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Abstract

Real world applications such as hands-free dialling in cars may have to perform recognition of spoken
digits in potentially very noisy environments. Existing state-of-the-art solutions to this problem use
feature-based Hidden Markov Models (HMMs), with a preprocessing stage to clean the noisy signal.
However, the effect that the noise has on the induced HMM features is difficult to model exactly and
limits the performance of the HMM system.

An alternative to feature-based HMMs is to model the clean speech waveform directly, which has
the potential advantage that including an explicit model of additive noise is straightforward. One of
the most simple model of the clean speech waveform is the autoregressive (AR) process. Being too
simple to cope with the nonlinearity of the speech signal, the AR process is generally embedded into
a more elaborate model, such as the Switching Autoregressive HMM (SAR-HMM).

In this thesis, we extend the SAR-HMM to jointly model the clean speech waveform and additive
Gaussian white noise. This is achieved by using a Switching Linear Dynamical System (SLDS) whose
internal dynamics is autoregressive. On an isolated digit recognition task where utterances have been
corrupted by additive Gaussian white noise, the proposed SLDS outperforms a state-of-the-art HMM
system. For more natural noise sources, at low signal to noise ratios (SNRs), it is also significantly
more accurate than a feature-based HMM system.

Inferring the clean waveform from the observed noisy signal with a SLDS is formally intractable,
resulting in many approximation strategies in the literature. In this thesis, we present the Expectation
Correction (EC) approximation. The algorithm has excellent numerical performance compared to a
wide range of competing techniques, and provides a stable and accurate linear-time approximation
which scales well to long time series such as those found in acoustic modelling.

A fundamental issue faced by models based on AR processes is that they are sensitive to variations
in the amplitude of the signal. One way to overcome this limitation is to use Gain Adaptation (GA) to
adjust the amplitude by maximising the likelihood of the observed signal. However, adjusting model
parameters without constraint may lead to overfitting when the models are sufficiently flexible. In
this thesis, we propose a statistically principled alternative based on an exact Bayesian procedure in
which priors are explicitly defined on the parameters of the underlying AR process. Compared to GA,
the Bayesian approach enhances recognition accuracy at high SNRs, but is slightly less accurate at
low SNRs.

Keywords Single Channel Source Separation, Signal Level Modelling, Autoregressive Process, Switch-
ing Linear Dynamical Systems, Approximate Inference, Bayesian Approaches, Variational Approxi-
mations, Noise Robustness, Isolated Digit Recognition.
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Chapter 1

Introduction

1.1 Motivation

From the point of view of modelling, it is natural to see a speech signal as a mixture of discrete
and continuous processes. On the one hand, we have a discrete number of words or subword units
like phonemes, whilst, on the other hand, the continuous waveform results from the excitation signal
generated by the vibration of the vocal cords, modulated by the vocal tract. Current state-of-the-art
automatic speech recognition (ASR) systems are mainly centred on the modelling of the discrete part.
The generic approach they follow can be schematically represented as

Clean waveform
y1:T

Feature sequence
o1:N

Model
p(o1:N )

The information carried by the waveform—represented as a sequence y1:T of T samples—is com-
pressed into a shorter sequence of feature vectors o1:N . The principal role of feature extraction is
to remove redundancy by integrating information over a window of samples. For instance, the Mel-
Frequency Cepstral Coefficients are obtained by performing, for each window, a filterbank analysis
which mimics the pitch perception of the human ear. Another role of feature extraction is to remove
information irrelevant for recognition; for example, the pitch is generally ignored. The sequence of
feature vectors o1:N is then generally modelled by a Hidden Markov Model (HMM)1. The HMM is a
probabilistic temporal model which associates to a sequence of observations—in our case, a sequence
of feature vectors—a sequence of discrete states. To each state corresponds a probability distribution,
often called the emission distribution, which gives the probability of an observation. The evolution of
the states with time is furthermore controlled by a transition distribution which gives the probability
of switching to a certain state given the current state. The HMM approach is particularly appealing
in the context of ASR because a discrete state is a natural representation of a subword unit, like
a phoneme, and the transition distribution models the fact that a phoneme is more likely to follow
certain phonemes than others.

1.1.1 Consistency

Although HMM-based systems have been very successful, from a modelling point of view, the use
of feature makes them inconsistent. Indeed, feature vectors generally include dynamical information,
like the first and second temporal derivatives of the static features. This induces correlation between
consecutive feature vectors. However this correlation is typically neglected in the HMM. Various at-
tempt have been made to address this issue [2, 16, 27, 36, 53, 56, 63, 65, 64], two notable examples

1Though alternatives exist, the most successful ASR systems to date use HMMs. In this thesis, unless stated
otherwise, we will always refer to HMM-based ASR system when we talk about state-of-the-art or standard systems.

1
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are the Segmental HMM [53] and the Switching Autoregressive HMM (SAR-HMM) [27]. The segmen-
tal HMM tries to capture the short term correlations which exists between consecutive feature vectors
by modelling subsequences of observations; the sequence of feature vectors is split into segments which
are then modelled as a whole. However, the segmental approach is not completely satisfactory since
continuity is lost at segment boundaries. In contrast, the SAR-HMM does not use features, but models
the waveform directly by means of autoregressive (AR) processes. This approach was first proposed by
Poritz [56] and recently refined by Ephraim and Roberts [27]. Working with the waveform directly is
interesting because it allows the continuous component of the signal to be explicitly modelled, while,
with features, continuity must be artificially introduced by adding the temporal derivatives of the
static features. From the perspective of ASR, the main drawback of working with waveforms is that
a great amount of potentially redundant information is provided to the model. For example, when
performing speaker independent speech recognition, the pitch is probably irrelevant. Also, in general,
the amplitude of the signal can be ignored. In contrast, features are carefully designed by engineers
to remove redundancies and discard information irrelevant for recognition.

1.1.2 Noise Robustness

Another limitation of current feature-based models is that they are often particularly sensitive to
noise [43, 62]. This is a well-known problem which has been extensively addressed in the literature,
see for example [28, 14, 34, 43, 51, 62]. Noise in ASR is commonly defined as a source of degradation
in the quality of the speech signal or as a difference in the acoustical properties of the signal between
the training and testing environments. Typically, distortions caused by a transmission channel, inter-
ferences, change in recording conditions or, less evidently, a change of speaker, are all considered as
sources of noise. It is also important to differentiate between convolutional and additive noise. Con-
volutional noise is generally produced when the signal goes through a linear distortion channel such
as the telephone line, while additive noise is produced by the environment and is generally considered
to be additive and uncorrelated with the original signal. The generic approach for dealing with noise
in current state-of-the-art ASR systems can be schematically depicted as

Noisy waveform
v1:T

Enhancement
Feature sequence

o1:N

Model
p(o1:N )

Before being transformed into feature vectors, the noisy speech waveform undergoes an enhancement
step which tries to filter out noise. This kind of approach is typically taken by methods based on
spectral subtraction [13, 14, 43] or Wiener filtering [4, 26], to deal with additive noise, and chan-
nel normalisation techniques [42], to deal with convolutional noise. For example, the Unsupervised
Spectral Subtraction (USS) algorithm [43] filters out additive noise by exploiting the difference be-
tween the energy distributions of speech and noise in the frequency domain. Whilst successful for
high (> 15 dB) to moderate (≤ 15 dB and > 5 dB) Signal to Noise Ratios (SNRs), the quality of
filtering is significantly reduced at lower SNRs, where the two distributions overlap.

Current state-of-the-art feature-based models are generally trained on clean data and tested on
potentially noisy data. An alternative approach to denoising could therefore be to use the trained
model of clean speech during the pre-processing stage. This can be schematically depicted as

Noisy waveform
v1:T

Enhancement
Feature sequence

o1:N

Model
p(o1:N )

A limitation of this procedure is that the denoising algorithm must deal with two different represen-
tations of the signal; the noisy waveform v1:T and the sequence of feature vectors o1:N . As a result,
the denoising algorithm becomes dependent on the way features are extracted. This approach is not
used in practice, but replaced by a more direct alternative in which the noisy signal is converted into
a sequence of noisy features which is then modelled directly. Schematically, we have
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Noisy waveform
v1:T

Noisy features
o1:N

Model
p(o1:N )

For example, this scheme is used by model-based compensation methods [29, 30, 31, 66] where the
original model of clean speech is augmented with an explicit model of noise, and also by multi-
stream approaches [15, 33] where many streams containing different types of features are combined
to enhance recognition. More recently, this scheme has also been used in [59, 60, 70] where the
uncertainty on the feature sequence is explicitly taken into account in the model. Such models extend
the standard feature-based models by weighting each feature vector on according to how certain one
is that it corresponds to speech. The common problem of most of the methods working with noisy
features is that they require training a model of noise or, at least, a good estimation of the SNR [62].
Although in practice this can be done on signal segments where there is no speech signal—provided
non-speech segments can be accurately detected—the amount of information required might not be
always available. For example, in [60], models are trained on thirty seconds of noise. Multi-stream
approaches do not suffer from this limitation. However, their accuracy is strongly dependent on the
selection of an appropriate recombination criterion [33]. Another common practice, known as multi-
condition training [35], is to train the model on noisy features directly. A limitation of this approach
is that, in practice, the recognition accuracy depends on the availability of training data covering a
sufficiently large number of noisy conditions.

1.1.3 Modelling the Speech Waveform

An alternative to modelling noise is to model the clean speech waveform with a SAR-HMM. The
potential benefit of such an approach is that, since an observed noisy signal can be viewed as a
clean hidden signal plus noise, a model trained on clean speech can be readily extended to deal with
additive noise, without having to be retrained. This framework naturally leads to the Switching Linear
Dynamical System (SLDS) [6] which represents the signal as a piecewise linear hidden variable model.
Previous applications of the SLDS to ASR (see for example [24, 63]) have modelled the feature
vectors and not the speech waveform directly. However, work in acoustic modelling [18] suggests
that, provided the difficulties of performing inference and learning can be addressed, the SLDS is a
potentially powerful tool for modelling the signal waveform.

1.2 Objectives

The aim of this thesis is to investigate the potential advantages of modelling the speech waveform
directly for performing noise robust speech recognition. Our interest is to develop models which, once
trained on clean data, can be readily used in noisy conditions. We will restrict ourselves to additive
noise since this form is straightforward to include in the model. Convolutional noise may also be
brought within the framework we discuss, although it is not explicitly considered in our work. Ideally,
the proposed models should be more accurate than state-of-the-art feature-based HMM systems in
noisy conditions while showing no performance degradation in clean conditions. Since separating
additive noise from clean speech, given a noisy speech signal, is an instance of a single channel source
separation problem, the models we will consider are potentially applicable to other domains as well,
most notably in model guided source separation.

1.2.1 The Switching Autoregressive HMM

Models dealing with the speech waveform directly, like the SAR-HMM, are a potentially valuable alter-
native to the standard feature-based HMM used in most current ASR systems. The basic idea behind
the SAR-HMM is to model the speech waveform as an AR process. The intrinsic non-stationarity
of the speech signal is then dealt with by switching between a finite set of AR models (with dif-
ferent parameters). Whilst the SAR-HMM has comparable to state-of-the-art performance on clean
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speech, its accuracy degrades rapidly under noisy conditions. This is mainly because the underlying
AR processes are defined on the potentially noisy signal directly.

1.2.2 Switching Linear Dynamical Systems

To deal with noise without having to train a new model, we go a step further in the modelling of the
speech waveform. We propose to extend the SAR-HMM to include an explicit noise process whereby
the observed noisy waveform is viewed as a corrupted version of a clean hidden waveform. This can
be naturally expressed as a SLDS where the internal hidden dynamics is autoregressive. Instead of
the noisy observations used in the SAR-HMM case, the proposed switching AR process only models
a clean hidden counterpart of the observed noisy waveform and is therefore expected to enhance noise
robustness. We start by making the simple assumption of additive Gaussian white noise and later
extend the AR-SLDS to deal with more complex additive noise sources.

1.2.3 Approximate Inference in the SLDS

Contrary to the SAR-HMM, where inferring the posterior of the hidden variables can be carried out
using a standard Forward-Backward algorithm, inference is formally intractable in the SLDS [6], scal-
ing exponentially with the length of the speech waveform. Arguably, this is a possible reason why
the SLDS has found relatively little support amongst the automatic speech recognition (ASR) com-
munity. Two well-known methods for performing approximate inference in the SLDS are Expectation
Propagation (EP) [50] and Generalised Pseudo Bayes (GPB) [6, 52]. They both suffer from limitations
which can be relaxed in the case of the SLDS—see [7] for a detailed explanation. We address the
limitations in existing approximate inference procedures by using the Expectation Correction (EC)
algorithm [7] which provides a stable, accurate approximation, and scales well to long time series like
those found in ASR. We show that EC can be seen as an extension to the SLDS of the Rauch, Tung,
Striebel (RTS) [61] inference algorithm for the Linear Dynamical System (LDS).

1.2.4 A Bayesian Alternative to Gain Adaptation

A fundamental issue faced by models based on AR processes—and linear models in general—is that
they are very sensitive to variations in the amplitude of the signal. This is problematic since, when
dealing with speech waveforms, the amplitude can vary significantly across speakers or because of
changes in recording conditions. A common way to overcome this limitation is to use Gain Adapta-
tion (GA) [25, 27] to automatically adjust the model. During training and testing, GA is performed
by replacing the setting of some parameters of the model by the setting which maximises the like-
lihood of the observed signal. However, adjusting model parameters by maximising test likelihoods
is fundamentally outside the framework of standard statistical approaches to machine learning, since
this may lead to overfitting when the models are sufficiently flexible. We address this problem by
devising a statistically principled alternative based on an exact Bayesian procedure in which priors
are explicitly defined on the parameters of the AR process. This approach leads to two new models,
the Bayesian SAR-HMM and the Bayesian AR-SLDS.

