the double hinge loss, we also implemented a “naive” method that consists in running the standard
SVM algorithm (using the hinge loss) and selecting a symmetric rejection region around zero by
cross-validation.

For all methods, we used Gaussian kernels. Model selection is performed by cross-validation. This
includes the selection of the kernel widths, the regularization parameter C for all methods and
additionally of the rejection thresholds for the naive method. Note that B&W’s and our decision
rules are based on learning with the double-hinge loss. Hence, the results displayed in Table 1 only
differ due to the size of the rejection region, and to the disparities that arise from the choice of
hyper-parameters that may arise in the cross-validation process (since the decision rules differ, the
cross-validation scores differ also).

Table 1 summarizes the averaged performances over the 10 trials. Overall, all methods lead to
equivalent average test losses, with an unsignificant but consistent advantage for our decision rule.
We also see that the naive method tends to reject fewer test examples than the consistent methods.
This means that, for comparable average losses, the decision rules based on the scores learned by
minimizing the double hinge loss tend to classify more accurately the examples that are not rejected,
as seen on the last column of the table.

For noisy problems such as Liver and Pima, we observed that reducing rejection costs considerably
decrease the error rate on classified examples (not shown on the table). The performances of the
two learning methods based on the double-hinge get closer, and there is still no significant gain
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compared to the naive approach. Note however that the symmetric setting is favourable to the naive
approach, since we only have to estimate a single decision thershold. We are experimenting to see
whether the double-hinge loss shows more substantial improvements for asymmetric losses and for
larger training sets.

6 Conclusion

In this paper we proposed a new solution to the general problem of classification with a reject
option. The double hinge loss was derived from the simple desiderata to obtain accurate estimates
of posterior probabilities only in the vicinity of the decision boundaries. Our formulation handles
asymmetric misclassification and rejection costs and compares favorably to the one of Bartlett and
Wegkamp (2008).

We showed that for suitable kernels, including usual ones such as the Gaussian kernel, training a
kernel machine with the double hinge loss provides a universally consistent classifier with reject
option. Furthermore, the loss provides sparse solutions, with a limited number of support vectors,
similarly to the standard L1-SVM classifier.

We presented what we believe to be the first principled and efficient implementation of SVMs for
classification with a reject option. Our optimization scheme is based on an active set method, whose
complexity compares to standard SVMs. The dimension of our quadratic program is bounded by
the number of examples, and is effectively limited to the number of support vectors. The only
computational overhead is brought by monitoring five categories of examples, instead of the three
ones considered in standard SVMs (support vector, support at bound, inactive example).

Our approach for deriving the double hinge loss can be used for other decision problems relying
on conditional probabilities at specific values or in a limited range or values. As a first example,
one may target the estimation of discretized confidence ratings, such as the ones reported in weather
forecasts. Multi-category classification also belongs to this class of problems, since there, decisions
rely on having precise conditional probabilities within a predefined interval.
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