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Abstract. The Support Vector Machine (SVM) is an acknowledged powerful toolfor building classifiers, but
it lacks flexibility, in the sense that the kernel is chosen prior to learning. Multiple Kernel Learning (MKL)
enables to learn the kernel, from an ensemble of basis kernels, whose combination is optimized in the learning
process. Here, we propose Composite Kernel Learning to address the situation where distinct components
give rise to a group structure among kernels. Our formulation of the learning problem encompasses several
setups, putting more or less emphasis on the group structure. We characterize the convexity of the learning
problem, and provide a general wrapper algorithm for computing solutions. Finally, we illustrate the behavior
of our method on multi-channel data where groups correpond to channels.
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1 Motivation

Kernel methods have been extensively used in learning problems (Scḧolkopf & Smola, 2001). In these models,
the observations are implicitly mapped in a feature space via a mappingΦ : X → H, whereH is a Reproducing
Kernel Hilbert Space (RKHS) with reproducing kernelK : X × X → R.

We address the problem of learning the kernel in Support Vector Machines (SVM) and related methods.
Indeed, the kernel is crucial in many respects, and its relevance is essential to the success of kernel methods.
Formally, the primary role ofK is to define the evaluation functional inH: ∀f ∈ H, f(x) = 〈f,K(x, ·)〉H ,
but K also defines (i)H itself, since∀f ∈ H, f(x) =

∑∞
i=1 αiK(xi,x) ; (ii) a metric, and hence a

smoothness functional inH: ‖f‖2
H =

∑∞
i=1

∑∞
j=1 αiαjK(xi,xj) ; (iii) a distance between observations:

‖Φ(x) − Φ(x′)‖2 = K(x,x) + K(x′,x′) − 2K(x,x′) .
In this paper, we devise Composite Kernel Learning (CKL), a framework where the kernel is learned in a

way to favor the selection of variables or groups of variables. Section 2 motivates our approach while briefly
reviewing the different means proposed to extend kernel methods beyond the predefined kernel setup. We then
follow in Section 3 by considering some recent developmentsin variable selection that are relevant for our aims.
Section 4 describes the CKL framework; the optimization algorithm is provided in Section 5, and experiments
are reported in Section 6.

2 Flexible Kernel Methods

From now on, we restrict our discussion to classification, where, from a learning setS = {(xi, yi)}
n
i=1 of pairs

of observations and label(xi, yi), one aims at building a decision rule that predicts the classlabel y of any
observationx. We furthermore focus on the binary case, where(xi, yi) ∈ X × {±1}. However, it should be
kept in mind that most of our observations carry on to other settings, such as multiclass classification, clustering
or regression with kernel methods.

2.1 Support Vector Machines

A SVM builds the decision rulesign (f⋆(x) + b⋆), wheref⋆ andb⋆ are defined as the solution of














min
f,b,ξ

1
2‖f‖

2
H + C

n
∑

i=1

ξi

s. t. yi

(

f(xi) + b
)

≥ 1 − ξi 1 ≤ i ≤ n
ξi ≥ 0 1 ≤ i ≤ n .

(1)

The regularization parameterC is the only adjustable parameter in this procedure. This is usually not flexible
enough to provide good results when the kernel is chosen prior to seeing data. Hence, most applications of
SVM incorporate a mechanism for learning the kernel.

2.2 Learning the Kernel

Cross-validation is the most rudimentary, but also the mostcommon way to learn the kernel. It consists in
(i) defining a family of kernels (e.g. Gaussian), indexed by one or more parameters (e.g. bandwidth), the
so-called kernel hyper-parameters, (ii) running the SVM algorithm on each hyper-parameter setting, and (iii)
finally choosing the hyper-parameter minimizing a cross-validation score.

A thorough discussion of the pros and cons of cross-validation is out of the scope of this paper, but it is clear
that this approach is inherently limited to one or two hyper-parameters and few trial values. This observation
led to several proposals allowing for more flexibility.

2.2.1 Filters, Wrappers & Embedded Methods

Learning the kernel amounts to learn the feature mapping. Itshould thus be of no surprise that the approaches
investigated bear some similarities with the ones developed for variable selection, where one encounters filters,
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wrappers and embedded methods (Guyon & Elisseeff, 2003). Some general frameworks do not belong to a
single category but the distinction is appropriate in most cases.