1.2.5 Bayesian Switching Linear Dynamical Systems

The Bayesian SAR-HMM is limited to clean speech. Following the same approach as for the AR-
SLDS, to deal with noise without having to train a new model, we extend the Bayesian SAR-HMM
to include an explicit model of additive Gaussian white noise. The introduction of priors on the
parameters makes inference in the proposed Bayesian AR-SLDS significantly more complicated than
in the AR-SLDS, preventing the direct use of standard approximation algorithms like EC. We address
this issue by proposing two variational approximations for which inference can then be carried out
using existing methods.
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The Bayesian treatment of the AR-SLDS also provides an alternative to GA where the noisy
observed signal is considered as a scaled and corrupted version of a clean hidden signal which is modelled
by a SAR-HMM trained on clean data. Compared to the gain-adapted and Bayesian AR-SLDSs, the
proposed scale-invariant AR-SLDS has the advantage of being able to model variations in the signal
amplitude explicitly, without having to adjust the parameters of the underlying AR processes. The
variance of the noise and the signal scaling factor are considered as random variables and are therefore
automatically adapted, potentially enabling the robust identification of scale invariant clean signals
in the presence of noise.

1.3 Contributions

The contributions of this thesis are the following:

• We propose a novel formulation of the inference in the SAR-HMM inspired from the Rauch,
Tung, Striebel (RTS) algorithm for the Kalman Filter. This has been published in [49] and [48].

• We propose to use a Switching Linear Dynamical Systems (SLDS) to model the noisy speech
waveform directly. Although SLDSs have been used before in a similar context [24, 63], their
applications were limited to feature vectors. The proposed model is trained on clean data and
can readily be used on noisy data. Experiments carried out with artificial and real noise sources
showed that our approach significantly enhances recognition accuracy of isolated digits in noisy
environments. This has been published in [49].

• We propose a new algorithm for performing approximate inference in the SLDS. Our method
relaxes some of the limitations of current approximation techniques and proved to be stable,
accurate and to scale well to long times series such as those found in ASR. This has been
published in [9] and submitted to IEEE Signal Processing Letters.

• We propose a principled Bayesian alternative to Gain Adaptation (GA) in models based on
AR processes. Our approach yields a performance comparable to that of GA for Signal to Noise
Ratios (SNRs) above 5 dB. This was published in [48].

• We present a Bayesian treatment of the SLDS and devise two possible variational approximations
which enable the intractable posterior distribution to be approximated using traditional inference
methods. We also propose another probabilistic alternative to GA by devising a Bayesian SLDS
which models scale invariance explicitly.

1.4 Limitations

In this thesis, we exclusively consider the task of recognising isolated digits spoken by different speak-
ers. This relatively simple task will allow us to clearly present the underlying theoretical aspects of our
approach to noise robust speech recognition. Compared to a feature-based HMM system, which essen-
tially models the sequence of discrete subword units, the approach we will consider is more complex
since it also incorporates a model of the continuous component, i.e., the waveform. Although, theo-
retically, nothing prevents the use of the proposed models to more challenging applications like large
vocabulary ASR, in practice, the significant increase in computational time and memory consumption
makes this impossible without the development of algorithmic surrogates. It is however beyond the
scope of this thesis to investigate those techniques. The material presented here should therefore be
considered as a tentative towards improving noise robustness in ASR, rather than a generic and fully
applicable solution.
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1.5 Structure of the Thesis

Chapter 2 This chapter introduces the common statistical framework used by most state-of-the-art
ASR systems. It focuses on the problem of recognising isolated digits and explains how it can be
addressed with HMMs. It shows that training can be reduced to an optimisation problem which can
be solved by means of the Expectation Maximisation (EM) algorithm. Since EM requires inferring
the posterior distribution of the hidden variables of the HMM, two inference procedure are presented;
the well-known Forward-Backward (or Baum-Welch) algorithm and a version of the Rauch, Tung,
Striebel (RTS) algorithm adapted to the HMM. This chapter also briefly presents two kinds of features
commonly used in ASR, as well as a start-of-the-art denoising algorithm. Finally, we evaluate the
recognition accuracy of a state-of-the-art HMM system on a isolated digit recognition task where
utterances are artificially corrupted by additive Gaussian white noise.

Chapter 3 This chapter introduces the well-known and widely used AR process and its extension,
the SAR-HMM, and shows how they can be used to model the speech waveform. Inference in the SAR-
HMM can be performed with the RTS algorithm, and Gain Adaptation deals with variations in the
signal amplitude. Update equations for the model parameters are derived and the recognition accuracy
of the SAR-HMM on the isolated digit recognition task is evaluated and compared to that of the state-
of-the-art HMM system.

Chapter 4 This chapter presents the AR-LDS and the AR-SLDS which extend the AR process and
the SAR-HMM respectively to explicitly model additive Gaussian white noise. We explain how to
perform Gain Adaptation in those models and briefly show the difficulty of performing exact inference
in the AR-SLDS. The recognition accuracy of the AR-SLDS in clean and noisy conditions is evaluated
and compared to that of the other models.

Chapter 5 This chapter presents the generic form of the LDS and the SLDS. We give a detailed
derivation of the original RTS algorithm for the LDS and present the novel Expectation Algorithm
for the SLDS. Pseudo-code for both algorithms is also provided.

Chapter 6 This chapter presents our proposed Bayesian alternative to Gain Adaptation. We intro-
duce the Bayesian SAR-HMM which is an alternative form of SAR-HMM where the parameters are
treated as random variables. An exact inference procedure is presented and the accuracy of the new
model in clean and noisy conditions is evaluated and compared to that of the previous models.

Chapter 7 This chapter introduces two types of Bayesian AR-SLDS; the first one is a direct exten-
sion of the Bayesian SAR-HMM which includes an explicit model of additive Gaussian white noise and
the second is a tentative to model scale invariance explicitly. Since exact inference is difficult in both
models, two different variational procedures are presented. Update formulae for the scale-invariant
model are also given. The accuracy of both models in clean and noisy conditions is compared to
that of the previous models. Finally, the performance of the gain-adapted and Bayesian AR-SLDS is
compared to that of a state-of-the-art HMM system on a subset of the Aurora database.

Chapter 8 This chapter summarises the main achievements of this thesis. We draw conclusions on
the work presented in the previous chapters and outline possible future directions.



Chapter 2

Feature-Based Automatic Speech
Recognition

2.1 Introduction

In this chapter we review the basic principles of classical speech recognition. Our exposition is mainly
centred on the underlying theoretical aspects of speech recognition, rather than the implementation
details. We consider the relatively simple task of recognising isolated spoken digits. This allows us
to avoid difficulties with large vocabulary speech recognition and to easily introduce the probabilis-
tic framework underlying current state-of-the-art ASR systems. Furthermore, we present only the
traditional maximum likelihood (ML) approach where training is performed by maximising the total
likelihood of the training examples. The more recent discriminative approaches to training [37, 68] are
not considered because they are difficult to apply to more complex models like those we will consider
in later chapters.

2.2 Isolated Digit Recognition

Our aim is to recognise digits spoken by different speakers. To achieve this, we possess a number of
examples of each digits under the form of waveforms. A subset of the data will be used to train the
ASR system and another to evaluate the recognition accuracy. We will denote by y1:T a waveform
made of T samples and by yt the t-th sample. In classical ASR systems, the waveform is not modelled
directly, but converted into a shorter sequence of feature vectors o1:N whose role is to retain the
waveform characteristics essential for recognition. Each feature vector compresses the information over
a window of samples and is therefore expected to present less variability than the original samples.

A statistical model with parameters Ψ defines the probability distribution p(o1:T |Ψ) of a se-
quence o1:T . If we denote by Ψd the parameter setting for the model of the d-th digit and by {o1

1:N , . . . ,o
M
1:N}

the set of M training sequences1 for that same digit, then the goal of training is to find the parameter
setting Ψ?

d which maximises the total log-likelihood of the training sequences, i.e.,

Ψ?
d = arg max

Ψd

M∑
m=1

log p(om
1:N |Ψd). (2.1)

Once the optimal parameter setting of each digit model has been found, the recognition accuracy of
the system can be evaluated. For a given sequence of feature vectors o1:N obtained from an utterance

1In practice, the training sequences have different length. To simplify notation, we assume that they all have the
same length.

7
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of the test set, the recognised digit d? is the one which corresponds to the parameter setting for which
the log-likelihood of the sequence is the highest, i.e.,

d? = arg max
d

log p(o1:N |Ψd). (2.2)

We therefore translate the problems of training and evaluation to that of computing the optimal
parameter setting Ψ?

d and the log-likelihood log p(o1:N |Ψd) of a given sequence o1:N . In the following
sections we describe in details the formal steps required to solve those two problems. Before doing so,
we briefly review two common types of feature extraction techniques.

2.3 Feature Extraction

The material presented here is largely inspired from the HTK book, the reference manual of the HTK
speech recognition toolkit [71]. We will focus on two types of features, the Linear Predictive Cepstral
Coefficients (LPCCs) and the Mel-Frequency Cepstral Coefficients (MFCCs). Feature vectors inte-
grate information over windows of samples which are generally overlapping. The raw samples y1:T are
rarely used directly, but are generally pre-processed.

2.3.1 Pre-Emphasis & Hamming Windowing

Speech signals have most of their energy concentrated in the lower frequencies. This is sometime
problematic because it makes the other frequencies less relevant. A common practice is therefore
to perform pre-emphasis. If we denote by tn the time index of the first sample of the n-th window
and Tn the length of that same window, then pre-emphasis transforms the sequence of samples x1:Tn ≡
ytn:tn+Tn−1 into a new sequence x′1:Tn

by applying the first order difference equation

x′t = xt − αxt−1

where 0 ≤ α < 1 and typically α = 0.97. Another common transformation, which is useful to avoid
discontinuities at window boundaries, is to downweight the samples at the edge of the window. This
is done by using an Hamming window

x′′t =
(

0.54− 0.46 cos
2π(t− 1)
Tn − 1

)
x′t.

For each window n ∈ [1, N ], the corresponding sequence of pre-processed samples x′′1:Tn
is then trans-

formed into a feature vector on of either LPCCs or MFCCs, as follows.

2.3.2 Linear Predictive Cepstral Coefficients

LPCCs are obtained by performing a linear prediction analysis; the vocal tract transfer function is
modelled by an all-pole filter with transfer function

H(z) =
1∑p

i=0 aiz−i

where p is the number of poles and a0 = 1. The filter coefficients ai are chosen to minimise the mean
square filter prediction error summed over the analysis window. The LPCCs are computed with the
recursion

ck = −ak +
1
k

k−1∑
i=1

(k − i) ai ck−i.

and then used as features, i.e., on =
[
c0 . . . cK

]T, where K is the number of coefficients. The
advantage of using the cepstral coefficients ck instead of the filter coefficients ai as features is that
the ck are generally decorrelated. They can therefore be more conveniently modelled by mixture of
Gaussians with diagonal covariance matrices.
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2.3.3 Mel-Frequency Cepstral Coefficients

MFCCs are another common type of acoustic feature. They are generated from the result of a
filterbank analysis whose goal is to mimic the pitch perception of the human ear. The basic idea
behind filterbank analysis is to compute, for each window n, the Fourier transform of the corresponding
sequence of samples x′′1:Tn

and then to apply p triangular filters of varying width on the resulting
magnitudes. The filter centres are spaced non-linearly on the frequency scale in a way similar to the
human ear. The result of the filterbank analysis on a window is a vector

[
m1 . . . mp

]T of filterbank
energies. The corresponding MFCCs are then computed from this by discrete cosine transform, i.e.,

ck =
√

2
p

p∑
j=1

mj cos
(
πk

p
(j − 0.5)

)

to form the feature vector on =
[
c0 . . . cK

]T of length K. The number of MFCCs typically used
is K = 13. Feature vectors are also often extended to include information about the energy of the
signal as well as the first and second temporal derivatives of the static coefficients. The typical
dimension of an extended feature vector is 39 coefficients per window.

2.4 The Model

The role of the model is to define the probability distribution p(o1:N |Ψd) needed by Equations 2.1
and 2.2. Since the recognition accuracy of an ASR system depends only on the likelihood, it is
important to devise a model of appropriate complexity. The best model is of course the one for
which d? in Equation 2.2 is correct for all utterances of the test set. If the model is too simple, some
utterances may not be correctly recognised. Similarly, if a model is too complex, overfitting may
occur, and result in poor performance on the test data.

2.4.1 The Gaussian Distribution

For continuous valued feature vectors, one of the simplest models is probably the multivariate Gaussian
distribution which defines the probability distribution of a feature vector on as

p(on) =
1

|2πΣ| 12
exp

{
−1

2
(on − µ)TΣ−1(on − µ)

}
(2.3)

where µ and Σ are the mean and covariance of on, respectively. If we furthermore assume that the
vectors are generated independently of each other, then the probability distribution of a sequence o1:N

is

p(o1:N ) =
N∏

n=1

p(on). (2.4)

One limitation of this model is that the sequential order of the feature vectors is irrelevant. Another
limitation is that the same probability distribution is used for all feature vectors. To better model
the intrinsic non-stationarity of speech signals, it would be more appropriate to consider subword
units, like phonemes, and to assume that to each unit is associated a potentially different probability
distribution. A natural way to represent this is to use a mixture of Gaussians where each mixture
component corresponds to a different unit.

2.4.2 The Mixture of Gaussians

We want to add a layer to our model which represents the fact that a feature vector on corresponds
to the subword unit sn. In classical ASR systems, it is generally assumed that there is a finite number



10 IDIAP–RR 08–35

sn−1 sn sn+1

on−1 on on+1

Figure 2.1: DBN representation of the HMM; sn represents the hidden state and on the observed
feature vector. Squares and circles depict discrete and continuous random variables respectively. The
observed variables are darkened.

of subword units, each one having a certain probability p(sn) of occurring. One way to express this is
by means of the mixture

p(on) =
∑
sn

p(on | sn) p(sn). (2.5)

From a generative point of view, this means that we first pick a subword unit at random according to
the distribution p(sn) and then generate a feature vector randomly from the distribution p(on | sn).
In a mixture of Gaussians, this latter distribution is the multivariate Gaussian distribution

p(on | sn) =
1

|2πΣsn |
1
2

exp
{
−1

2
(
on − µsn

)T
Σ−1

sn

(
on − µsn

)}
. (2.6)

The main difference with Equation 2.3 is that the distribution is now conditioned on sn, i.e., its
parameters depends on sn. The mixture approach addresses the problem of modelling subword units.
However, if Equation 2.4 is used as the probability distribution of the whole sequence, the sequential
order in which the subword units occur plays no role. To address this issue we need to consider a
more elaborate distribution where the temporal dependency is taken into account.

