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Abstract. In this paper we extend the Parts-Based approach of face
verification by performing a frequency-based decomposition. The Parts-
Based approach divides the face into a set of blocks which are then
considered to be separate observations, this is a spatial decomposition of
the face. This paper extends the Parts-Based approach by also dividing
the face in the frequency domain and treating each frequency response
from an observation separately. This can be expressed as forming a set of
sub-images where each sub-image represents the response to a different
frequency of, for instance, the Discrete Cosine Transform. Each of these
sub-images is treated separately by a Gaussian Mixture Model (GMM)
based classifier. The classifiers from each sub-image are then combined
using weighted summation with the weights being derived using linear
logistic regression. It is shown on the BANCA database that this method
improves the performance of the system from an Average Half Total
Error Rate of 24.38% to 15.17% when compared to a GMM Parts-Based
approach on Protocol P.

1 Introduction

The face is an object that we as humans know can be recognised. It is used to
verify the identity of people on a daily basis through its inclusion in passports,
drivers licences and other identity cards. However, performing automatic face
verification has proved to be a very challenging task. This is shown by the fact
that face recognition has been an active area of research for over 25 years [1], in
fact the earliest research into face recognition was conducted by Bledsoe [2] in
1966.

Many techniques have been proposed to perform face verification ranging
from Principal Component Analysis (PCA) [3] and Linear Discriminant Analysis
(LDA) [4] through to feature distribution modelling techniques such as Hidden
Markov Models (HMMs) [5] and Gaussian Mixture Models (GMMs) [6]. A recent
advance in face verification has been the effective use of feature distribution
modelling techniques. The first effective method of performing face verification
using feature distribution modelling was in 2002 by Sanderson and Paliwal [6];
despite the earlier work of Samaria et al. [5, 7] and Nefian and Hayes [8] who
used HMMs.



The GMM Parts-Based approach, introduced by Sanderson and Paliwal, has
been employed by several researchers [9, 10]. This method consists of dividing
the face into blocks, or parts, and to then consider each block separately. The
distribution of these parts is then modelled using Gaussian Mixture Modelling.
This method is very different to other Parts-Based (or Component-Based) ap-
proaches which form an expert classifier each individual region or concatenate
the information from the different Parts and then use a holistic-based classifier,
for instance using SVMs [11].

In this paper an extension to the GMM Parts-Based approach (referred to
as the Parts-Based approach from hereon) is proposed so that both Spatial and
Frequency based decomposition can be performed. The frequency decomposition
is achieved by collating the responses from each DCT coefficient from each block
(observation) and forming a separate sub-image for each frequency. Each of these
sub-images is then treated separately by a GMM based classifier. The classifiers
from each sub-image are then combined using weighted summation with the
weights being derived using linear logistic regression. Tests conducted on the
BANCA database show that this extension is a significant improvement with
the Average Half Total Error Rate being reduced from of 24.38% to 15.17%
when compared to a baseline Parts-Based approach.

2 Related Work on GMM Parts-Based Face Verification

The Parts-Based approach divides the face into blocks, or parts, and treats each
block as a separate observation of the same underlying signal (the face). In this
method a feature vector is obtained from each block by applying the Discrete
Cosine Transform and the distribution of these feature vectors is then modelled
using GMMs. Several advances have been made upon this technique, for instance,
Cardinaux et al. [9] proposed the use of background model adaptation while
Lucey and Chen [10] examined a method to retain part of the structure of the
face utilising the Parts-Based framework as well as proposing a relevance based
adaptation.

2.1 Feature Extraction

The feature extraction algorithm is described by the following steps. The face is
normalised, registered and cropped. This cropped and normalised face is divided
into blocks (parts) and from each block (part) a feature vector is obtained. Each
feature vector is treated as a separate observation of the same underlying signal
(in this case the face) and the distribution of the feature vectors is modelled
using GMMs. This process is illustrated in Figure 1.

The feature vectors from each block are obtained by applying the DCT. Even
advanced feature extraction methods such as the DCTmod2 method [6] use the
DCT as their basis feature vector; the DCTmod2 feature vectors incorporate
spatial information within the feature vector by using the deltas from neigh-
bouring blocks. The advantage of using only DCT feature vectors is that each



Input Image Image Blocks

Features (DCT) from Blocks

Fig. 1. A flow chart of describing the extraction of feature vectors from the face image
for Parts-Based approaches.