In filter approaches, the kernel is adjusted before buildingthe SVM, with no explicit relationship to the
objective value of Problem (1). For example, the kernel target alignment of Cristianini et al. (2002) adapts the
kernel to the available data without training any classifier.

In wrapper algorithms, the SVM solver is the inner loop of twonested optimizers, whose outer loop is
dedicated to adjust the kernel. This tuning may be guided by various generalization bounds (Cristianini et al.,
1999; Weston et al., 2001; Chapelle et al., 2002).

Kernel learning can also be embedded in Problem (1), with theSVM objective value minimized jointly
with respect to the SVM parameters and the kernel hyper-parameters (Grandvalet & Canu, 2003). Our ap-
proach, which belongs to this family of methods, is based on the Multiple Kernel Learning (MKL) framework
(Lanckriet et al., 2004).

2.2.2 Multiple Kernel Learning

MKL is a joint optimization problem of the coefficients of theSVM classifier and a convex combination of
kernels that defines the actual SVM kernel

K(x,x′) =

M
∑

m=1

σmKm(x,x′) , (2)

where each kernelKm is associated to a RKHSHm whose elements will be denotedfm, and{σm}M
m=1 are

coefficients to be learned under the convex combination constraints

M
∑

m=1

σm = 1 , σm ≥ 0 , 1 ≤ m ≤ M . (3)

Bach et al. (2004) proposed the following formulation of MKL1:



















min
f1,...,fM ,

b,ξ

1
2

(
∑

m
‖fm‖Hm

)2
+ C

∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n ,

(4)

whose solution leads to a decision rule of the formsign (
∑

m f⋆
m(x) + b⋆). This expression of the learning

problem is remarkable in that it only deviates slightly fromthe original SVM problem (1). The squared RKHS
norm inH is simply replaced by a mixed-norm, with the standard RKHS norm within each feature spaceHm,
and anℓ1 norm in R

M on the vector built by concatenating these norms. Thisℓ1 norm encourages sparse
solutions, that is, solutions where some functionsfm have zero norm. In this respect, the MKL problem may
be seen as the kernelization of the group-LASSO (Yuan & Lin, 2006).

2.2.3 Composite Kernel Learning

When the individual kernelsKm represent a series, such as Gaussian kernels with differentscale parameters,
MKL may be used as an alternative to cross-validation. When the input data originates fromM differents
sources, and that each kernel is affiliated to one input variable, MKL can be used to select relevant input
variables.

However, MKL is not meant to address problems where several kernels pertain to one input variable. In
this situation, the sparseness mechanism of MKL does not favor solutions discarding all the kernels computed

1To lighten notations, the range of indexes is often omitted insummations, in which case: indexesi andj refer to examples and go
from 1 ton; indexm refers to kernels and goes from 1 toM ; indexℓ refers to groups of kernels and goes from 1 toL.
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from an irrelevant input. Although most of the related coefficients should vanish in combination (2), spurious
correlation may cause irrelevant input variables to participate to the solution.

The flat combination of kernels in MKL does not include a mechanism to cluster the kernels related to one
input variable. In order to favor the selection of kernels within predefined groups, one has to define a group
structure among kernels, which will guide the selection process through a structured kernel combination. This
type of hierarchy among variables has been investigated in linear models (Szafranski et al., 2008; Zhao et al., to
appear). We briefly recapitulate the general framework in the following section, before discussing its adaptation
to kernel learning in Section 4.

3 Grouped and Hierarchical Selection

The introduction ofℓ1 penalties, with the seminal paper of Tibshirani (1996) on the LASSO, gave rise to many
important theoretical and practical advances in the statistics and machine learning fields. As stated in Section
2.2.2, MKL itself belongs to the series of algorithms affiliated to the LASSO, through its relationship with
group-LASSO. In this lineage, Zhao et al. (to appear) definedthe very general Composite Absolute Penalties
(CAP) family.