2.4.3 The Hidden Markov Model

The hidden Markov model (HMM) is a key component of most classical ASR systems. It is attractive
because it enables the temporal relationship between subword units to be expressed in a simple
probabilistic way. The basic idea is to introduce a state transition distribution p(sn | sn−1) which
gives the probability that the state (subword unit) sn follows the state sn−1. The model is (first-
order) Markovian because the transition probability is conditioned on only the most recent state.
Though it is possible to use distribution of higher orders, p(sn | sn−1, sn−2) for example, this is rarely
done because the number of possible state combinations to be considered grows exponentially with the
order of the model. The HMM defines a joint probability distribution over the sequences of feature
vectors and states of the form

p(o1:N , s1:N ) = p(o1 | s1) p(s1)
N∏

n=2

p(on | sn) p(sn | sn−1) (2.7)

where p(s1) is a prior distribution which gives the probability of starting with state s1 and p(on | sn)
is the emission distribution. The joint distribution given by Equation 2.7 can be represented as
the Dynamical Bayesian Network (DBN) of Figure 2.1. The probability of a sequence of feature
vectors o1:N is obtained by integrating over all the possible state sequences

p(o1:N ) =
∑
s1:N

p(o1:N , s1:N ). (2.8)

This summation is more complicated to perform than that in Equation 2.5 since the factors in the
product are no longer independent. Fortunately, the structure of the HMM allows the exact likeli-
hood p(o1:N ) to be efficiently computed, as explained in Section 2.7.
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2.5 Parameter Optimisation

In our probabilistic framework, training a model on a set of M sequences {o1
1:N , . . . ,o

M
1:N} is equivalent

to finding the parameter setting Ψ? which maximises the total log-likelihood of the training data, i.e.,

Ψ? = arg max
Ψ

M∑
m=1

log p(om
1:N |Ψ). (2.9)

A straightforward solution is to differentiate the sum on the right hand side (rhs) of Equation 2.9
with respect to Ψ and to look for the parameter setting for which the derivative is zero. In the case
of a HMM, p(o1:N |Ψ) is given by Equation 2.8 and Ψ corresponds to all the free parameters of the
model2. For a HMM with a Gaussian emission probability given by Equation 2.6 for example, we
would have

Ψ =
⋃
s

{
µs,Σs, p(s1 = s)

}
∪
⋃
i,j

{
p(sn = j | sn−1 = i)

}
.

Differentiating the rhs of Equation 2.9 with respect to Ψ and using Equation 2.8 gives

∂

∂Ψ
log p(o1:N |Ψ) =

1
p(o1:N |Ψ)

∑
s1:N

∂

∂Ψ
p(o1:N , s1:N |Ψ).

To find the derivative we therefore have to differentiate p(o1:N , s1:N |Ψ) which, according to Equa-
tion 2.7, is a product. Things would be simpler if, instead of having to differentiate a product, we
differentiate a sum. In that case the parameters would be isolated and the optimisation would be
simplified. This is indeed possible if we consider the alternate differentiation

∂

∂Ψ
log p(o1:N |Ψ) =

∑
s1:N

p(o1:N , s1:N |Ψ)
p(o1:N |Ψ)︸ ︷︷ ︸

p(s1:N | o1:N ,Ψ)

∂

∂Ψ
log p(o1:N , s1:N |Ψ). (2.10)

This corresponds to taking the average of the derivative of the joint distribution with respect to the
posterior distribution p(s1:N |o1:N ,Ψ). Equation 2.10 can be more conveniently written as

∂

∂Ψ
log p(o1:N |Ψ) =

〈 ∂

∂Ψ
log p(o1:N , s1:N |Ψ)

〉
p(s1:N | o1:N ,Ψ)

(2.11)

where 〈·〉p denotes the average with respect to the distribution p. Whilst no closed form expression
exists for finding zeros of this derivative, the right-hand-side (rhs) of Equation 2.11 is straightforward to
compute numerically, and may be used as part of a gradient based optimisation routine. If we possess
an estimate Ψ̃ of the optimal parameter setting Ψ?, an alternative strategy could be to approximate
the average in the rhs of Equation 2.11 by〈 ∂

∂Ψ
log p(o1:N , s1:N |Ψ)

〉
p(s1:N | o1:N ,Ψ̃)

.

This approach forms the basis of the Expectation Maximisation (EM) algorithm [21].

2.6 The Expectation Maximisation Algorithm

The EM algorithm is an iterative method which provides an approximation to the solution of Equa-
tion 2.9. Given the estimate Ψi of the optimal parameter setting Ψ? obtained at the i-th iteration, it
finds the new estimate Ψi+1 such that

Ψi+1 = arg max
Ψ

M∑
m=1

〈
log p(om

1:N , s1:N |Ψ)
〉

p(s1:N | om
1:N ,Ψi)

. (2.12)

2In this case, p(o1:N ) and p(o1:N |Ψ) are actually the same thing since we do not set any prior p(Ψ) on the parameters
of the model. If a prior is added, then p(o1:N ) =

P
Ψ p(o1:N |Ψ) p(Ψ).
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The initial estimate required to initialise the algorithm can be found heuristically or set randomly.
An interesting property of the EM algorithm is that the total likelihood of the training sequences is
guaranteed not to decrease after each iteration [21]. In the following, to simplify notation, we will
mainly consider the case of a single training sequence o1:N . The extension to multiple sequences is
easily obtained by summing the various contributions. If we define

q(s1:N ) ≡ p(s1:N |o1:N ,Ψi) (2.13)

then, for a HMM, the average in the rhs of Equation 2.12 can be, according to Equation 2.7, rewritten
as3

N∑
n=1

〈
log p(on | sn)

〉
q(sn)

+
N∑

n=1

〈
log p(sn | sn−1)

〉
q(sn−1,sn)

. (2.14)

Therefore, whilst the average in Equation 2.12 is carried out over all the possible state sequences s1:N ,
for a HMM, only the marginal posterior distributions q(sn) and q(sn−1, sn) are actually required. The
computation of the marginal posterior distributions is often called inference because it infers from the
sole knowledge of the feature vectors o1:N the marginal distributions q(sn) and q(sn−1, sn).

2.7 Inference

Inference in the HMM is traditionally carried out with the Forward-Backward algorithm [10, 58]
which is a special case of the more general Belief Propagation algorithm [55]. An alternative way of
performing inference in the HMM is to use a method similar to that proposed by Rauch, Tung and
Striebel (RTS) for the Kalman Filter [61]. Though both the Forward-Backward and the RTS algo-
rithms are applicable to the HMM, for more complicated models, like those we will consider in later
chapters, the RTS method is more appropriate.

2.7.1 The Forward-Backward Algorithm

The Forward-Backward algorithm computes the posterior distribution q(sn) ≡ p(sn |o1:N ) in two
passes. The first computes the forward messages αn(sn) and the second computes the backward
messages βn(sn). The α and β messages are defined such that

p(sn |o1:N ) ∝ αn(sn)βn(sn). (2.15)

In a HMM, the messages correspond to the probabilities:

αn(sn) = p(o1:n, sn) and βn(sn) = p(on+1:N | sn) (2.16)

which satisfy Equation 2.15.

Forward Pass

The forward message αn(sn) at step n can be related to the message at the previous step by

αn(sn) = p(o1:n, sn) =
∑
sn−1

p(o1:n, sn, sn−1)

= p(on | sn)
∑
sn−1

p(o1:n−1, sn, sn−1)

= p(on | sn)
∑
sn−1

p(sn | sn−1) p(o1:n−1, sn−1)︸ ︷︷ ︸
αn−1(sn−1)

. (2.17)

3To simplify notation we define p(s1 | s0) ≡ p(s1) and we do not write the dependency on Ψ explicitly.
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Starting from α1(s1) = p(o1 | s1) p(s1), it is therefore possible to compute all the forward messages by
recursively applying Equation 2.17. The forward pass is also useful for computing the likelihood of a
sequence since, at the last step,

p(o1:N ) =
∑
sN

p(o1:N , sN ) =
∑
sN

αN (sN ).

Backward Pass

The backward message βn(sn) at step n can be related to the message at the next step by

βn(sn) = p(on+1:N | sn) =
∑
sn+1

p(on+1:N , sn+1 | sn)

=
∑
sn+1

p(on+1 | sn+1, sn) p(on+2:N , sn+1 | sn)

=
∑
sn+1

p(on+1 | sn+1) p(on+2:N | sn+1, sn) p(sn+1 | sn)

=
∑
sn+1

p(on+1 | sn+1) p(on+2:N | sn+1)︸ ︷︷ ︸
βn+1(sn+1)

p(sn+1 | sn) (2.18)

where, as can be seen in Figure 2.1, for the third equality, we used the fact that the emission distribu-
tion does not depend on sn and, for the fourth equality, that on+2:N is independent of sn once sn+1

is known. Starting from βN (sN ) = 1, it is therefore possible to compute all the backward messages
by iteratively applying Equation 2.18. The pairwise marginal q(sn−1, sn) ≡ p(sn−1, sn |o1:N ) required
by Equation 2.14 is given by

p(sn−1, sn |o1:N ) ∝ αn−1(sn−1) p(on | sn) p(sn | sn−1)βt(sn).

2.7.2 The RTS Algorithm

The RTS algorithm [61] is a correction smoother; the forward pass computes the filtered poste-
rior p(sn |o1:n) and the backward pass corrects this to obtain the smoothed posterior p(sn |o1:N ). In
the Forward-Backward algorithm the two passes are independent of each other, while in the RTS al-
gorithm the backward pass requires the filtered posterior from the forward pass.

Forward Pass

The filtered posterior p(sn |o1:n) computed by the RTS forward pass is equal to the normalised forward
message αn(sn). The filtered posterior at step n can be related to the filtered posterior at the previous
step by

p(sn |o1:n) =
∑
sn−1

p(sn, sn−1 |o1:n)

∝ p(on | sn)
∑
sn−1

p(sn, sn−1 |o1:n−1)

∝ p(on | sn)
∑
sn−1

p(sn | sn−1) p(sn−1 |o1:n−1). (2.19)

where p(sn−1 |o1:n−1) is the filtered posterior at the previous step. Equation 2.19 is similar to Equa-
tion 2.17, the only difference being that a normalised αn−1(sn−1) is explicitly used. The filtered
posterior can be used to compute the likelihood of a sequence since

p(o1:N ) =
N∏

n=1

p(on |o1:n−1) =
N∏

n=1

∑
sn

p(on, sn |o1:n−1)
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and p(on, sn |o1:n−1) is given by the rhs of Equation 2.19.

Backward Pass

In the RTS backward pass, the smoothed posterior p(sn |o1:N )—which is given by Equation 2.15 in
the Forward-Backward algorithm—is computed directly by means of the recursive formula

p(sn |o1:N ) =
∑
sn+1

p(sn, sn+1 |o1:N )

=
∑
sn+1

p(sn | sn+1,o1:N ) p(sn+1 |o1:N )

=
∑
sn+1

p(sn | sn+1,o1:n) p(sn+1 |o1:N ) (2.20)

where p(sn+1 |o1:N ) is the smoothed posterior at the next step. For the third equation, we used the
fact that sn is independent of any future observations once sn+1 is known, as shown in Figure 2.1.
The backward transition probability p(sn | sn+1,o1:n) is given by

p(sn | sn+1,o1:n) ∝ p(sn, sn+1 |o1:n) = p(sn+1 | sn) p(sn |o1:n) (2.21)

where p(sn |o1:n) is the filtered posterior at step n. The backward pass is initialised with the filtered
posterior obtained at theN -th step, since both filtered and smoothed posteriors are equal at that point.
The pairwise marginal p(sn−1, sn |o1:N ) is given by the rhs of Equation 2.20 before summation.

2.8 Parameter Updating

To optimise Equation 2.14, we differentiate with respect to each of the parameters in Ψ and search
for the zeros of the derivative. For the transition distribution, the function we need to optimise is4

Ftrans =
N∑

n=2

〈
log p(sn | sn−1)

〉
q(sn−1,sn)

=
N∑

n=2

∑
sn−1,sn

q(sn−1, sn) log p(sn | sn−1).

Optimising Ftrans will not yield the correct answer since it misses the constraint that the transition
distribution must sum to one. If we define p(sn = j | sn−1 = i) = aij and use the method of Lagrange
multipliers then the correct function is

Ftrans =
N∑

n=2

∑
i,j

q(sn−1 = i, sn = j) log aij − λ
∑

j

aij .

Differentiating with respect to akl and setting to zero, we obtain

∂

∂akl
Ftrans =

N∑
n=2

q(sn−1 = k, sn = l)
1
akl
− λ = 0.

Since
∑

l akl = 1, we end up with

p(sn | sn−1) =
∑N

n=2 q(sn−1, sn)∑N
n=2

∑
sn
q(sn−1, sn)

=
∑N

n=2 q(sn−1, sn)∑N
n=2 q(sn−1)

. (2.22)

4Note that, according to Equation 2.13, the posterior q(sn−1, sn) is computed with the current estimate Ψi.
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For the prior distribution, we simply have p(s1) = q(s1). For the emission distribution, if we denote
by ϑs the parameter of the emission distribution associated with state s, then the function to be
optimised is

Femit =
N∑

n=1

〈
log p(on | sn, ϑsn)

〉
q(sn)

=
N∑

n=1

∑
sn

q(sn) log p(on | sn, ϑsn).

Differentiating with respect to ϑs and setting the result equal to zero, yields

∂

∂ϑs
Femit =

N∑
n=1

q(sn = s)
∂

∂ϑs
log p(on | sn = s, ϑs) = 0. (2.23)

This is the generic equation that we will need to solve to obtain update formulae for the parameters
of the emission distribution.