DCT coefficient can be considered to be a frequency response from the image
(or block). This property is exploited by the JPEG standard [12] where the
coefficients are ranked in ascending order of their frequency.

2.2 Feature Distribution Modelling

Feature distribution modelling is achieved by performing background model
adaptation of GMMs [9, 10]. The use of background model adaptation is not new
to the field of biometric authentication in fact it is commonly used in the field
of speaker verification [13]. Background model adaptation first trains a world
(background) model Ωworld from a set of faces and then derives the client model
for the ith client Ωi

client
by adapting the world model to match the observations

of the client.
Two common methods of performing adaptation are mean only adaptation

[14] and full adaptation [15]. Mean only adaptation is often used when there are
few observations available because adapting the means of each mixture compo-
nent requires fewer observations to derive a useful approximation. Full adapta-
tion is used when there are sufficient observations to adapt all the parameters
of each mode. Mean only adaptation is the method chosen for this work as it
requires fewer observations to perform adaptation, this is the same adaptation
method employed by Cardinaux et al. [9].

2.3 Verification

A description of the Parts-Based approach is not complete without defining how
an observation is verified. To verify an observation, x, it is scored against both
the client (Ωi

client
) and world (Ωmodel) model, this is true even for methods

that do not perform background model adaptation [6]. The two models, Ωi

client

and Ωworld, produce a log-likelihood score which is then combined using the
log-likelihood ratio (LLR),



h(x) = ln(p(x | Ωi

client)) − ln(p(x | Ωworld)), (1)

to produce a single score. This score is used to assign the observation to the
world class of faces (not the client) or the client class of faces (it is the client)
and consequently a threshold τ has to be applied to the score h(x) to declare
(verify) that x matches to the ith client model Ωi

client
when h(x) ≥ τ .

3 Local Frequency Band Approach

The method proposed in this paper is to divide the face into separate blocks and
to then decompose these blocks in the frequency domain. This can be achieved
by treating the frequency response from each block separately to form frequency
sub-images. This method is applied to the DCT feature vectors obtained by
applying the Parts-Based approach. Each coefficient can be considered indepen-
dently because each coefficient of the DCT is orthogonal.

The technique is summarised as follows: (1) the face is cropped and nor-
malised to a 68 × 68 image, (2) this image is divided into 8 × 8 blocks with an
overlap of 4 pixels in the horizontal and vertical axes, (3) the DCT coefficients
from each block are separated and used to form their own frequency sub-image,
and (4) a feature vector is formed by taking a block from the frequency sub-
image and vectorising the block. The way in which the frequency sub-images are
formed is demonstrated in Figure 2.
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Fig. 2. The figure above describes how the face can be decomposed into separate
frequency sub-bands (sub-images).



3.1 Motivation

To illustrate the differences between the frequency decomposition approach and
the full Parts-Based approach the following statements are made. For the Parts-
Based approach it is often stated that the face is broken into blocks and the distri-
bution of each block is then modelled [6, 10], however, another stricter statement
would be that the frequency information from each block is simultaneously mod-
elled since each dimension of the feature vector represents a different sampling
frequency of the DCT. By contrast the frequency decomposition approach sepa-
rates the frequency information from each local block and forms a feature vector
from the resulting frequency sub-images. Many feature vectors are formed from
a frequency sub-image and then modelled using background model adaptation,
thus, the image is decomposed in both the spatial domain and the frequency
domain.

A side effect of working on the frequency sub-images is that the feature vec-
tors formed from these sub-images will retain extra spatial information. This is
because the Parts-Based approach obtains an observation from a block, how-
ever, the frequency decomposition approach gets the response from each block
and then forms a feature vector using responses from several blocks. This means
that the feature vectors formed from the frequency sub-images will actually span
several blocks when compared to the Parts-Based approach, for instance the fea-
ture vector could be formed from a frequency sub-image by spanning an entire
row or column of the image.