3.1 Composite Absolute Penalties

Consider a linear model withM parameters,β = (β1, . . . , βM )t, and letI = {1, . . . ,M} be a set of index
on these parameters. A group structure on the parameters is defined by a series ofL subsets{Gℓ}

L
ℓ=1, where

Gℓ ⊆ I. Additionally, let{γℓ}
L
ℓ=0 beL + 1 norm parameters. Then, the member of the CAP family for the

chosen groups and norm parameters is

Ω =
∑

ℓ

(

∑

m∈Gℓ

|βm|γℓ

)γ0/γℓ

. (5)

Mixed-norms correspond to groups defined as a partition of the set of variables. A CAP may also rely on
nested groups,G1 ⊂ G2 ⊂ . . . ⊂ GL, andγ0 = 1, in which case it favors what Zhao et al. call hierarchical
selection, that is, the selection of groups of variables in the predefined order{I \GL}, {GL\GL−1}, . . . , {G2\
G1}, G1. This example is provided here to stress that Zhao et al.’s notion of hierarchy differs from the one that
follows.

3.2 Hierarchical Penalization

Hierarchical penalization uses shrinking coefficients to transform a ridge-like penalty into a sparse penalizer
(Szafranski et al., 2008). The model parameterized byβ is fitted by minimizing a differentiable loss function
J(·), subject to a ridge penalty with adaptive coefficients that encourages sparseness among and within groups:



















min
β,σ1,σ2

J(β) + λ
∑

ℓ

∑

m∈Gℓ

β2

m√
σ1,ℓ σ2,m

s. t.
∑

ℓ

dℓ σ1,ℓ = 1 , σ1,ℓ ≥ 0 1 ≤ ℓ ≤ L
∑

m
σ2,m = 1 , σ2,m ≥ 0 1 ≤ m ≤ M .

(6)

The Lagrange parameterλ controls the amount of shrinkage, anddℓ is the size of groupℓ. The constraints
expressed on the two last lines encourage sparseness inσ1,ℓ andσ2,m, which induces sparseness inβm.

Here, the groupsGℓ form a partition ofI, and the hierarchy refers to the tree-structure of the shrinking
coefficients:σ2,m shrinks parameterβm, while σ1,ℓ shrinks the parameters for groupGℓ. In the words of Zhao
et al., the objective here is grouped variable selection.

The minimizer of Problem (6) is the minimizer of

min
β

J(β) + λ

(

∑

ℓ

d
1/4
ℓ

(

∑

m∈Gℓ

|βm|4/3
)3/4

)2

,
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which is essentially a CAP estimate, where parameterdℓ only accounts for the group sizes (Szafranski et al.,
2008). The innerℓ4/3 norm and the outerℓ1 norm form a mixed-norm penalty that will be denotedℓ(4/3,1).
The overall penalizer favors sparse solutions at the group level, with few leading coefficients within the selected
groups.

4 From Multiple to Composite Kernels

MKL has been formalized as a quadratically constrained program by Lanckriet et al. (2004), then as a second-
order cone program by Bach et al. (2004). More recently, other formulations led to wrapper algorithms, where
the optimization with respect to kernel hyper-parameters is still based on the SVM objective value, but is
performed in an outer loop that wraps a standard SVM solver. The outer loop is cutting planes for Sonnenburg
et al. (2006), and gradient descent for Rakotomamonjy et al.(2007). Wrapper algorithms have appealing
features: (i) they benefit from the developments of solvers specifically tailored for the SVM problem in the
inner loop; (ii) they allow to address large-scale problems; (iii) they are multipurpose, since the SVM inner
loop may be replaced by another algorithm with little or no adjustments.

We chose to build on gradient-based MKL. First, it has been shown to be more efficient than the SILP
approach of Sonnenburg et al. (2006), thanks to the stability of the updates performed in the outer loop, which
induces good initializations for the inner loop solver (Rakotomamonjy et al., 2007). Second, and even more
important for our purpose, gradient-based MKL is amenable to the extension to groups of kernels, thanks to
the formulation of hierarchical penalization of Section 3.2.

4.1 Variational Multiple Kernel Learning

Problem (4) is not differentiable at‖fm‖Hm
= 0, a difficulty that causes a considerable algorithmic burden.