2.9 Unsupervised Spectral Subtraction

The models used in current state-of-the-art ASR systems are often trained on clean data, but tested on
noisy data. This problem is generally addressed by a pre-processing step which attempts to remove the
effect of noise [28, 14, 34, 43, 62]. A good example of a pre-processing technique is the Unsupervised
Spectral Subtraction (USS) [43]. The idea behind USS is to build a two-components mixture model
of the power spectrum of a noisy speech signal. The mixture works as an activity (silence) detector;
one component models regions of the power spectrum where no activity is detected and the other,
regions where activity (speech) is detected. If we denote by mnf the magnitude of the complex
number obtained from the Fast Fourier Transform of a pre-emphasised signal x′1:Tn

(see Section 2.3)
at frequency f , then USS assumes that

p(mnf ) = p(mnf | sil) p(sil) + p(mnf | act) p(act)

where p(mnf | sil) and p(mnf | act) are a Rayleigh and shifted Erlang distribution, respectively. This
model is trained with EM so that the total log-likelihood of the magnitudes

∑
n,f log p(mnf ) is max-

imised. An element of the power spectrum with magnitude mnf is then filtered out if its posterior
probability of being active

p(act |mnf ) =
p(mnf | act) p(act)

p(mnf | sil) p(sil) + p(mnf | act) p(act)

is below a certain threshold. Although the approximations made by USS seem rather drastic—for
example, the magnitudes mnf are assumed to be independent of each other—this simple scheme has
been shown to perform as well as other, more complex, denoising methods like [28]—see [42] for a
comparison. In our experiments with feature-based HMMs, we will therefore only consider USS and
implicitly assume it is a good representative of a state-of-the-art technique.

2.10 Experimental Setup

We evaluated the recognition accuracy of a state-of-the-art HMM system on a simple isolated digits
recognition task on the TI-DIGITS database [44]. This was achieved by training a separate HMM for
each of the eleven digits (0–9 and ‘oh’) found in the database. The training set for each digit was
composed of 110 single digit utterances, spoken by 55 different male speakers. Similarly, the test set
was composed of 112 single digit utterances, spoken by 56 different male speakers. The speakers in the
test set were also different from those in the training set. The utterances were originally recorded at
a sampling frequency of 20 kHz, but to shorten the processing time, we downsampled them to 8 kHz.
To evaluate the noise robustness of the model, we corrupted the samples of the test utterances with
additive Gaussian white noise.
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SNR (dB) #prms clean 26.3 25.1 19.7 10.6 0.7

HMM (MFCC) 4283 100 100 95.5 50 13.6 9.1
HMM (MFCC) + USS 4283 100 100 90.9 86.4 59.1 9.5

Table 2.1: Comparison of the word accuracy (in percent), at various SNRs, of a state-of-the-art
HMM system with and without USS. The best performance for each column is indicated in bold.
The second column indicates the number of free parameters in the model. A word accuracy of 9.1%
corresponds to random guessing.

2.11 Performance

Training and evaluation were performed with the HTK speech recognition toolkit [71], using the
same setup as the baseline system used for the AURORA task [35], namely, 18 states, a left-to-
right transition distribution—i.e., p(sn | sn−1) 6= 0 only for sn ∈ [sn−1, sn−1 + 1]—a mixture of three
Gaussians per state and feature vectors composed of 39 MFCCs, including first and second temporal
derivatives as well as energy. The number of parameters to be trained per model was therefore:
18 × 3 = 54 mixture weights, 18 × 3 × 39 = 2106 means and 2106 variances5—one for each of
the 39 components of the feature vector—and 17 transition probabilities. This makes a total of 4283
parameters per digit model.

Table 2.1 compares the word accuracy, at various Signal to Noise Ratios (SNRs), of a trained
HMM system with and without USS. As expected, the accuracy of the system without USS, at
moderate to low SNRs, is significantly reduced. In general, USS enhances recognition accuracy, but
fails when the SNR is low. The performance of the HMM is critically dependent on extracting effective
noise free features from the noisy signal. As noise increases, this becomes increasingly difficult and
standard ASR systems therefore break down.

2.12 Summary

We presented the essential ingredients of the probabilistic framework used in current state-of-the-art
ASR systems. Fitting a model to a set of training data is equivalent to maximising the total log-
likelihood of the training sequences and recognition is performed by finding the model for which the
log-likelihood of a test sequence is the highest. The speech waveform is not modelled directly, but
converted into a sequence of feature vectors which try to remove redundant information and to retain
only the information essential to recognition.

The HMM is a temporal model which is particularly well suited for modelling sequences of feature
vectors since its internal hidden state dynamics corresponds to the intuitive idea that speech can be
seen as an ordered sequence of subword units. However, the presence of hidden variables in the HMM
makes the direct optimisation of the total log-likelihood of the training sequences difficult. This
problem can be addressed by using the EM algorithm. Inference of the posterior distribution of the
hidden states given the observations can be efficiently performed by means of the Forward-Backward
algorithm or, alternatively, with the RTS algorithm.

The accuracy of a feature-based HMM system degrades significantly in the presence of noise.
At high SNRs, the use of pre-processing methods like USS generally makes the model more robust.
However, at lower SNRs, this approach is probably too limited since the filtering is performed inde-
pendently of the model. A potentially more fruitful approach is to model the noisy speech waveform
directly as a clean hidden signal corrupted by additive Gaussian white noise. Since this approach
jointly models speech and noise, it is therefore potentially more robust than the traditional approach
where speech and noise are modelled separately. In the next chapter, we introduce the Switching

5MFCCs are generally considered as independent and are therefore modelled by a multivariate Gaussian distribution
with a diagonal covariance matrix.
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Autoregressive HMM (AR-HMM), a model of the clean speech waveform which we will later extend
to include an explicit model of additive Gaussian white noise.
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Chapter 3

Autoregressive Models

The novel formulation of the inference in the SAR-HMM by means of the RTS algorithm (Section 3.3.3)
has been published in [49] and [48].

3.1 Introduction

The previous chapter focused on the modelling of sequences of feature vectors. In this chapter, with
consider an alternative approach where the clean speech waveform is modelled directly by means of
autoregressive (AR) processes. This will serve as a basis for the development of more refined models
where speech and noise are jointly modelled.

We start by looking at the simple AR process and then show how it may be combined with a HMM
to form the Switching AR-HMM (SAR-HMM) proposed by Ephraim and Roberts [27]. The aim of
this chapter is to introduce the notation and the basic theory underlying the switching linear models.
In [27], inference was originally performed with a modified version of the Forward-Backward algorithm.
This modified algorithm actually corresponds to the RTS algorithm; presumably Ephraim and Roberts
were unaware of this connection and their resulting derivation for inference in the SAR-HMM looks
more complex. In contrast, our formulation of the inference procedure is directly inspired from the
RTS algorithm.

3.2 The Autoregressive Process

A possible way to model a speech waveform—a sequence of unidimensional samples y1:T —is by means
of an Autoregressive (AR) process. An AR process models the sample yt as the sum of a linear
combination of the R previous samples and a random, normally distributed, innovation ηt:

yt =
R∑

r=1

cryt−r + ηt with ηt ∼ N (0, σ2) (3.1)

where N (µ, σ2) represents the normal (Gaussian) distribution with mean µ and variance σ2, and cr
are the AR coefficients. Equation 3.1 defines the probability distribution of a single sample yt as

p(yt | yt−R:t−1) =
1√

2πσ2
exp

{
− 1

2σ2

(
yt −

R∑
r=1

cryt−r

)2
}

(3.2)

19
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yt−1 yt yt+1

Figure 3.1: DBN representation of a second order AR process; yt symbolises the observed speech
sample at time t. The AR process does not contain any hidden variables.

which is a Gaussian whose mean is conditioned on the R previous samples. The probability distribution
of the whole sequence y1:T is given by

p(y1:T ) =
T∏

t=1

p(yt | yt−R:t−1). (3.3)

Since, at the beginning of the sequence, yt−R:t−1 is not defined, we assume that yt = 0 when t ≤ 0. For
a second order (R = 2) AR process, the joint distribution defined by Equation 3.3 can be graphically
represented by the DBN of Figure 3.1.

3.2.1 Gain Adaptation

A fundamental limitation of the AR process is that the innovation variance σ2 does not scale properly
with the signal. In particular, if the samples y1:T are scaled by a factor α in Equation 3.1, then
we would expect the innovation variance to scale by a factor α2. In other words, the ‘gain’, i.e.,
the variance σ2, needs to be properly adapted to each sequence y1:T , and has a strong impact on
the likelihood p(y1:T ). A solution to the gain problem is essential for the successful application of the
AR process to acoustic signal analysis. A straightforward approach is to gain normalise the signal such
that it always has unit variance. An alternate and, in practice, more effective solution is to replace σ2

in Equation 3.1 by the variance which maximises the log-likelihood of the speech signal y1:T , i.e.,

σ2
ML = arg max

σ2
log p(y1:T |σ2). (3.4)

This approach, known as Gain Adaptation (GA), has been successfully used for isolated digit recog-
nition with AR models in clean and noisy environments [25, 27]. Solving Equation 3.4 is similar to
train the model on a single sequence, the only difference being that only the variance σ2 is modified,
the AR coefficients are left untouched. Since GA must be performed for each individual signal, this
means it has to be performed for test data as well. However, adapting model parameter on the basis
of test data is dangerous because, in flexible models, it may lead to overfitting.

3.2.2 Parameter Optimisation

The generic approach to solve Equation 3.4 is to differentiate the log-likelihood with respect to σ2

and to search for the zero of the derivative. For a Gaussian distribution however, σ2
ML is equal to the

empirical variance. If we define

ỹt =
[
yt−1 . . . yt−R

]T and c =
[
c1 . . . cR

]T
then the most likely (ML) variance is given by

σ2
ML =

〈
(yt − cTỹt)2

〉
=

1
T

T∑
t=1

(yt − cTỹt)2. (3.5)

Later we will also have to find the optimal setting cML of the AR coefficients. This can be obtained
from the empirical covariance of yt and ỹt. Multiplying both sides of Equation 3.1 by ỹT

t and taking
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the average, yields 〈
ytỹT

t

〉
= cT

ML

〈
ỹtỹT

t

〉
+
〈
ηtỹT

t

〉
⇒ cT

ML =
〈
ytỹT

t

〉〈
ỹtỹT

t

〉−1 (3.6)

where we used the fact that
〈
ηtỹT

t

〉
= 0 since ηt is independent of ỹt.

3.3 The Switching Autoregressive HMM

An AR process cannot model the strong non-stationarities typically encountered in speech signals.
A possibly more fruitful approach is to consider that each sample yt can be generated by one of S
different AR processes. If the selected AR process is furthermore picked at random according to a
Markovian transition distribution, then we naturally end up with a HMM. The idea of using the
state of a HMM to switch between a finite number of AR processes is at the heart of the AR-HMM
proposed by Poritz [56]. The AR-HMM is an instance of Segmental HMMs, where each segment is
modelled by a potentially different AR process. But, like all models based on the Segmental HMM,
continuity is lost at segment boundaries. The Switching AR-HMM (SAR-HMM), recently introduced
by Ephraim and Roberts [27] improves Poritz’s original model by restoring continuity at segment
boundaries. Both models consider a speech signal as the concatenation of fixed-length segments, each
being modelled by a potentially different AR process. The reason for considering segments instead of
individual samples is that, in practice we expect the dynamics to last for a minimal amount of time.
It is therefore not desirable to allow the model to switch between the AR processes too rapidly. If we
denote by N the number of segments, by K their length, by tn = K(n− 1) + 1 the starting time step
of the n-th segment and by yn ≡ ytn:tn+1−1 the samples belonging to that same segment, then, for a
sequence of segments y1:N and a sequence of state s1:N , the SAR-HMM defines the joint distribution

p(y1:N , s1:N ) = p(y1 | s1) p(s1)
N∏

n=2

p(yn | sn, ỹtn) p(sn | sn−1) (3.7)

where sn ∈ [1, S] is a discrete switch variable which indicates which AR process has been used to
generate the n-th segment. Since, inside a segment, the samples are modelled by the same AR process,
the segment emission probability is given by

p(yn | sn, ỹtn) =
tn+1−1∏

t=tn

p(yt | sn, ỹt)

which is analogous to Equation 3.3. The sample emission distribution corresponds to an AR process
whose parameters depend on the state sn, i.e.,

p(yt | sn, ỹt) =
1√

2πσ2
sn

exp
{
− 1

2σ2
sn

(yt − cT
sn

ỹt)2
}
. (3.8)

The main difference between the AR-HMM and the SAR-HMM is that, in the former, the segment
emission probability is not conditioned on the previous samples ỹtn

≡ ytn−R:tn−1. In the AR-HMM,
continuity is therefore lost at segment boundaries. Graphically, the SAR-HMM can be represented by
the DBN of Figure 3.2. When compared to the DBN of Figure 2.1, we see two differences: the switch
state conditions the emission of a whole segment of samples, and the observations are coupled in a
forward fashion. Despite the apparent complexity of the SAR-HMM, the model remains a specially
constrained version of a HMM, for which inference is computationally straightforward if carried out
with the RTS algorithm1. Since the SAR-HMM is based on an AR process, GA needs to be performed
too.

1The inference algorithm used in [27] actually corresponds to the RTS algorithm. The authors were probably unaware
of that and propose a complex derivation based on the Forward-Backward algorithm which ends up being equivalent to
the RTS method.
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sn−1 sn sn+1

yt−2 yt yt+2yt−1 yt+1

Figure 3.2: DBN representation of a second order SAR-HMM; sn represents the hidden switch state
and yt the observed waveform sample. Compared to the SAR-HMM, Poritz’s AR-HMM does not
include the dashed links.

3.3.1 Gain Adaptation

Given a sequence of samples, GA is performed in the SAR-HMM by replacing the state innovation
variance σ2

s in Equation 3.8 by the per segment and state variance σ2
ns which maximises the likelihood

of the observed sequence y1:T , i.e.,

σ2
ns =

1
Tn

tn+1−1∑
t=tn

(yt − cT
s ỹt)2 (3.9)

where Tn = tn+1 − tn is the length of the n-th segment.

