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Abstract. This paper presents an adaptive beamforming application based on the capture of
far-field speech data from a real single speaker in a real meeting room. After the position of a
speaker is estimated by a speaker tracking system, we construct a subband-domain beamformer in
generalized sidelobe canceller (GSC) configuration. In contrast to conventional practice, we then
optimize the active weight vectors of the GSC so that the distribution of an output signal is as
non-Gaussian as possible. We consider kurtosis in order to measure the degree of non-Gaussianity.
Our beamforming algorithms can suppress noise and reverberation without the signal cancellation
problems encountered in conventional beamforming algorithms. We demonstrate the effectiveness
of our proposed techniques through a series of far-field automatic speech recognition experiments
on the Multi-Channel Wall Street Journal Audio Visual Corpus (MC-WSJ-AV). The beamforming
algorithm proposed here achieved a 13.6% WER, whereas the simple delay-and-sum beamformer
provided a WER of 17.8%.
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1 Introduction

There has been great and growing interest in microphone array processing for hands-free speech recog-
nition [1, 2]. Such techniques have the potential to relieve users from the necessity of donning close
talking microphones (CTMs) before dictating or otherwise interacting with automatic speech recogni-
tion (ASR) systems. Adaptive beamforming is a promising technique for far-field speech recognition.
A conventional beamformer in generalized sidelobe canceller (GSC) configuration is structured such
that the direct signal from a desired direction is undistorted [3, §13.6]. Subject to this distortionless
constraint, the total output power of the beamformer is minimized through the adjustment of an
active weight vector, which effectively places a null on any source of interference, but can also lead to
undesirable signal cancellation [4]. To avoid the latter, the adaptation of the active weight vector is
typically halted whenever the desired source is active.

In [5], we proposed a new beamforming algorithm which adjusted the active weight vectors to
maximize the negentropy of the beamformer’s outputs. Negentropy indicates how far a probability
density function (pdf) of a particular signal is from Gaussian. In other words, it represents the degree
of super-Gaussianity of a distribution [6]. The pdf of speech is in fact super-Gaussian [2, 7], but it
becomes closer to Gaussian when the speech is corrupted by noise or reverberation. Hence, noise
and reverberation can be suppressed by adjusting the active weight vector of the GSC to provide a
signal with the highest possible negentropy. We also demonstrated in [5] that maximum negentropy
(MN) beamforming is free from the signal cancellation problem and provides the better recognition
performance than conventional methods.

In this work, we consider kurtosis as a criterion for estimating the active weight vectors in a GSC.
The kurtosis also measures the degree of super-Gaussianity of a pdf [6]. We optimize the active weight
vectors of a GSC so as to achieve the output with the maximum kurtosis (MK). After beamforming,
Zelinski post-filtering is performed to further enhance the speech by removing residual noise [8]. Much
like the MN beamformer, the MK beamformer can suppress noise and reverberation without the signal
cancellation problem encountered in conventional adaptive beamforming algorithms. In contrast to
negentropy, kurtosis does not require knowledge of the actual pdf of subband samples of speech.
Rather, kurtosis can be simply calculated in a non-parametric manner. However, the kurtosis measure
is influenced by samples with a low observation probability [6]. It is worth mentioning that Gillespie
et al. [9] used the MK criterion to build a multi-microphone speech enhancement system without the
GSC implementation and demonstrated speech enhancement with relatively little enrollment data.
Applying the MK criterion to a beamformer in GSC configuration enables the beam to be steered as
desired.

We demonstrate the effectiveness of our proposed techniques through a series of far-field automatic
speech recognition experiments on the Multi-Channel Wall Street Journal Audio Visual Corpus (MC-
WSJ-AV) [1]. Moreover, we investigate how much speech data is necessary to robustly estimate the
active weight vectors of a GSC. We also compare the conjugate gradient algorithm with the steepest
descent algorithm with the unit norm constraint for optimizing the active weight vectors.

The balance of this work is organized as follows. We review the basic concept of independent
component analysis (ICA) and show that the pdf of subband components of clean speech is not
Gaussian but super-Gaussian, and that the pdf of subband samples of speech corrupted with noise or
reverberation becomes more nearly Gaussian. Section 3 reviews the definition of kurtosis. We describe
our beamforming algorithm in Section 4 and then derive the objective function for estimating the
active weight vectors in Section 5. In Section 6, we present the results of far-field automatic speech
recognition experiments. Finally, in Section 7, we present our conclusions and plans for future work.