3.2 Feature Extraction

Three methods of forming a feature vector from the frequency sub-images are
examined, these are to form a feature vector: (1) across the row of the frequency
sub-image (row-based approach), (2) across the column of the frequency sub-
image (column-based approach), or (3) from a 4× 4 block of the frequency sub-
image which is then vectorised (block-based approach). The choice of a 68 × 68
image results in frequency sub-images of size 16 × 16 which allows for the fair
comparison of the three different feature extraction methods as each method
will result in feature vectors of dimension D = 16 with o = 16 observations from
each frequency sub-image. A visualisation of these three methods is provided in
Figure 3.

3.3 Classifier

Having obtained these feature vectors a classifier is formed using the same
background model adaptation approach that was used for the Parts-Based ap-
proach [9]. Each local frequency sub-band (k) produces a separate classifier
(Ck) and these classifiers are then combined using weighted linear score fusion,

Cw sum =
∑K

k=1
βkCk. This fusion technique is used as it was shown by Kittler

et al. [16] that the sum rule (which is what weighted linear classifier score fusion
abstracts to be) is robust to estimation errors. The weights, βk, for the classifiers
are derived using an implementation of linear logistic regression [17].
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Fig. 3. Forming the feature vectors (a) along the row of the frequency sub-image, (b)
along the columns of the frequency sub-image and (c) using blocks of the frequency
sub-image.

4 Results and Discussion

The database used for these experiments is the BANCA English database [18].
The images are cropped and scaled to a size of 68 × 68 pixels with a distance
between the eyes of 33 pixels. Illumination normalisation is applied to each image
as a two stage process, the image is histogram equalised and then encoded using
a Local Binary Pattern (LBP) [19]. This is the same normalisation strategy
employed by Heusch et al. [20] where the parameters used for the LBP are
R = 2 and P = 8.



Results for the BANCA database are presented as the average Half Total
Error Rate (HTER) using g1 and g2 in a cross-validated manner. Parameters
such as the optimal number of mixture components M are derived using the
development set of Protocol P and used as a constant throughout the remaining
tests. The decision threshold and other parameters such as classifier weights, βk,
are derived on the independent development (tuning) set for each protocol.

Two baseline systems are considered for this work, one system uses DCT
feature vectors and the other uses DCTmod2 feature vectors. DCTmod2 feature
vectors are examined as it was previously found to be more robust than DCT
feature vectors [6]. The size of the feature vectors, D = 15 for DCT feature
vectors and D = 18 for DCTmod2 feature vectors, was chosen based on work
conducted in [6]. Both baseline systems were developed using 68×68 face images
with a varying number mixtures M = [100, 200..., 500].

Results on the Development set of the P protocol found that, for both manual
and automatic eye positions, the system using DCT feature vectors with M =
100 mixture components provides the best performance. This system was then
used to produce full results for all of the BANCA protocols and are presented
in Table 1. It can be seen that there is a consistent degradation in performance
of, on average, 2.37% in absolute performance difference when automatic eye
locations are used.

The effect of using manual and automatic eye positions is examined since
any deployed face verification system will need to cope with errors introduced
from an automatic face detection system. The manually annotated eye positions
were provided with the BANCA database and the automatically annotated eye
positions were obtained using a face detector based on a cascade of LBP-like
features [21] 1. There were 93 images (out of 6, 540 images) where the automatic
face detector could not find the face, these images were excluded from training,
development and evaluation of the automatic systems.

The initial experiments indicated that all of the local frequency sub-band
approaches, across all BANCA protocols, provided significantly improved per-
formance when compared to the baseline system. It can be seen from the results
in Table 2 that the optimal local frequency sub-band approach is the column-
based approach followed by the block-based approach and finally the row-based
approach. The column-based approach provides an absolute improvement of
9.21% for Protocol P with the HTER reducing from 24.38% to 15.17%; the
frequency sub-band systems are optimised in a similar manner to the baseline
systems, however, because there are fewer observations (o = 16 observations for
each frequency sub-image whereas o = 256 for the Parts-Based approach) the
number of mixtures were constrainted to M = [5, 10, ..., 25].