3.3.2 Parameter Optimisation

The free parameters of the SAR-HMM are

Ψ =
⋃
s

{
cs, p(s1 = s)

}
∪
⋃
i,j

{
p(sn = j | sn−1 = i)

}
.

The innovation variance σ2
s is not considered as a free parameter because it is replaced by σ2

ns. Training
a SAR-HMM consists in finding, for a given set of training sequences {y1

1:N , . . .y
M
1:N}, the parameter

setting Ψ? such that

Ψ? = arg max
Ψ

M∑
m=1

log p(ym
1:N |Ψ).

A straightforward optimisation of the total log-likelihood is difficult because

p(ym
1:N |Ψ) =

∑
s1:N

p(ym
1:N , s1:N |Ψ).

A possible alternative is to use the EM algorithm (Section 2.6). This requires the computation of the
marginal posterior p(sn |y1:N ).

3.3.3 Inference

The dependency of the samples yn on the previous samples ỹtn in the segment emission distribution
makes the Forward-Backward algorithm difficult to apply. In this case, the RTS algorithm is more
appropriate because its backward pass does not involve the emission probability. The equivalent of
Equation 2.19 for the filtered posterior p(sn |y1:n) is

p(sn |y1:n) ∝ p(yn | sn, ỹtn
)
∑
sn−1

p(sn | sn−1) p(sn−1 |y1:n) (3.10)
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and the equivalent of Equation 2.20 for the smoothed posterior p(sn |y1:N ) is

p(sn |y1:N ) =
∑
sn+1

p(sn | sn+1,y1:n) p(sn+1 |y1:N ) (3.11)

where the backward transition distribution (Equation 2.21) is given by

p(sn | sn+1,y1:n) ∝ p(sn+1 | sn) p(sn |y1:n). (3.12)

3.3.4 Parameter Updating

Using the same convention as that used in Section 2.8, i.e.,

q(s1:T ) ≡ p(s1:N |y1:N ,Ψi)

where Ψi is the parameter setting obtained at the end of the i-th iteration of the EM algorithm, the
update formulae for the prior and transition probability are given by p(s1) = q(s1) and Equation 2.22,
respectively. The update formula for the AR coefficients cs can be obtained from Equation 2.23 which,
for the SAR-HMM, reads

N∑
n=1

q(sn = s)
∂

∂cs
log p(yn | sn, ỹtn

) = 0

with
∂

∂cs
log p(yn | sn, ỹtn

) =
tn+1−1∑

t=tn

∂

∂cs
log p(yt | sn, ỹt).

The optimal cs is given by Equation 3.6 which, in this case, reads

cT
s =

[
N∑

n=1

q(sn = s)
tn+1−1∑

t=tn

ytỹT
t

][
N∑

n=1

q(sn = s)
tn+1−1∑

t=tn

ỹtỹT
t

]−1

(3.13)

3.4 Training & Evaluation

Following Section 2.10, we trained a separate SAR-HMM for each of the eleven digits (0–9 and ‘oh’)
of the TI-DIGITS database [44]. The train and test sets were exactly the same as those used in
Section 2.10. To facilitate comparison with the results presented in the literature, we chose the same
experimental setup as that used in [27]. Each digit SAR-HMM was composed of ten states with
a left-to-right transition matrix. Each state was associated with a 10-th order AR process and the
model was constrained to stay an integer multiple of 140 time steps (0.0175 seconds) in the same state.
The number of parameters to be trained was therefore: 10 AR coefficients per state and 9 transition
probabilities. This makes a total of 109 free parameters, without counting the innovation variance
which is automatically obtained from each utterance. For each training utterance the adapted gain σ2

ns

associated to each pair of segment and state was computed according to Equation 3.9. The parameters
of the model—i.e., the transition matrix and the AR coefficients of each state—were then updated
according to Equations 2.22 and 3.13. A new iteration of EM took place if the relative log-likelihood
difference between two consecutive iterations was greater than 10−7, i.e.,∑

m

[
log p(ym

1:N |Ψi+1)− log p(ym
1:N |Ψi)

]
∑

m log p(ym
1:N |Ψi)

> 10−7. (3.14)

Similarly to training, for each test sequence, the adapted gain σ2
ns associated to each pair of segment

and state was computed according to Equation 3.9, and recognition was then performed by selecting
the digit model for which the likelihood of the given test sequence was the highest.
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SNR (dB) #prms clean 26.3 25.1 19.7 10.6 0.7

HMM (MFCC) 4283 100 100 95.5 50 13.6 9.1
HMM (MFCC) + USS 4283 100 100 90.9 86.4 59.1 9.5

HMM (LPCC) 109 100 95.5 27.3 18.2 9.5 9.1
HMM (LPCC) + USS 109 100 86.4 77.3 18.2 13.6 10

SAR-HMM 119 88.3 25.5 9.7 8.6 9.3 9.4
SAR-HMM + GA 109 97.2? 79.8 56.7 22.2 9.7 9.1

Table 3.1: Comparison of the word accuracy (in percent), at various SNRs, of the SAR-HMM, with
and without GA, and a state-of-the-art ASR system using MFCCs (copied from Table 2.1) or LPCCs,
both with and without USS. The best performance for each column is indicated in bold. The second
column indicates the number of free parameters in the model. A word accuracy of 9.1% corresponds
to random guessing. For the SAR-HMM, the values result from experiments carried out with our own
implementation of the model. ?The original word accuracy, reported in [27], is 98.5.

3.5 Performance

Table 3.1 shows the recognition accuracy of the SAR-HMM with and without GA on the isolated digit
recognition task described in Section 2.10. For comparison, the accuracy of the feature-based HMM
reported in Table 2.1 is also reproduced. Table 3.1 also compares the SAR-HMM to a HMM using
a single Gaussian per state and the same number of LPCCs features as the order of the SAR-HMM.
Since LPCCs roughly correspond to the AR coefficients of an AR process fitted on the signal, they
are more closely related to the SAR-HMM than the MFCCs. Furthermore, the number of parameters
of the LPCC-based HMM is the same as that of the SAR-HMM (i.e., 109), while the number of
parameters of the MFCC-based HMM is considerably higher (i.e., 4283). Comparing the SAR-HMM
to a LPCC-based HMM is therefore more appropriate because their learning capacity are similar.
The two models are not equivalent however since the AR coefficients used to compute the LPCCs
are directly derived from the signal, whereas the SAR-HMM AR coefficients are part of the model.
Reducing a segment of the signal to the AR coefficients which best reproduce that segment has a
compressing effect which is not available to the SAR-HMM; matching the performance of the HMM
is therefore difficult. A possible way to improve the accuracy of the SAR-HMM is to use a mixture
of AR processes per state. Different mixture components might then be able to model different types
of signal shape. Also, the order of the AR processes could be increased, thereby allowing a more
accurate modelling of the signal. Although it might be interesting to investigate whether those two
refinements improves the accuracy of the model, throughout this thesis, we will solely consider the
case of a single AR process per state and simply assume that a 10-th order AR process is able to
model the clean speech signal sufficiently accurately. A practical reason behind the choice of a 10-th
order AR process is that, the CPU time and memory required to run the more complex models which
we will consider later, are proportional to S × T × R3 and S × T × R2, respectively—where S is the
number of states, T the number of speech samples and R the order of the AR process. Increasing the
number of AR coefficients therefore quickly makes the running time of the experiments prohibitive.

Whilst the gain-adapted SAR-HMM has comparable to state-of-the-art performance on clean
speech, the accuracy degrades rapidly under noisy conditions. This is because the AR process is
defined on the potentially noisy observed signal directly; since the model forms predictions on the
basis of past observations, the recognition accuracy of the SAR-HMM drops significantly if the speech
signal is corrupted with noise. It is interesting to note however that GA significantly improves the ac-
curacy of the SAR-HMM for low to moderate SNRs. This is expected since GA adapts the innovation
variance in Equation 3.1 and adding Gaussian white noise is equivalent to increase that variance.

The improvement of USS when used with LPCCs is less significant than with MFCCs. This is
probably because the signal after filtering is structurally much different from the clean signals the



IDIAP–RR 08–35 25

models were trained on. In contrast, MFCCs are much more robust since they are computed from the
filtered power spectrum directly and encompass dynamic information as well. The poor performance
of USS at high SNRs suggests that using a model of clean speech during filtering might be helpful,
since it would allow USS to produce a denoised signal with a structure more similar to the training
examples.

3.6 Summary

For isolated digits recognition, modelling the speech waveform directly is an alternative to conventional
feature-based HMMs. The SAR-HMM represents the speech waveform as a sequence of segments which
can be modelled by potentially different AR processes. Compared to the HMM commonly used in
ASR, the SAR-HMM has two major differences; it uses the raw speech samples directly instead of
feature vectors and the emission distribution depends on the previous samples. That dependency
makes inference with the traditional Forward-Backward algorithm difficult. In contrast, inference is
straightforward with the RTS algorithm.

A common problem with models based on an AR process is that they are sensitive to variations
in signal amplitude. This problem is traditionally addressed by GA which consists in replacing the
innovation variance by its most likely estimate. Although GA significantly improves the accuracy
of the SAR-HMM in clean and noisy conditions, it is fundamentally outside the machine learning
framework since it adapts model parameters on the basis of test data. This problem is addressed in
Chapter 6 where we propose a Bayesian alternative to GA.

Although GA improves the performance of the SAR-HMM in noisy conditions, the SAR-HMM is
only suitable for clean speech and does not model noise explicitly. In the next chapter, we extend the
SAR-HMM to include an explicit model of additive Gaussian white noise. The proposed approach
jointly models speech and noise and is therefore expected to be more robust than the traditional
feature-based approach where speech and noise are modelled separately.
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Chapter 4

Linear Dynamical Systems

The material presented in this chapter has been published in [49].

4.1 Introduction

To deal with noise, without having to train a new model, we extend the AR process and the SAR-
HMM to include an explicit noise process whereby the observed noisy signal is viewed as a corrupted
version of a clean hidden signal. This approach naturally leads to two well-known and widely used
classes of models: the Linear Dynamical Systems (LDSs) and the Switching Linear Dynamical Sys-
tems (SLDSs) [6]. The LDS and the SLDS can be seen as both a generalisation and an extension of the
AR process and the SAR-HMM respectively. Those models are expected to enhance noise robustness
since the underlying AR/linear model is defined on a hidden clean counterpart of the noisy signal.
Here we will make the simple assumption of independent Gaussian noise, although, as we will see in
later chapters, the method may be extended to include more complex noise processes. Previous appli-
cations of the SLDS to ASR—see for example [24, 63]—have modelled the feature vectors, and not the
raw signal directly. However, work in acoustic modelling [18] suggests that the SLDS is a potentially
powerful tool for modelling the noisy speech waveform. In this chapter, we present the AR-LDS and
the AR-SLDS, two instances of LDSs and SLDSs where the internal dynamics is autoregressive.

4.2 The AR-LDS

We would like to extend the AR process so that it can model additive Gaussian white noise explicitly.
A possible approach is to assume that, to an observed sequence of noisy samples v1:T corresponds a
clean hidden sequence of samples y1:T . The clean sequence is modelled by an AR process (Equation 3.1)
and the noisy samples vt are related to the clean samples yt by

vt = yt + ηVt with ηVt ∼ N (0, σ2
V) (4.1)

where ηVt represents additive Gaussian white noise with variance σ2
V . The corresponding joint distri-

bution of the clean and noisy sequences is

p(v1:T , y1:T ) =
T∏

t=1

p(vt | yt) p(yt | ỹt)

where ỹt = yt−R:t−1. Graphically, this model can be depicted by the DBN of Figure 4.1. It belongs
to the class of Linear Dynamical Systems (LDSs) which represents the dynamics of an observed signal
by means of linear hidden variable model. The major difference with the AR process (Figure 3.1)

27
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yt−1 yt yt+1

vt−1 vt vt+1

Figure 4.1: DBN representation of a second order AR-LDS; yt represents the hidden clean speech
sample and vt the corresponding noisy sample.

is that the clean signal is now hidden. For σ2
V ≡ 0, the model is equivalent to an AR process and,

when σ2
V > 0, it is effectively an AR model of clean speech plus a model of additive Gaussian white

noise. The likelihood of an observed noisy signal v1:T is given by integrating over all possible hidden
clean sequences, i.e.,

p(v1:T ) =
∫

y1:T

p(v1:T , y1:T ).

Since our ultimate goal is to use this model or one of its derivative to model speech waveforms, we
need to address the problem of dealing with variations in the signal amplitude. A straightforward
solution to that problem is to use GA.

4.2.1 Gain Adaptation

As for the AR process, GA in the AR-LDS consists in replacing the innovation variance σ2 in Equa-
tion 3.1 by the variance which maximises the log-likelihood of the observed data v1:T , i.e.,

σ2
ML = arg max

σ
log p(v1:T |σ) = arg max

σ
log
∫

y1:T

p(v1:T , y1:T |σ). (4.2)

A major difference with GA in the AR process (Equation 3.5) is that the clean sequence y1:T is hidden.
The presence of hidden variables makes the direct optimisation of Equation 4.2 difficult. A possible
alternative is to use the EM algorithm. If we define

q(y1:T |σ2
i ) ≡ p(y1:T | v1:T , σ2

i )

where σ2
i is the estimate of σ2

ML obtained after the i-th iteration, then the EM algorithm finds the
next estimate σ2

i+1 such that

σ2
i+1 = arg max

σ2

〈
log p(v1:T , y1:T |σ2)

〉
q(y1:T |σ2

i )
.

= arg max
σ2

T∑
t=1

〈
log p(vt, yt | yt−1, σ

2)
〉

q(yt−1,yt |σ2
i )
. (4.3)

The solution to Equation 4.3 corresponds to the empirical variance, averaged over q, i.e.,

σ2
i+1 =

1
T

T∑
t=1

〈
(yt − cTỹt)2

〉
q(yt,ỹt |σ2

i )
. (4.4)

Since the amount of noise affecting an observed noisy sequence v1:T is unknown a priori, we need to
find it automatically for each sequence. A possible approach is to use GA again and to replace σ2

V in
Equation 4.1 by the noise variance which maximises the likelihood of the observed sequence. Using EM,
we obtain the update equation

σ2
V,i+1 =

1
T

T∑
t=1

〈
(vt − yt)2

〉
q(yt |σ2

V,i)
. (4.5)
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which is analogous to Equation 4.4. To evaluate Equations 4.4 and 4.5, we need to infer the posterior
distribution q(yt, ỹt) ≡ p(yt, ỹt | v1:T ) and q(yt).