2 Super-Gaussian Distributions

The entire field of ICA is founded on the assumption that all signals of real interest are not Gaussian-
distributed. A concise and very readable argument for the validity of this assumption is given by
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Figure 1: Histogram of real parts
of subband components and the
likelihood of pdfs.
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Figure 2: Histograms of clean
speech and noise corrupted
speech in the subband domain.
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Figure 3: Histograms of clean
speech and reverberated speech
in the subband domain.

Hyvärinen and Oja [6]. Briefly, their reasoning is grounded on two points:

1. The central limit theorem states that the pdf of the sum of independent random variables (r.v.s)
will approach Gaussian in the limit as more and more components are added, regardless of the pdfs
of the individual components. This implies that the sum of several r.v.s will be closer to Gaussian
than any of the individual components. Thus, if the original independent components comprising
the sum are sought, one must look for components with pdfs that are the least Gaussian.

2. Entropy is the basic measure of uncertainty of information in information theory [6]. It is well
known that a Gaussian r.v. has the highest entropy of all r.v.s with a given variance [6]. Hence,
a Gaussian r.v. is, in some sense, the least predictable of all r.v.s., which is why the Gaussian pdf
is most often associated with noise. Interesting signals contain structure that makes them more
predictable than Gaussian r.v.s. Hence, if an interesting signal is sought, one must once more look
for a signal that is not Gaussian.

The fact that the pdf of speech is super-Gaussian has often been reported in the literature [2, 7].
Noise, on the other hand, is typically Gaussian-distributed. In fact, the pdf of the sum of super-
Gaussian r.v.s gets closer to Gaussian. Thus, a mixture signal which consists of many interference
signals can be expected to be Gaussian-distributed. Based on these facts, we can remove interference
signals and extract a target signal by making the pdf of the beamformer’s output as super-Gaussian
as possible [5].

Fig. 1 shows a histogram of real parts of subband components at fs = 800 Hz, where we used clean
speech recorded with the CTM in the SSC development set [1]. Fig. 1 also presents the likelihoods of
the Gaussian and super-Gaussian univariate pdfs, the Laplace, K0, Γ and generalized Gaussian pdfs.
In Fig. 1, the parameters of the generalized Gaussian (GG) pdf are estimated from training data. As
shown in Fig. 1, super-Gaussian pdfs exhibit the “spikey” and “heavy-tailed” characteristics. This
implies that they have a sharp concentration of probability mass at the mean, relatively little proba-
bility mass as compared with the Gaussian at intermediate values of the argument, and a relatively
large amount of probability mass in the tail; i.e., far from the mean. It is clear from Fig. 1 that the
distribution of clean speech is super-Gaussian.

Fig. 2 shows subband domain histograms of clean speech and speech corrupted with noise. It is
clear from this figure that the pdf of the speech corrupted with noise has less probability mass around
the center spike, more probability mass in intermediate regions, and less probability mass in the tail
than the clean speech. This indicates that the pdf of the noise-corrupted signal, which is in fact the
sum of the speech and noise signals, is closer to Gaussian than that of clean speech. Fig. 3 shows
histograms of clean speech and reverberated speech in the subband domain. In order to produce
reverberated speech, a clean speech signal was convolved with an impulse response measured in a
room; see Lincoln et al. [1] for the configuration of the room. We can observe from Fig. 3 that the
pdf of reverberated speech is also closer to Gaussian than the original clean speech.
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These facts would indeed support the hypothesis that seeking an enhanced speech signal that is
maximally non-Gaussian is an effective way to suppress the distorting effects of noise and reverberation.

3 Measure of super-Gaussianity : Kurtosis

The excess kurtosis or simply kurtosis of a r.v. Y with zero mean, defined as

kurt(Y ) , E{Y 4} − 3(E{Y 2})2, (1)

is a measure of how non-Gaussian Y is [6]. The Gaussian pdf has zero kurtosis; pdfs with positive
kurtosis are super-Gaussian; those with negative kurtosis are sub-Gaussian. From observed samples,
we can approximate (1) as

kurt(Y ) ≈
1

N

N−1
∑

t=0

Y 4
t − 3

(

1

N

N−1
∑

t=0

Y 2
t

)2

. (2)

Notice that the empirical kurtosis measure requires no knowledge of the actual pdf of subband samples
of speech. Of the three super-Gaussian pdfs in Fig. 1, the Γ pdf has the highest kurtosis, followed
by the K0, then the Laplace pdf. This fact manifests itself in Fig. 1, where it is clear that as the
kurtosis increases, the pdf becomes more and more spikey and heavy-tailed. The detail is explained
in Section 2. Kurtosis is widely used as a measure of non-Gaussianity. The value of kurtosis, however,
may be greatly influenced by a few samples with a low observation probability. Hyvärinen and Oja [6]
noted that negentropy was generally more robust in the presence of outliers than kurtosis.