The MKL formulation of Rakotomamonjy et al. (2007) can be viewed as a variational form of Problem (4),
whereM new variablesσ1, . . . , σM are introduced in order to avoid these differentiability issues. The resulting
problem, which is equivalent to Problem (4), is stated as:































min
f1,...,fM ,

b,ξ,σ

1
2

∑

m

1
σm

‖fm‖2
Hm

+ C
∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n
∑

m
σm = 1 , σm ≥ 0 1 ≤ m ≤ M .

(7)

Here and in what follows,u/v is defined by continuation at zero asu/0 = ∞ if u 6= 0 and0/0 = 0.

The constraints expressed on the last line encourage sparseness inσm, which induces sparseness infm. As
already mentioned in Section 2.2.2, the sparseness appliesat the kernel level, ignoring the group structure. The
latter is taken into account in the formulation proposed in the following section.

4.2 Variational Composite Kernel Learning

Here, we build on the variational form of the composite absolute penalties presented in Section 3.2 to take
into account the group structure. Hierarchical penalization can deal with kernel methods if the ridge penalties
are replaced by RKHS norms. We first generalize Problem (6) toobtain smooth variational formulations for
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arbritrary mixed-norm penalties, so that to address a wide variety of problems including MKL:











































min
f1,...,fM ,

b,ξ,σ1,σ2

1
2

∑

ℓ

σ−p
1,ℓ

∑

m∈Gℓ

σ−q
2,m‖fm‖2

Hm
+ C

∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n
∑

ℓ

dℓ σ1,ℓ = 1 , σ1,ℓ ≥ 0 1 ≤ ℓ ≤ L
∑

m
σ2,m = 1 , σ2,m ≥ 0 1 ≤ m ≤ M,

(8)

wherep andq are exponents to be set according to the problem at hand.
This formulation, which is difficult to optimize, is simplified by replacing the two shrinking coefficientsσ1

andσ2 by σ, defined byσm = σp
1,ℓσ

q
2,m. In a first step, we consider the change of variable that mapsσ2 to σ.

Whenq 6= 0, this mapping is one-to-one providedσ1,ℓ 6= 0. Furthermore, ifσ⋆
1,ℓ andσ⋆

2,m denote the optimal
σ1,ℓ andσ2,m values for Problem (8), we have thatσ⋆

1,ℓ = 0 ⇒ σ⋆
2,m = 0, hence Problem (8) is equivalent to























































min
f1,...,fM ,

b,ξ,σ1,σ

1
2

∑

m

1
σm

‖fm‖2
Hm

+ C
∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n
∑

ℓ

dℓ σ1,ℓ = 1 , σ1,ℓ ≥ 0 1 ≤ ℓ ≤ L

∑

ℓ

σ
−p/q
1,ℓ

∑

m∈Gℓ

σ
1/q
m ≤ 1

σm ≥ 0 1 ≤ m ≤ M .

(9)

The new problem is simplified further by showing thatσ1 can be dropped out from the optimization process,
leading to the following formulation of Composite Kernel Learning (CKL):















































min
f1,...,fM ,

b,ξ,σ

1
2

∑

m

1
σm

‖fm‖2
Hm

+ C
∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n

∑

ℓ

(

dp
ℓ

(

∑

m∈Gℓ

σ
1/q
m

)q
)1/(p+q)

≤ 1

σm ≥ 0 1 ≤ m ≤ M ,

(10)

Before considering particular settings of interest, we state below two helpful propositions. The first one
gives a more interpretable formulation of Problem (10); thesecond one presents the conditions for convexity of
formulation (10), that will guaranty the convergence towards the global minimum for the algorithm described
in Section 5.