4.2.2 Inference

Inference in the AR-LDS can be performed with the RTS algorithm [61]1. The forward pass of the
RTS method computes the filtered posterior

p(yt, ỹt | v1:t) ≡ p(yt−R:t | v1:t)

and the backward pass corrects this to obtain the smoothed posterior

p(yt, ỹt | v1:T ) ≡ p(yt−R:t | v1:T ).

The equivalent of Equation 2.19 for the filtered posterior is

p(yt−R:t | v1:t) ∝ p(vt | yt)
∫

yt−R−1

p(yt | yt−R:t−1) p(yt−R−1:t−1 | v1:t−1) (4.6)

By analogy with Equations 2.19 and 2.20, we could have been tempted to compute p(yt | v1:t) directly
instead of the joint p(yt−R:t | v1:t). However, since yt depends on yt−R:t−1, a proper recursion would
not be achievable in that case. The equivalent of Equation 2.20 for the smoothed posterior is

p(yt−R:t | v1:T ) =
∫

yt+1

p(yt−R:t | yt+1, v1:t) p(yt−R+1:t+1 | v1:T ) (4.7)

where the backward transition distribution (Equation 2.21) is given by

p(yt−R:t | yt+1, v1:t) ∝ p(yt+1 | yt−R+1:t) p(yt−R:t | vt).

Equations 4.6 and 4.7 are more complicated to evaluate than Equations 2.19 and 2.20 because they
deal with a continuous variable instead of a discrete one. However, since all the distributions involved
in the computation of both the filtered and smoothed posteriors are Gaussians, it is sufficient to keep
track of the mean and covariance matrix of the vector yt−R:t. Equations 4.6 and 4.7 can be written
more concisely by using the change of variable ht = yt−R:t. This corresponds to the generic form of
the LDS for which inference is presented in the next chapter.

4.3 The AR-SLDS

As for the SAR-HMM, to deal with the intrinsic non-stationarities of the speech signal, it is useful
to allow the model to switch between a finite number of potentially different AR-LDSs. This ap-
proach leads to the AR-SLDS, an extension of the SAR-HMM where additive Gaussian white noise
is modelled explicitly. The clean sequence y1:T is considered as hidden and is modelled by a SAR-
HMM (Equation 3.7). As for the LDS, the relationship between the noisy observed samples vt and
the clean hidden samples yt is given by Equation 4.1. The AR-SLDS defines the joint distribution

p(v1:T , y1:T , s1:N ) =
N∏

n=1

p(sn | sn−1)
tn+1−1∏

t=tn

p(vt | yt) p(yt | sn, ỹt)

where p(s1 | s0) ≡ p(s1) is a given prior distribution. Graphically, this can be depicted by the DBN
of Figure 4.2. If the noise variance is low, i.e., σ2

V ≡ 0, then the AR-SLDS mimics the SAR-HMM.
1In Section 2.7.2, we used the RTS algorithm as a replacement for the Forward-Backward algorithm in the HMM,

but it has originally been devised for the LDS. Although, formally, inference can also be carried out with the Forward-
Backward algorithm, in practice, this approach is less stable because the backward message is not a probability distri-
bution.
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sn−1 sn sn+1

yt−2 yt yt+2yt−1 yt+1

vt−2 vt vt+2vt−1 vt+1

Figure 4.2: DBN representation of a second order AR-SLDS; sn is the switch variable, yt the clean
hidden speech sample and vt is the corresponding noisy sample. Compared to Figure 3.2, the clean
speech samples are now hidden and only the noisy samples are observed.

For σ2
V > 0, the model is effectively a SAR-HMM model of clean speech, plus a model of additive

Gaussian white noise, and should thus provide a level of noise robustness. The likelihood of an
observed noisy sequence v1:T is obtained by integrating out the hidden variables:

p(v1:T ) =
∑
s1:N

∫
y1:T

p(v1:T , y1:T , s1:N ).

As usual with AR-based models, we use GA to make the likelihood independent of the amplitude of
the signal.

4.3.1 Gain Adaptation

Similarly to the SAR-HMM, the state dependent innovation variance σ2
s is replaced by the segment-

state variance σ2
ns which maximises the likelihood of the observed sequence. Since inside a segment

all the observations are modelled by the same AR-LDS, the update formula for σ2
ns is

σ2
i+1 =

1
Tn

tn+1−1∑
t=tn

〈
(yt − cT

s ỹt)2
〉

q(yt,ỹt | sn=s,σ2
i )

(4.8)

where Tn = tn+1 − tn is the length of the n-th segment and

q(yt, ỹt | sn, σ
2
i ) ≡ p(yt, ỹt | sn, v1:T , σ

2
i ).

Equation 4.8 is analogous to Equation 3.9 for the SAR-HMM, the main difference being that, since
the clean signal on which the innovation acts on is not directly observed, we need to average with
respect to the posterior probability of that hidden clean signal.

As for the AR-LDS, GA is also used for adapting the noise variance. Since we consider Gaussian
white noise, we need to find a single noise variance common to all segments and states. Compared
to σ2, the formula for adapting σ2

V therefore includes a sum over all segments and all possible switch
states. Hence

σ2
V,i+1 =

1
T

N∑
n=1

∑
sn

q(sn)
tn+1−1∑

t=tn

〈
(vt − yt)2

〉
q(yt | sn,σ2

V,i)
. (4.9)

A useful alternative, in cases where the noise is not white, is to consider a segment dependent noise
variance. This can be easily achieved by dropping the sum over n in Equation 4.9.
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4.3.2 Inference

Solving Equations 4.8 and 4.9 requires computing the posterior distributions p(yt, ỹt | sn, v1:T ), p(yt | sn, v1:T )
and p(sn | v1:T ). Contrary to the SAR-HMM and the LDS, where finding the posterior state of the
hidden variables can be carried out exactly, inference is formally intractable in the SLDS. For example,

p(yt, sn | v1:T ) =
∑

s1:n−1
sn+1:N

p(yt | s1:N , v1:T ) p(s1:N | v1:T )

is a mixture of SN−1 Gaussians. Hence, the number of computations required to evaluate the poste-
rior distribution exactly scales exponentially with the length of the sequence considered. In practice,
approximations must therefore be used. Various algorithms exist for performing approximate infer-
ence in the SLDS—see [46, 72] for a review and [7] for a comparison. Two well-known examples are
Expectation Propagation [50] and Generalised Pseudo Bayes [6, 52]. Both methods suffer from limi-
tations which can be relaxed in the case of the SLDS—see [7] for a detailed explanation. To overcome
limitations in existing approximate inference methods for the SLDS, we developed the Expectation
Correction (EC) algorithm [7] which provides a stable, accurate approximation and scales well to long
time series such as those found in ASR. A detailed description of EC is given in the next chapter. In
this thesis, we use EC in all the experiments involving a SLDS.

4.4 Training & Evaluation

Following Section 2.10, we evaluated the recognition accuracy of the AR-SLDS on the isolated digits
from the TI-DIGITS database. The AR-SLDS was not trained directly. Instead its parameters were
simply set to the same value as in the corresponding trained SAR-HMM. The models were then tested
on the same test set as used for the SAR-HMM. For each test utterance, the innovation and noise
variance was iteratively adapted using Equations 4.8 and 4.9 until the relative log-likelihood difference
between two consecutive iterations was less than 10−7 (Equation 3.14). The initial estimate σ2

0 required
by Equation 4.8 was obtained from the training set, by using the SAR-HMM maximum likelihood
estimate of σ2

s for each state2. For the noise variance, Equation 4.9 was evaluated with a number of
different values for σ2

V,0 and the one which was resulting in the highest likelihood was used to seed the
recursion. Since the noise variance is automatically adapted using GA, the AR-SLDS has the same
number of parameters as the SAR-HMM, i.e., 109.

4.5 Examples of Signal Reconstruction

In order to demonstrate the noise robustness capabilities of the AR-SLDS, we plotted in Figure 4.3,
for two examples: (top) the original clean waveform taken from the TI-DIGITS database, (middle) its
artificially Gaussian white noise corrupted version and (bottom) the corresponding most likely recon-
structed clean speech signal. The latter is obtained by taking, for each time step, the mean 〈yt〉 of
the smoothed posterior p(yt | s′t, v1:T ), with the state segmentation given by s′t = arg maxst

p(st | v1:T ).
Figure 4.3 also shows, for each signal, the corresponding state segmentation given by the AR-SLDS.

In Figure 4.3 both noise-corrupted signals are correctly recognised by the AR-SLDS. This is en-
couraging since when the SNR is close to 0 dB, the shape of the original clean speech signal has almost
disappeared and any denoising method which does not consider the dynamics of the clean signal will
most likely fail. In this example, the reconstructed signal is reminiscent of a ‘one’ for the top exam-
ple, and a ‘five’ for the bottom example. For the higher SNR the reconstruction is much closer to
the original clean signal. The noisy ‘one’ shown on the top of Figure 4.3 has a log-likelihood of 2.0
when evaluated with the AR-SLDS corresponding to ‘one’ and a log-likelihood of 1.9995 with the
model corresponding to ‘oh’. This demonstrates that, under extremely noisy conditions, an accurate

2This value is not used in the gain-adapted SAR-HMM since it is replaced by the segment-state variance σ2
ns.
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‘one’ at SNR 0.7 dB

‘five’ at SNR 10.6 dB

Figure 4.3: Two examples of signal reconstruction using the AR-SLDS; (top) original clean waveform
taken from the TI-DIGITS database, (middle) noisy signal, i.e., clean signal artificially corrupted
by additive Gaussian white noise, (bottom) reconstructed clean signal. The dashed lines show the
most-likely state segmentation. To facilitate comparison the clean segmentation is also reproduced on
the noisy signal.
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SNR (dB) #prms clean 26.3 25.1 19.7 10.6 0.7

HMM (MFCC) 4283 100 100 95.5 50 13.6 9.1
HMM (MFCC) + USS 4283 100 100 90.9 86.4 59.1 9.5

HMM (LPCC) 109 100 95.5 27.3 18.2 9.5 9.1
HMM (LPCC) + USS 109 100 86.4 77.3 18.2 13.6 10

SAR-HMM 119 88.3 25.5 9.7 8.6 9.3 9.4
SAR-HMM + GA 109 97.2 79.8 56.7 22.2 9.7 9.1

AR-SLDS 120 86.8 88.2 87.3 79.1 80 63.6
AR-SLDS + GA 109 96.8 96.8 96.4 94.8 84 61.2

Table 4.1: Comparison of the word accuracy (in percent), at various SNRs, of the AR-SLDS with and
without GA, the SAR-HMM with and without GA (copied from Table 3.1), and a state-of-the-art
ASR system with and without USS (copied from Table 2.1). The best performance for each column
is indicated in bold. The second column indicates the number of free parameters in the model. A
word accuracy of 9.1% corresponds to random guessing.

approximation of the likelihood is important, since many digit models are likely to have generated
such a noisy signal. In both examples shown in Figure 4.3, the models stay in the second state for too
long; this problem arises because the dynamics of the initial section of the speech signal is difficult to
distinguish from silence. This suggests that a better reconstruction could potentially be achieved by
explicitly modelling the state duration—in a way similar to [18], for example.

4.6 Performance

Table 4.1 shows the recognition accuracy of the AR-SLDS with and without GA on the isolated digit
recognition task described in Section 2.10. When used without GA, the noise variance in the AR-
SLDS was manually set to the correct value. In contrast, when GA was used, the noise variance
was automatically adapted by iteratively applying Equation 4.9. For comparison, the performance
of the SAR-HMM and the feature-based HMMs reported in Table 3.1 is also reproduced. Compared
to the HMMs, the AR-SLDS significantly improves recognition accuracy for moderate to high SNRs.
This is expected since USS does not use a model of clean speech and therefore cannot properly separate
noise from speech. As for the SAR-HMM, apart from the lowest SNR, being able to adapt some of
the model parameters to each particular example—with GA in this case—is essential for a successful
use of the AR-SLDS for ASR. Although the AR-SLDS mimics the SAR-HMM when σ2

V ≡ 0, it is
slightly less accurate than the SAR-HMM on clean data. This is mainly because, in the AR-SLDS,
GA is performed via EM by iteratively applying Equations 4.8 and 4.9, while, in the SAR-HMM,
GA is performed directly. It is therefore possible that the EM procedure stays stuck in a local minima
which results in an innovation variance different from the one obtained with the SAR-HMM. Another
potential explanation is that the true likelihood is sometimes wrongly estimated by EC.

4.7 Summary

The AR-SLDS is a joint model of speech and noise which extends the SAR-HMM to include an
explicit model of additive Gaussian white noise. The potential benefit of this approach is that an
AR-SLDS can be readily initialised with a SAR-HMM trained on clean speech, thereby providing
a level of robustness to additive Gaussian white noise. On noisy data, the output noise variance,
whose setting is unknown a priori, is automatically adjusted by means of GA. As in the SAR-HMM,
GA is also used to adapt the innovation variance of the underlying AR process. Performing GA in
the AR-SLDS is difficult because the clean signal is hidden, which prevents the direct optimisation of
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the likelihood. We proposed to use EM instead, which requires inferring the posterior distribution of
the hidden variables. To overcome the difficulties of exactly computing the posterior distribution of
the hidden variables in the AR-SLDS, we performed approximate inference with the EC algorithm.
EC was preferred to other, more generic, methods found in the literature because it provides a fast,
accurate and stable approximation which works well with long time series, as demonstrated in the
next chapter.



Chapter 5

The Expectation Correction
Algorithm

The material presented in this chapter has been published in [9] and submitted to IEEE Signal
Processing Letters.