4 Beamforming and Post-Filtering

Consider a subband beamformer in the GSC configuration [3, §13.6] with a post-filter. The output of
a beamformer for a given subband can be expressed as

Y = (wq − Bwa)
H

X, (3)

where wq is the quiescent weight vector for a source, B is the blocking matrix, wa is the active weight
vector, and X is the input subband snapshot vector.

In keeping with the GSC formalism, wq is chosen to give unity gain in the desired look direction [3,
§13.6]; i.e., to satisfy a distortionless constraint. The blocking matrix B is chosen to be orthogonal to
wq, such that B

H
wq = 0.

This orthogonality implies that the distortionless constraint will be satisfied for any choice of wa.
While the active weight vector wa is typically chosen to maximize the signal-to-noise ratio (SNR),
here we will develop an optimization procedure to find that wa which maximizes kurtosis (2). In
order to calculate the objective functions, the variance of the output Y is needed. Substituting (3)
into the definition σ2

Y = E {Y Y ∗} of variance, we find

σ2
Y = (wq − Bwa)

H
ΣX (wq − Bwa) , (4)

where ΣX is the covariance matrix of X.

Maximizing the degree of super-Gaussianity yields a weight vector wa,i capable of canceling in-
terference including incoherent noise that leaks through the sidelobes without the signal cancellation
problems encountered in conventional beamforming. Zelinski post-filtering is performed on the output
of the beamformer [8].

For the experiments described in Section 6, subband analysis and synthesis were performed with a
uniform DFT filter bank based on the modulation of a single prototype impulse response [10], which
was designed to minimize each aliasing term individually.
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In conventional beamforming, a regularization term is often applied that penalizes large active
weight vectors, and thereby improves robustness by inhibiting the formation of excessively large side-
lobes [3]. Such a regularization term can be applied in the present instance by defining the modified
optimization criterion

J (Y ;α) = J(Y ) + α‖wa‖
2 (5)

for some real α > 0, where J(Y ) is the empirical kurtosis. We set α = 0.1 for MK beamforming since
we obtained the best recognition performance in preliminary ASR experiments.

5 Estimation of the Active Weight Vector

With the variance of the output Y , σ2
Y , the kurtosis of beamformer’s output can be expressed as

J(Y ) =

(

1

N

N−1
∑

t=0

Y 4
t

)

− 3
(

σ2
Y

)2
. (6)

We estimate the active weight vectors which maximize the sum of the kurtosis (6) and regularization
term. In the absence of the closed form solution, we resort to the gradient algorithms here.

Upon substituting (6) into (5) and taking the partial derivative, we obtain

∂J (Y ;α)

∂wa
∗

=

(

1

N

N−1
∑

t=0

−2Y 2
t B

H
XtY

∗

t

)

− 6σ2
Y

(

1

N

N−1
∑

t=0

−B
H
XtY

∗

t

)

+ αwa,

(7)

Equation (7) is sufficient to implement a numerical optimization algorithm based, for example, on
the method of conjugate gradients [11, §1.6], whereby the kurtosis of the beamformer’s output can be
maximized. In the experiment described in Section 6, we use the Polak-Ribiere conjugate gradient
algorithm. It is compared with the steepest descent algorithm with the unit vector norm constraint.

6 Experiments

We performed far-field ASR experiments on the MC-WSJ-AV; see [1] for a description of the data
collection apparatus. In the single speaker stationary scenario of the MC-WSJ-AV, a speaker was
asked to sit or stand in front of a presentation screen and read sentences from different positions. The
far-field speech data was recorded with two circular, eight-channel microphone arrays in a reverberant
room. In addition to the reverberation, some recordings include significant amounts of background
noise. Our test data set for the experiments contain recordings of 10 speakers where each speaker
reads approximately 40 sentences taken from the 5,000 word vocabulary WSJ task. This provided
a total of 352 utterances which correspond to approximately 43.9 minutes of speech. There are a
total of 11,598 word tokens in the reference transcriptions. Prior to beamforming, we first estimated
the speaker’s position with the Orion source tracking system [2, 12]. Based on the average speaker
position estimated for each utterance, utterance-dependent active weight vectors wa were estimated
for the source. The active weight vectors for each subband were initialized to zero for estimation.
Iterations of the gradient algorithm were run on the entire utterance until convergence was achieved.
As mentioned previously, Zelinski post-filtering [8] was performed after beamforming. We did four
decoding passes on the waveforms obtained with the beamforming algorithms described above. Each
pass of decoding used a different acoustic model or speaker adaptation scheme. Speaker adaptation
parameters were estimated using the word lattices generated during the previous pass. The details
of the four recognition passes are presented in [12], and the details of the fast on-the-fly composition
algorithm on which the ASR engine is based are described in [3, §8].
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Table 1: Word error rates (WERs) for each beamforming algorithm after every decoding pass.