Proposition 1. CAP Formulation: Problem (10) is equivalent to the following MKL problem witha CAP-like
penalty on the RKHS norms:























min
f1,...,fM ,

b,ξ

1
2

(

∑

ℓ

dγ∗

ℓ

(
∑

m∈Gℓ

‖fm‖γ
Hm

)γ0/γ
)2/γ0

+ C
∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n,

(11)

with γ = 2
q+1 , γ0 = 2

p+q+1 andγ∗ = 1 − γ0

γ .
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Sketch of proof.LetL be the Lagrangian of problem (10). The optimality conditions forσm are obtained from
the first order optimality conditions forσm ( ∂L

∂σm
= 0):

σm =
(

∑

ℓ

dγ∗

ℓ s
γ0/γ
ℓ

)(γ0−2)/γ0

d−γ∗

ℓ sγ∗

ℓ ‖fm‖2−γ
Hm

, (12)

wheresℓ =
∑

m∈Gℓ

‖fm‖γ
Hm

. Plugging this expression in Problem (10) yields the claimedresult.

Note that the outer exponent2γ0

only influences the strength of the penalty, not its type. Hence, the penalty
in the objective function (11) differs from (5) in the RKHS norms ‖ · ‖Hm

and in the parametersdℓ that
accommodate for group sizes.

Proposition 2. Conditions for Convexity: Problem (10) is convex if and only if0 ≤ q ≤ 1 and0 ≤ p+ q ≤ 1.

Proof. A problem minimizing a convex criterion on a convex set is convex. The objective function of Problem
(10) is convex (Boyd & Vandenberghe, 2004, p. 89). The first, second and fourth constraints define convex

sets, and the third one also provided (i)
(

∑

m∈Gℓ
σ

1/q
m

)q

is a norm, that is0 ≤ q ≤ 1, and (ii)
∑

ℓ t
1/(p+q)
ℓ is

convex intℓ, that is0 ≤ p + q ≤ 1.

Within the values ofp andq ensuring convexity, we pick the following particular casesof interest:

• p = 0, q = 1 yields a LASSO type penalty on the RKHS norms. It results in the generalization of the
group-LASSO known as MKL, as formulated in (4);

• p = 1, q = 0 yields a group-LASSO type penalty on the RKHS norms. It results in another MKL, with
L effective kernelsKℓ, defined asKℓ =

∑

m∈Gℓ

Km;

• p = q = 1
2 yields a hierarchical-penalization type penalty on the RKHS norms. It is a true CKL, where

there areM effective kernels, and where the penalty favors sparse solutions at the group level, with few
leading kernels within the selected groups.

Hence, whenp goes from zero to one, withq = 1 − p, the penalty gives more and more emphasis to the group
structure. For most applications where convexity is a key issue, we recommend the balanced setupp = q = 1

2 .
Note however that convex penalties restrict the sparsenessof the solution to either the group level or the

kernel level. In Section 6, we will illustrate that giving upconvexity may turn out to be an interesting option
when considering interpretability issues.

5 Algorithm

Our approach to solve Problem (10) draws on the MKL algorithmof Rakotomamonjy et al. (2007). We use the
wrapper scheme described below, where the outer loop is carried out by a projected gradient descent update.

5.1 A Gradient-Based Wrapper

The wrapper scheme considers the following constrained optimization problem:



















min
σ

J(σ)

s. t.
∑

ℓ

(

dp
ℓ

(

∑

m
σ

1/q
m

)q
)1/(p+q)

≤ 1

σm ≥ 0, 1 ≤ m ≤ M ,



IDIAP–RR 08-59 9

whereJ(σ) is defined as the objective value of



















min
f1,...,fM ,

b,ξ

1
2

∑

ℓ

∑

m∈Gℓ

1
σm

‖fm‖2
Hm

+ C
∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi , 1 ≤ i ≤ n

ξi ≥ 0 , 1 ≤ i ≤ n .

(13)

The global optimization problem consists thus of two nestedproblems. In the inner loop, the criterion is
optimized with respect tof1, . . . , fM , b andξ, considering that the coefficientsσ are fixed. In the outer loop,
σ is updated to decrease the criterion, withfm, b andξ being fixed.