5.1 Introduction

In the previous chapter we focused on two particular cases of LDSs and SLDSs where the underlying
linear model was an AR process. In this chapter we present the generic form of the LDS and the SLDS
as well as two possible algorithms for performing inference with those models. We give a detailed
derivation of the RTS algorithm for the LDS and show how it can be extended to form the Expectation
Correction (EC) algorithm [7] for the SLDS.

5.2 The Linear Dynamical System

The Linear Dynamical System (LDS) [6] is a key temporal model in which a latent linear process
generates the observed time series. The observation (or ‘visible’ variable) vt ∈ RV is linearly related
to the hidden state ht ∈ RH by

vt = Bht + ηVt , ηVt ∼ N (µV ,ΣV) (5.1)

where N (µ,Σ) denotes a Normal (Gaussian) distribution with mean µ and covariance Σ. The hidden
state ht at the t-th time step is linearly related to the state at the previous time step by

ht = Aht−1 + ηHt , ηHt ∼ N (µH,ΣH). (5.2)

From a probabilistic point of view, Equations 5.2 and 5.1 defines the multivariate normal distributions

p(ht |ht−1) =
1

|2πΣH|
1
2

exp
{
−1

2
(ht −Aht−1)TΣ−1

H (ht −Aht−1)
}

p(vt |ht) =
1

|2πΣV |
1
2

exp
{
−1

2
(vt −Bht)TΣ−1

V (vt −Bht)
}
.

and the joint probability distribution is

p(v1:T ,h1:T ) = p(v1 |h1) p(h1)
T∏

t=2

p(vt |ht) p(ht |ht−1) (5.3)

35
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ht−1 ht ht+1

vt−1 vt vt+1

Figure 5.1: DBN representation of the LDS; ht represents the hidden variable and vt the observation.
Graphically, the only difference with the DBN of a HMM (Figure 2.1) is the use of a continuous hidden
variable instead of a discrete one.

where p(h1) is a given prior distribution. Graphically, the LDS can be depicted by the DBN of
Figure 5.1. The likelihood of an observed sequence v1:T is given by integrating over all possible
hidden sequences, i.e.,

p(v1:T ) =
∫
h1:T

p(v1:T ,h1:T ).

5.2.1 The AR-LDS

For example, a third order AR-LDS with AR coefficients cr, innovation variance σ2 and noise vari-
ance σ2

V can be written as a generic LDS by defining

ht =

 yt

yt−1

yt−2

 , A =

c1 c2 c3
1 0 0
0 1 0

 , ΣH =

σ2 0 0
0 0 0
0 0 0

 , (5.4)

vt =
[
vt

]
, B =

[
1 0 0

]
, ΣV =

[
σ2
V

]
. (5.5)

5.2.2 The RTS Algorithm

The method of choice for performing inference in the LDS is the RTS algorithm [61]. In Section 2.7.2,
we used the RTS algorithm as a replacement for the Forward-Backward algorithm in the HMM, but
it has originally been devised for the LDS.

Forward and Backward Recursions

The forward pass computes the filtered posterior p(ht |v1:t) and the backward pass corrects this to
obtain the smoothed posterior p(ht |v1:T ). The equivalent of Equation 2.19 for the filtered posterior
is

p(ht |v1:t) ∝ p(vt |ht)
∫
ht−1

p(ht |ht−1) p(ht−1 |v1:t−1) (5.6)

and the equivalent of Equation 2.20 for the smoothed posterior is

p(ht |v1:T ) =
∫
ht+1

p(ht |ht+1,v1:t) p(ht+1 |v1:T ) (5.7)

where the backward transition distribution (Equation 2.21) is given by

p(ht |ht+1,v1:t) ∝ p(ht+1 |ht) p(ht |v1:t). (5.8)

Equations 5.6 and 5.7 are more complicated to evaluate than Equations 2.19 and 2.20 because they
deal with a continuous variable instead of a discrete one. However, since all the distributions involved
in the computation of both the filtered and smoothed posterior are Gaussians, it is sufficient to keep
track of the mean and covariance of ht.
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Finding the Forward Means and Covariances

To simplify exposition, we will consider the case where µH and µV are equal to zero. We will further-
more denote the mean and covariance of ht corresponding to the filtered posterior p(ht |v1:t) by ft
and Ft respectively. Evaluating the integral in Equation 5.6 yields p(ht |v1:t−1). If we define the
operator ∆ such that ∆x = x− 〈x〉, then the mean and delta of ht are

〈ht〉 = 〈Aht−1 + ηHt 〉 = Aft−1, ∆ht = ht − 〈ht〉 = A∆ht−1 + ηHt

and, by definition, the covariance matrix is

〈∆ht∆hT
t 〉 = A〈∆ht−1∆hT

t−1〉AT + ΣH = AFt−1AT + ΣH

since ht−1 and ηHt are uncorrelated and 〈ηHt ηHt
T〉 = ΣH. The filtered posterior p(ht |v1:t) is obtained

by conditioning on vt the joint distribution

p(vt,ht |v1:t−1) = p(vt |ht) p(ht |v1:t−1).

The mean, delta and covariance of vt, and the cross-covariance between ht and vt are

〈vt〉 = 〈Bht + ηVt 〉 = B〈ht〉, ∆vt = vt − 〈vt〉 = B∆ht + ηVt ,

〈∆vt∆vT
t 〉 = B〈∆ht∆hT

t 〉BT + ΣV , 〈∆ht∆vT
t 〉 = 〈∆ht∆hT

t 〉BT.

The joint distribution p(vt,ht |v1:t−1) is a Gaussian distribution proportional to

exp

{
−1

2

[
ht − 〈ht〉
vt − 〈vt〉

]T [〈∆ht∆hT
t 〉 〈∆ht∆vT

t 〉
〈∆vt∆hT

t 〉 〈∆vt∆vT
t 〉

]−1 [
ht − 〈ht〉
vt − 〈vt〉

]}
. (5.9)

If we write the inverse covariance matrix as1[
〈∆ht∆hT

t 〉 〈∆ht∆vT
t 〉

〈∆vt∆hT
t 〉 〈∆vt∆vT

t 〉

]−1

≡
[
DHH DHO

DOH DOO

]
then (5.9) can also be written as

exp
{
−1

2
(ht − ft)TDHH(ht − ft)

}
exp

{
−1

2
(vt − 〈vt〉)TDOO(vt − 〈vt〉)

}
with ft = 〈ht〉 −D−1

HHDHO(vt − 〈vt〉). This corresponds to the factorisation

p(vt,ht |v1:t−1) = p(ht |v1:t) p(vt |v1:t−1) (5.10)

where p(ht |v1:t) is the filtered posterior at time t, as given by Equation 5.6. Hence, p(ht |v1:t) is a
Gaussian with mean ft and covariance Ft = D−1

HH. Using the partionned matrix inverse [57], we obtain

D−1
HH = 〈∆ht∆hT

t 〉 − 〈∆ht∆vT
t 〉〈∆vt∆vT

t 〉−1〈∆vt∆hT
t 〉

DHO = −DHH〈∆ht∆vT
t 〉〈∆vt∆vT

t 〉−1.

If we denote by K = 〈∆ht∆vT
t 〉〈∆vt∆vT

t 〉−1 the common factor in DHH and DHO, then

ft = 〈ht〉+ K(vt − 〈vt〉) and Ft = 〈∆ht∆hT
t 〉 −K〈∆vt∆hT

t 〉. (5.11)

Since all the averaged quantities can be written as a function of the filtered mean ft−1 and covari-
ance Ft−1 at the previous time step, we therefore end up with recursive formulae for finding the mean
and covariance at any given time step. The likelihood of an observed sequence v1:T can be obtained
by multiplying together the second factors in Equation 5.10 obtained at each time step, since

p(v1:T ) =
T∏

t=1

p(vt |v1:t−1).

1Here H and O essentially mean hidden and observed, respectively.
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Finding the Backward Means and Covariances

The backward transition distribution given by Equation 5.8 is obtained by conditioning the joint
distribution p(ht+1,ht |v1:t) on ht+1. This is similar to the conditioning on vt of the joint distri-
bution p(vt,ht |v1:t−1) that we performed above. By analogy with Equation 5.11, the mean µ and
covariance Σ of ht under p(ht |ht+1,v1:t) are therefore

µ = 〈ht〉+ K(ht+1 − 〈ht+1〉) and Σ = 〈∆ht∆hT
t 〉 −K〈∆ht+1∆hT

t 〉 (5.12)

with K = 〈∆ht∆hT
t+1〉〈∆ht+1∆hT

t+1〉−1 and

〈ht〉 = ft 〈∆ht∆hT
t 〉 = Ft

〈ht+1〉 = 〈Aht + ηHt 〉 = A〈ht〉, ∆ht+1 = A∆ht + ηHt ,

〈∆ht+1∆hT
t+1〉 = A〈∆ht∆hT

t 〉AT + ΣH, 〈∆ht∆hT
t+1〉 = 〈∆ht∆hT

t 〉AT.

Equation 5.12 is equivalent to the backward linear equation

ht = Kht+1 + 〈ht〉 −K〈ht+1〉+ ηt and ηt ∼ N (0,Σ)

which gives the state of ht in function of ht+1. With the backward transition probability in hands
we can evaluate the integral in Equation 5.7, which will yield the desired smoothed posterior. If we
denote by gt and Gt the mean and covariance of ht under p(ht |v1:T ), then

gt = 〈ht〉+ K(gt+1 − 〈ht+1〉) and Gt = KGt+1KT + Σ. (5.13)

Implementation

By comparing Equations 5.11 and 5.13 (together with Equation 5.12), we see that the filtered and
smoothed means have the same form and that the filtered and smoothed covariances are slightly
different. The form of the filtered covariance is indeed the same as that of Σ (Equation 5.12) and the
smoothed covariance includes the additional term KGt+1KT which accounts for the fact that ht+1,
contrary to vt, is not observed. Since both Ft and Gt are covariance matrices, they must be positive
definite. In practice, numerical instabilities may lead to non-positive definite matrices. A slightly
more stable way to compute the filtered and smoothed covariance matrices is by means of the so-
called Josephson’s formulae [6]. Josephson’s formula for Ft reads

Ft = (IH −KB) 〈∆ht∆hT
t 〉 (IH −KB)T + KΣVKT

where IH denotes the H ×H identity matrix. Similarly, Josephson’s formula for Gt reads2

Gt = (IH −KA) 〈∆ht∆hT
t 〉 (IH −KA)T + K(Gt+1 + ΣH)KT.

Algorithms 4 and 5 give the pseudo-code for computing the filtered and smoothed means and covari-
ances, respectively. The common part of both passes which consists in conditioning either the joint
distribution p(vt,ht |v1:t−1) on vt or p(ht,ht+1 |v1:t) on ht+1 is implemented in Algorithm 1.

5.3 The Switching Linear Dynamical System

For time series which are not well described by a single LDS, we may model each observation by a
potentially different LDS. This is the basis for the Switching LDS (SLDS) where, for each time step t,

2Although, to simplify notation, we use 〈∆ht∆hT
t 〉 and K in both the forward and the backward pass, their actual

value are different.
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Algorithm 1 cond
˘
µ,Σ,C,ΣO,w,W

¯
.

µO ← Cµ

ΣOH ← CΣ
ΣOO ← ΣOHCT + ΣO

K← ΣOHΣ−1
OO

X← I−KC

µ← µ + K(w − µO)
Σ← XΣXT + K (ΣO + W)KT

p← |ΣOO|−
1
2 exp

˘
− 1

2
(w − µO)T Σ−1

OO (w − µO)
¯

return
˘
p, µ,Σ

¯

Algorithm 2 RTS forward pass. This algorithm computes the mean ft and the covariance Ft of ht un-
der p(ht |v1:t), as well as the log-likelihood l ≡ log p(v1:T ). The prior mean and covariance are denoted by
µP and ΣP respectively.

l← 0

for t← 1 to T do
if t > 1 then

x← Aft−1

X← AFt−1A
T + ΣH

else
x← µP
X← ΣP

end if˘
p(vt |v1:t−1), ft,Ft

¯
← cond

˘
x,X,B,ΣV ,vt,0

¯
l← l + log p(vt |v1:t−1)

end for

Algorithm 3 RTS backward pass. This algorithm computes the mean gt and the covariance Gt of ht

under p(ht |v1:t).

gT ← fT
GT ← FT

for t← T − 1 to 1 do˘
α,gt,Gt

¯
← cond

˘
ft,Ft,A,ΣH,gt+1,Gt+1

¯
end for
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st−1 st st+1

ht−1 ht ht+1

vt−1 vt vt+1

Figure 5.2: DBN representation of the SLDS; st and ht represent the discrete and continuous hidden
variables and vt the observation.

a switch variable st ∈ {1, . . . , S} describes which of the LDSs is to be used. Formally, this is achieved
by rewriting Equations 5.2 and 5.1 so that they depend on st:

ht = Ast
ht−1 + ηHt with ηHt ∼ N

(
0,ΣH,st

)
(5.14)

vt = Bst
ht + ηVt with ηVt ∼ N

(
0,ΣV,st

)
. (5.15)

The dynamics of the switch state is assumed Markovian and is modelled by a discrete transition
distribution p(st | st−1). The addition of the continuous transition distribution p(ht |ht−1, st) and
the emission distribution p(vt |ht, st), corresponding to Equations 5.14 and 5.15, yields the joint
distribution

p(v1:T ,h1:T , s1:T ) =
T∏

t=1

p(vt |ht, st) p(ht |ht−1, st) p(st | st−1) (5.16)

where p(h1 |h0, s1) ≡ p(h1 | s1) and p(s1 | s0) ≡ p(s1) are given prior distributions. Graphically,
the SLDS can be represented as the DBN of Figure 5.2. The likelihood of an observed sequence v1:T

is obtained by integrating over all the possible hidden sequences of discrete and continuous states:

p(v1:T ) =
∑
s1:N

∫
h1:T

p(v1:T ,h1:T , s1:N ).

If we use the particular parameters setting (5.4) and (5.5) and, as for the SAR-HMM, introduce
segments over which the state cannot change, then the SLDS reduces to the AR-SLDS.