The performance of the frequency sub-band approach when using automatic
eye locations is superior to that of the baseline system. This is true across all
test conditions except for the block-based approach on Protocol Mc, see Table
3 for full results. Examining the results in more detail it becomes obvious that
the column-based approach degrades in a similar manner as the baseline system

1 This detector has been implemented with torch3vision.idiap.ch



P G Ud Ua Mc Md Ma

manual annotations 24.38% 12.38% 24.60% 29.46% 8.21% 16.35% 18.91%
automatic annotations 26.34% 15.33% 27.86% 30.51% 11.88% 18.63% 20.33%

Table 1. This table presents the average HTER for the baseline Parts-Based verifica-
tion system across all of BANCA protocols.

P G Ud Ua Mc Md Ma

row-based 19.418% 7.24% 18.19% 23.06% 7.18% 9.98% 12.42%
block-based 16.74% 5.72% 14.46% 25.03% 5.51% 7.20% 10.29%

column-based 15.17% 5.80% 13.40% 19.20% 6.73% 7.88% 11.04%
Table 2. This table presents the average HTER for the local frequency sub-band
approaches on manually annotated eye locations for all of the BANCA protocols. Each
system has Mrow = 15, Mblk = 20 and Mcol = 5 mixture components respectively.
Highlighted are the best performing systems.

with an average absolute performance difference of 2.51%. This means that for
both manual and automatic eye locations the column-based system significantly
outperforms the baseline system. However, a different result appears for the
row-based and block-based approaches whose performance degrades significantly,
their HTER increases by an absolute average of 4.56% and 5.55% respectively
when using automatic eye locations.

P G Ud Ua Mc Md Ma

row-based 24.57% 9.97% 25.02% 27.81% 10.37% 16.66% 15.00%
block-based 21.86% 9.93% 23.04% 25.64% 12.34% 14.21% 16.79%

column-based 16.64% 7.4% 17.50% 21.06% 8.07% 10.26% 15.89%
Table 3. This table presents the average HTER for the local frequency sub-band
approaches on automatically annotated eye locations for all of the BANCA protocols.
Each system has Mrow = 15, Mblk = 20 and Mcol = 5 mixture components respectively.
Highlighted are the best performing systems.

The result for the automatic eye locations demonstrates that the choice of
feature vector formation has a significant impact on the local frequency sub-band
approach. The column-based approach has empirically been shown to be more
robust to localisation errors than either the row-based or block-based approaches.
The column-based also performs better than either the row-based or block-based
approaches for most of the test conditions. This fact could be explained by
suggesting that the features of the face are more stable when scanned in a vertical
manner, particularly when there is misalignment of the face image. However, this
argument has not been explored fully and so it forms the basis of future work
for this technique.

Finally, this system compares well to state-of-the-art techniques for the BANCA
database. Previous state-of-the-art face verification systems, tested on the Mc
protocol of BANCA, are taken from the work of Heusch and Marcel [22] who pro-
vide results from a Bayesian Network classifier (BN), a Partial Shape Collapse



GMM classifier (PSC-GMM) and a state-of-the-art GMM Parts-Based classifier
2 are provided. The results are reproduced in Table 4 where it can be seen that
the column-based sub-band (SBCol) approach performs very competitively when
compared to the more complex BN approach.

SBCol BN PSC-GMM GMM

HTER on g1 (%) 10.13 9.01 11.31 N/A

HTER on g2 (%) 3.33 5.41 11.34 8.9
Table 4. This table presents state-of-the-art results on the BANCA database using
the average HTER (%) on the Mc protocol for Manual eye annotations.

5 Conclusions and Future Work

In this paper a novel extension to the Parts-Based approach has been introduced
that results in an absolute improvement of the HTER of 9.21%. This novel ex-
tension decomposes the face into local frequency sub-bands. Feature vectors are
extracted from these frequency sub-band images in one of three ways, in a: row-
based manner, column-based manner or a block-based manner. It has been shown
empirically that extracting the feature vectors in a column-based manner results
in a robust and accurate method for performing face verification. However, it
remains an open question why the column-based approach to feature formation
is more robust and accurate than the row-based or block-based approaches.

Future work will examine potential reasons for the superior performance
of the column-based approach. Work will also be conducted to determine if
local frequency sub-band’s can be merged, performing a feature level fusion,
to simplify the task of classifier fusion. Finally, any future work will also need
to address the possibility of applying a HMM approach to this local frequency
sub-band technique.
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