Beamforming Pass (%WER)
Algorithm 1 2 3 4

SDM 87.0 57.1 32.8 28.0
CTM 52.9 21.5 9.8 6.7

D&S BF 80.1 39.9 21.5 17.8
D&S BF with PF 79.0 38.1 20.2 16.5

MMSE BF 78.6 35.4 18.8 14.8
MN BF with GG pdf 75.1 32.7 16.5 13.2

MK BF 76.6 33.5 17.2 13.6

Table 1 shows the word error rates (WERs) for every beamforming algorithm. As references,
WERs in recognition experiments on speech data recorded with the single distant microphone (SDM)
and with the CTM are also given in Table 1. It is clear from Table 1 that every MN beamforming
algorithm provides better recognition performance than the simple delay-and-sum beamformer both
without (D&S BF) and with Zelinski post-filtering (D&S BF with PF). It is also clear from Table 1 that
MN beamforming with the GG pdf assumption (MN BF with GG pdf) achieves the best recognition
performance. Table 1 also shows that MK beamforming (MK BF) can achieve almost the same
recognition performance as MN beamforming where one utterance speech data was used for calculating
active weight vectors. Notice that both MN and MK beamformers do not require speech activity
detection because they are free from the signal cancellation problem seen in the minimum mean
squared-error beamformer (MMSE BF) [3].

In MK beamforming, the estimation of the active weight vectors is greatly influenced by outliers.
We observed that the active weight vectors became extremely large in the case that the amount of
data for the adaptation was insufficient. It could not be avoided even if we increased the regularization
weight α. We therefore put a constraint on the active weight vector: ‖wa‖ = 1 if ‖wa‖ ≥ 1. The active
weight vector is projected on the unit circle after every step if the vector norm exceeds unity. Such a
projection procedure could destroy the convergence property of the Polak-Ribiere conjugate gradient
algorithm because it uses the sequence of search directions in order to approximate the curvature of the
objective function around an evaluation point. Hence, we implemented the projection procedure in the
steepest descent algorithm [6]. Table 2 shows the WER for the amount of data for each beamforming
algorithm. One frame corresponds to 8 millisecond in the experiments. It is clear from Table 2 that
MN beamforming can provide good recognition performance even if very little adaptation data are
available. That is mainly because the speech models trained with sufficient data are used for the
calculation of negentropy. Such prior speech models make MN-beamforming robust for outliners. It is
also clear from Table 2 that good recognition performance is not obtained by MK beamforming with
the Polak-Ribiere conjugate gradient algorithm because of the excessively large active weight vector.
Table 2 suggests that such a problem can be alleviated by projecting the active weight vector into the
unit circle.

7 Conclusions and Future Work

In this work, we have proposed a novel beamforming algorithm based on maximizing kurtosis which
does not require any prior speech model. We have demonstrated the effectiveness of our proposed
technique through a series of far-field ASR experiments on the real speech data which was not arti-
ficially convoluted with measured impulse responses. We have also showed the relationship between
the amount of data for the adaptation and recognition performance. It is turned out that MK beam-
forming requires adaptation data more than MN beamforming. However, if the amount of data is
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Table 2: WERs for the number of frames used in adaptation for each beamforming algorithm .

Beamforming no. Pass (%WER)
Algorithm frames 1 2 3 4

MN BF with 24 73.2 38.2 19.2 15.3
Polak-Ribiere 48 75.7 35.0 18.9 15.4

conjugate gradient 72 75.8 33.5 17.8 14.5
1 utt. 75.1 32.7 16.5 13.2

MK BF with the 24 94.1 90.1 81.3 -
Polak-Ribiere 48 93.3 87.2 77.0 -

conjugate gradient 72 87.3 79.3 52.9 -
1 utt. 76.6 33.5 17.2 13.6

MK BF with the 24 80.2 41.7 21.9 18.6
steepest descent 48 82.0 44.0 21.5 18.5
with the unit NC 72 80.1 41.1 20.5 17.5

1 utt. 75.7 32.8 17.3 13.7

sufficient, the algorithm proposed here can achieve the almost same performance as MN beamforming.
We plan to develop an on–line version of the beamforming algorithm presented here.
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