Equation (12) may be used to updateσ in closed form. However, this approach lacks convergence guar-
antees and may lead to numerical problems, in particular when some elements ofσ approach zero. Hence,
following Rakotomamonjy et al. (2007), we use that the objective functionJ(σ) is actually an optimal SVM
objective value to updateσ by an efficient projected gradient descent scheme.

i

5.2 Computing the Gradient

The dual formulation offers a convenient means to compute the gradient∇J(σ). The derivation of the La-
grangian of Problem (13), which is omitted here for brevity,shows that its dual formulation is identical to the
one of a standard SVM using the aggregated kernelKσ defined in Equation (2). Hence, the dual problem takes
the usual form















max
α

− 1
2

∑

i,j

αiαjyiyjKσ(xi,xj) +
∑

i

αi

s. t.
∑

i

αiyi = 0

C ≥ αi ≥ 0 1 ≤ i ≤ n ,

(14)

which can be solved by any SVM solver.
As J(σ) is defined as the optimal objective value of the convex Problem (13) for which strong duality

applies,J(σ) is also the dual objective value:

J(σ) = −
1

2

∑

i,j

α⋆
i α

⋆
jyiyjKσ(xi,xj) +

∑

i

α⋆
i , (15)

whereα⋆ solves Problem (14).
The existence and computation of the derivatives ofJ(·) follow from general results on optimal values,

such as Theorem 4.1 of Bonnans and Shapiro (1998), which, in anutshell states that the differentiability of
J(σ) is ensured by the unicity ofα⋆, and by the differentiability of (15).2 Furthermore, the derivatives of
J(σ) can be computed as ifα⋆ were not to depend onσ. Thus, the gradient∇J(σ) is simply

∂J

∂σm
= −

1

2

∑

i,j

α⋆
i α

⋆
jyiyjKm(xi,xj) .

5.3 CKL Algorithm

Now, we have all the ingredients to adapt the machinery developed for MKL by Rakotomamonjy et al. (2007).
According to the process described in Section 5.1, we propose Algorithm 1.

The stopping criterion for assessing the convergence of theouter loop can be based on standard criteria for
gradient-based algorithms or on the duality gap. In the following experiments, it is based on the stability ofσ

andJ(σ).

2The unicity ofα⋆ is ensured provided that the Gram matrix built from kernelKσ is positive-definite. To enforce this property, a small
ridge may be added to the diagonal.
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Algorithm 1 Composite Kernel Learning
initialize σ

solve the SVM problem→ J(σ)
repeat

compute directiond = −∇J(σ)
repeat

computed′, the projection ofd onto the tangent of the surface of the admissible set
compute the smallest step that nullifies a component ofσ

S =
{

j : d′j < 0 andσj 6= 0
}

ν = min
j∈S

−
σj

d′j
k = arg min

j∈S
−

σj

d′j
dk = 0

σ† = σ + ν d′

projectσ† onto the surface of the admissible set
solve the SVM problem→ J(σ†)
if J(σ†) < J(σ) then σ = σ†

until J(σ†) ≥ J(σ)
computeν⋆ = arg minν J(σ + ν d)
σ = σ + ν⋆ d

until convergence

6 Channel Selection for BCI

This experiment deals with single trial classification of EEG signals coming from Brain-Computer Interface
(BCI). Depending on each BCI paradigm, these EEG signals arerecorded from specific electrode positions.
However, as stated by Schröder et al. (2005), automated channel selection should be performed for each
single subject since it leads to better performances or a substantial reduction of the number of useful channels.
Reducing the number of channels involved in the decision function is of primary importance for BCI real-life
applications, since it makes the acquisition system easierto use and to set-up.

We use here the dataset from the BCI 2003 competition for the task of interfacing the P300 Speller
(Blankertz et al., 2004). The dataset consists in7560 EEG signals paired with positive or negative stimuli
responses. The signal, processed as in (Rakotomamonjy et al., 2005), leads to7560 examples of dimension
896 (14 time frames for each of the64 channels).

The experimental protocol is then the following: we have randomly picked567 training examples from the
datasets and used the remaining as testing examples. For each parameter,C has been selected by retaining a
small part of the training set as a validation set, for selecting the parameter which the highest AUC. This overall
procedure has been repeated10 times. Using a small part of the examples for training can be justified by the
use of ensemble of SVMs (that we do not consider here) on a latter stage of the EEG classification procedure
(Rakotomamonjy et al., 2005), and the AUC performance measure is justified by how the EEG recognition is
transformed into selected character in the P300.

The896 features extracted from the EEG signals are not tranformed before classification: we do not use any
kernelization. However, to unify the presentation, we willrefer to these features as linear kernels. Hence, in
this application where the kernels related to a given channel form a group of kernels, we have to learnM = 896
coefficientsσm, divided intoL = 64 groups.

CKL is well-suited to the classification objectives, since we aim at classifying the EEG trials with as few
channels as possible. Furthermore, it is also likely that some time frames are irrelevant, so that variable selection
may be carried out within each channel. To reach a sparse solution at the channel and the time frame levels, we
test a non-convex parametrization of CKL that encourages sparseness within and between groups.

In the following, CKL1/2 stands for a convex version of our algorithm, withp = q = 1/2 (aℓ(4/3,1) mixed-
norm), CKL1 is a non-convex version, withp = q = 1 (a ℓ(1,2/3) (pseudo) mixed-norm). Note that MKL is
also implemented by our algorithm, withp = 0 andq = 1.

Table 1 summarizes the average performance of SVM, MKL, and CKL, that is, for4 different penalization
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Figure 1: Electrode median relevance for MKL (left), CKL1/2 (center) and CKL1 (right). The darker the color,
the higher the relevance. Electrodes in white with a black circle are discarded (the relevance is exactly zero).
The arrow represents the frontal direction.

terms: quadratic penalization for the classical SVM (whichis trained with the mean of896 kernels),ℓ1 norm
for MKL, and mixed-norms for the two versions of CKL: CKL1/2 and CKL1. The number of channels and
kernels selected by these algorithms is also reported.

Table 1: Average Results for SVMs with4 different penalization terms on the BCI datasets.
Algorithms AUC # Channels # Kernels

SVM 83.87± 0.8 64 896
MKL 85.43± 0.9 62.2± 1 255.8± 15
CKL1/2 85.49± 1.1 62.9± 1 835.7± 25
CKL1 84.15± 0.8 24.0± 4 60.9± 10

The prediction performances of the4 algorithms are similar, with a slight advantage for sparse methods.
CKL1/2 is much less sparse than MKL, which itself keeps about four times as much kernels compared to CKL1.
In the number of groups, MKL and CKL1/2 behave similarly, with only one or two channels removed. CKL1

is much sparser and removes about two thirds of the channels.

Figure 6 represents the median relevance of the electrodes over the 10 experiments. It displays which
electrodes have been selected by the different kernel learning methods. For one experiment, the relevance for
channelℓ is computed by the relative contribution of groupℓ to the norm of the solution, that is

1

Z

∑

m∈Gℓ

1

σ⋆
m

‖f⋆
m‖2

Hm
,

whereZ is a normalization factor that sets the sum of relevances to one.

The results for CKL1 are particularly neat, with high relevances for the electrodes in the areas of the visual
cortex (especially the lateral electrodes PO7 and PO8), and the primary motor and Somatosensory cortex (C•
and CPZ). The scalp maps for MKL and CKL1/2 are very similar and show the importance of the same regions.
In addition they also highlight numerous frontal electrodes that are not likely to be relevant for the BCI P300
Speller paradigm.
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7 Conclusion and Further Works

This paper is at the crossroad of kernel learning and variable selection. From the former viewpoint, we extended
the multiple kernel learning problem to take into account the group structure among kernels. From the latter
viewpoint, we generalized the hierarchical penalization framework to kernel classifiers by considering penalties
in RKHS instead of parametric function spaces.

As a side contribution, we also provide a smooth variationalformulation for arbritrary mixed-norm penal-
ties, enabling to tackle a wide variety of problems. This formulation is not restricted to convex mixed-norm, a
property that turns out to be of interest for reaching sparser, hence more interpretable solutions.

Our approach is embedded, in the sense that the kernel hyper-parameters are optimized jointly with the
parameters of classifier to minimize the soft-margin criterion. It is however implemented by a simple wrapper
algorithm, for which the inner and the outer subproblems have the same objective function, and where the inner
loop is a standard SVM problem.

In particular, this implementation allows to use availablesolvers for kernel machines in the inner loop.
Hence, although this paper considered binary classification problems, our approach can be readily extended to
other learning problems, such as multiclass classification, clustering, regression or ranking.
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