5.3.1 Inference in the SLDS

Computing the posterior distribution of the continuous and discrete hidden variables ht and st is
intractable in the SLDS [46]. For example, the posterior

p(ht, st |v1:T ) =
∑

s1:t−1
st+1:T

p(ht | s1:T ,v1:T ) p(s1:T |v1:T )

is a mixture of ST−1 Gaussians. Hence, the number of computations required to evaluate the posterior
distribution exactly scales exponentially with the length T of the sequence considered. In practice,
approximations are therefore considered. Performing approximate inference in the SLDS is a long-
standing problem [6] for which an extensive literature exists. In the following section, we briefly review
some of the most well-known approximation techniques and present their limitations.

5.3.2 Existing Approximate Inference Methods

Algorithms for performing approximate inference in the SLDS can be classified into four classes de-
pending on whether they are generic or specific and deterministic or not. Specific and deterministic
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algorithms [6, 52, 45] are mainly based on a forward-backward recursion similar to the RTS method.
Most of them share the common property of approximating the exponentially large number of mixture
components by a mixture with fewer components. Those methods distinguish themselves from one
another by the additional approximations they make.

A good example of a generic and deterministic approach is the Expectation Propagation (EP)
algorithm [50]. Unlike the specific methods, which try to approximate the exact forward and backward
passes, EP is based on a consistency criterion, collapsing to a single Gaussian at each stage [72].
Difficulties with EP are inherent numerical instabilities arising from frequent conversions between
canonical and moment representations of Gaussians, and also the difficulty of generalising the approach
simply to deal with mixture representations.

The most widely used non-deterministic algorithms are based on Monte-Carlo methods [22], also
known as Particle Filters/Smoothers. Whilst potentially powerful, these non-analytic methods typi-
cally suffer in high-dimensional hidden spaces since they are often based on naive importance sampling,
which restricts their practical use. Specific deterministic methods are preferred because the approx-
imation is a mixture of non-trivial distributions, which is better at capturing the variability of the
posterior. The Rao-Blackwellized particle filter [23] is a more specific algorithm which attempts to
alleviate the difficulty of sampling in high-dimensional spaces by explicitly integrating over the con-
tinuous hidden variable. The mixture Kalman filters [19] is another technique which can potentially
improve the performance of Monte-Carlo approaches in high dimensional space, since it represents the
posterior as a mixture of non-trivial distributions. By increasing the number of mixture components,
one can theoretically get increasingly better approximations. In practice, an appropriate resampling
procedure must be used to avoid the degeneration of the estimate with time [41, 47, 22].

Gibbs sampling provides an alternative non-deterministic procedure [17]. For a fixed state se-
quence s1:T , p(v1:T | s1:T ) is easily computable since this is just the likelihood of a LDS. We could
therefore sample from the posterior p(s1:T |v1:T ) ∝ p(v1:T | s1:T ) p(s1:T ) directly. This procedure may
work well provided that the initial setting of s1:T is in a region of high probability, otherwise sampling
by such individual coordinate updates may be extremely inefficient. Another related Gibbs procedure
consists in alternately sample from p(s1:T |h1:T ,v1:T ) and p(h1:T | s1:T ,v1:T ).

5.3.3 The Expectation Correction Algorithm

EC follows the same approach as the RTS algorithm. The forward pass computes the filtered poste-
rior p(ht, st |v1:t) and the backward pass corrects this to form the smoothed posterior p(ht, st |v1:T ).
Without loss of generality, we may write the filtered and smoothed posterior as a product of a con-
tinuous and a discrete distribution:

p(ht, st |v1:t) = p(ht | st,v1:t) p(st |v1:t),
p(ht, st |v1:T ) = p(ht | st,v1:T ) p(st |v1:T ).

Our approach will represent both the filtered and smoothed posteriors as a finite mixture of Gaussians.
Formally, this can be achieved using,

p(ht | st,v1:t) =
∑

i

p(ht | it, st,v1:t) p(it | st,v1:t)

see [3, 7], for example. In our exposition we use only a single Gaussian—extending EC to the mixture
case is straightforward [7] and we prefer to present the central idea without the extra notational
complexity of dealing with mixtures.

Forward Pass

If we denote by xt = {ht, st} the hidden variables, the equivalent of Equation 5.6 for the SLDS, reads

p(xt |v1:t) ∝ p(vt |xt)
∫
xt−1

p(xt |xt−1) p(xt−1 |v1:t−1).
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After expansion, the rhs becomes∑
st−1

p(st | st−1) p(st−1 |v1:t−1) p(vt |ht, st)
∫
ht−1

p(ht |ht−1, st) p(ht−1 | st−1,v1:t)

where p(ht−1 | st−1,v1:t−1) and p(st−1 |v1:t−1) are the continuous and discrete part of the filtered
posterior at the previous time step. After carrying out the integration over ht−1 and grouping similar
factors, we obtain

p(ht, st |v1:t) ∝
∑
st−1

p(st−1, st |v1:t−1) p(vt,ht | st−1, st,v1:t−1)

∝
∑
st−1

p(st−1, st |v1:t) p(ht | st−1, st,v1:t) (5.17)

where p(ht | st−1, st,v1:t) corresponds to the filtered posterior of the LDS. It is given by Equation 5.6
which, in this case, reads

p(ht | st−1, st,v1:t) ∝ p(vt |ht, st)
∫
ht−1

p(ht |ht−1, st) p(ht−1 | st−1,v1:t). (5.18)

The discrete component p(st−1, st |v1:t) is proportional to

p(vt | st−1, st,v1:t−1) p(st | st−1) p(st−1 |v1:t−1) (5.19)

where p(vt | st−1, st,v1:t−1) is obtained by integrating the rhs of Equation (5.18) over ht. The recursion
is initialised with

p(h1, s1 |v1) ∝ p(v1 |h1, s1) p(h1 | s1) p(s1).
The filtered posterior at time t, as given by Equation 5.17, is a mixture of Gaussians. At each time step
the number of mixture components is multiplied by S and thus grows exponentially with t. A simple
approximate remedy is to collapse the mixture obtained to a mixture with fewer components. This
corresponds to the so-called Gaussian Sum Approximation (GSA) [3] which is a form of Assumed
Density Filtering [50]. GSA is a common ingredient of most of the deterministic approximation
algorithms based on a forward-backward recursion. It reduces the complexity of the forward pass
to O(I · S · T ), where I is the number of mixture components of the collapsed distribution.

Backward Pass

The generic form of Equation 5.7 for the SLDS reads

p(xt |v1:T ) =
∫
xt+1

p(xt |xt+1,v1:t) p(xt+1 |v1:T ).

After expansion, the rhs becomes∑
st+1

p(st+1 |v1:T )
∫
ht+1

p(ht, st |ht+1, st+1,v1:t) p(ht+1 | st+1,v1:T ) (5.20)

where p(ht+1 | st+1,v1:T ) and p(st+1 |v1:T ) are the continuous and discrete parts of the smoothed
posterior at the next time step. The integral in (5.20) can also be written as〈

p(ht, st |ht+1, st+1,v1:t)
〉

=
〈
p(ht |ht+1, st, st+1,v1:t) p(st |ht+1, st+1,v1:t)

〉
where the average is taken with respect to p(ht+1 | st+1,v1:T ). This is difficult to evaluate because of
the dependency of st on ht+1. In its most simple form EC approximates the average by〈

p(ht |ht+1, st, st+1,v1:t)
〉 〈
p(st |ht+1, st+1,v1:t)

〉
. (5.21)
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This is particularly appealing since the first factor corresponds to the smoothed posterior of the LDS,
as given by Equation 5.7, and can be evaluated by conditioning on ht+1 the joint distribution

p(ht,ht+1 | st, st+1,v1:t) = p(ht+1 |ht, st+1) p(ht | st,v1:t) (5.22)

which is obtained by forward propagation. The second factor in (5.21) is still difficult to evaluate
exactly. Formally, this term corresponds to〈

p(st |ht+1, st+1,v1:t)
〉
≡ p(st | st+1,v1:T ).

The distinguishing feature of EC from other methods, such as Generalised Pseudo Bayes (GPB) [6], is
in the approximation of p(st | st+1,v1:T ). GPB uses Kim’s approximation [38, 39], p(st | st+1,v1:T ) ≈
p(st | st+1,v1:t), which depends only on the filtered posterior for st and does not include any in-
formation coming from the continuous variable ht+1. Since p(st | st+1,v1:t) ∝ p(st+1 | st) p(st |v1:t)
computing the smoothed recursion for the switch states in GPB is equivalent to running the RTS back-
ward pass on a HMM. This represents a potentially severe loss of information from the future and
means any information from the continuous variables cannot be used when ‘correcting’ the filtered
results p(st |v1:t) into smoothed posteriors p(st |v1:T ). In contrast, EC attempts to preserve future
information passing through the continuous variables. The simplest approach within EC is to use the
approximation

p(st | st+1,v1:T ) ≡
〈
p(st |ht+1, st+1v1:t)

〉
≈ p(st |ht+1, st+1,v1:t)

∣∣
ht+1=〈ht+1 | st+1,v1:T 〉

(5.23)

where 〈ht+1 | st+1,v1:T 〉 is the mean of ht+1 with respect to p(ht+1 | st+1,v1:T ). More sophisticated
approximations schemes—which take into account the covariance of ht+1, for example—may be ap-
plied, but practically the proposed one has proven to be accurate enough [7]. Finally, the rhs of
Equation 5.23 can be evaluated by considering the joint distribution

p(ht+1, st | st+1,v1:t) ∝ p(ht+1 | st, st+1,v1:t) p(st+1 | st) p(st |v1:t)

where p(ht+1 | st, st+1,v1:t) is obtained by marginalising Equation 5.22 over ht. In summary, the
smoothed posterior, as given by (5.20), is a mixture of Gaussians of the form

p(ht, st |v1:T ) =
∑
st+1

p(st, st+1 |v1:T ) p(ht | st, st+1,v1:T ). (5.24)

In its most generic form, EC approximates each factor by

p(st, st+1 |v1:T ) ≈ p(st+1 | st)
〈
p(st |ht+1, st+1,v1:t)

〉
p(ht | st, st+1,v1:T ) ≈

〈
p(ht,ht+1, st, st+1,v1:t)

〉
where the averages are taken with respect to p(ht+1 | st+1,v1:T ). The backward recursion is initialised
with the filtered posterior obtained at the T -th step, since both filtered and smoothed posteriors are
equal at that point. As in the forward pass, the number of mixture components is multiplied by S at
each iteration. Hence, to retain tractability, the mixture in Equation 5.24 is collapsed to a mixture
with fewer components.

Implementation

Algorithms 4 and 5 give the pseudo-code of EC forward and backward passes. In Algorithm 5,
the prefactor α in the expression pst,st+1 ← αp(st+1 | st) p(st |v1:t) differentiates EC from GPB; this
corresponds to the approximation (5.23) which, in GPB, is replaced by p(st | st+1,v1:t). The collapse
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Algorithm 4 EC forward pass. This algorithm computes the filtered posterior p(st |v1:t), the mean fst and
the covariance Fst of ht under p(ht | st,v1:t), as well as the log-likelihood l ≡ log p(v1:T ). The prior mean and
covariance are denoted by µP and ΣP .

l← 0

for t← 1 to T do
for all (st−1, st) do

if t > 1 then
x← Ast fst−1

X← AstFst−1A
T
st

+ ΣH,st

else
x← µP(s1)
X← ΣP(s1)

end if˘
α, µst−1,st

,Σst−1,st

¯
← cond

˘
x,X,Bst ,ΣV,st ,vt,0

¯
pst−1,st ← α p(st | st−1) p(st−1 |v1:t−1)

end for

p(vt |v1:t−1)←
P

st−1,st
pst−1,st

for all (st−1, st) do
pst−1,st ← pst−1,st / p(vt |v1:t−1)

end for

for all st do
p(st |v1:t)←

P
st−1

pst−1,st

p(st−1 | st,v1:t)← pst−1,st / p(st |v1:t)˘
fst ,Fst

¯
← collapse

˘
p(st−1 | st,v1:t), µst−1,st

,Σst−1,st

¯
end for

l← l + log p(vt |v1:t−1)
end for
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routine collapses the mixture of S Gaussians passed as arguments to a mixture with less components.
For example, in the forward pass, for each st, the mixture we want to collapse is

p(ht | st,v1:t) =
∑
st−1

p(ht | st−1, st,v1:t) p(st−1 | st,v1:t).

The case of collapsing to a single Gaussian can be formalised by considering the minimisation of
the KL divergence

KL
(
q(ht | st) || p(ht | st)

)
where q is a Gaussian distribution with mean µ and variance Σ. Differentiating the KL divergence
with respect to µ and Σ and setting the result equal to zero, yields the moment matching formulae

µ =
∑
st−1

p(st−1 | st) µst−1,st

Σ =
∑
st−1

p(st−1 | st)
(
Σst−1,st + µst−1,st

µT
st−1,st

)
− µµT

where µst−1,st
and Σst−1,st are the mean and covariance of ht under the posterior p(ht | st−1, st,v1:t).

The KL approach is difficult to apply to the case of collapsing to a mixture and, in practice, heuristics
are therefore considered instead. For example, amongst the S components, one may retain the I − 1
most likely and merge the rest into a single Gaussian. To simplify exposition, Algorithms 4 and 5
presents the case where the mixture is collapsed to a single Gaussian.

Algorithm 5 EC backward pass. This algorithm computes the smoothed posterior p(st |v1:T ), the mean gst

and the covariance Gst of ht under p(ht | st,v1:t).

for all sT do
gsT ← fsT

GsT ← FsT

end for

for t← T − 1 to 1 do
for all (st, st+1) do˘

α, µst,st+1
,Σst,st+1

¯
← cond

˘
fst ,Fst ,Ast+1 ,ΣH,st+1 ,gst+1 ,Gst+1

¯
pst,st+1 ← α p(st+1 | st) p(st |v1:t)

end for

for all (st, st+1) do
pst,st+1 ← pst,st+1 /

P
st

pst,st+1

end for

for all (st, st+1) do
pst,st+1 ← pst,st+1 · p(st+1 |v1:T )

end for

for all st do
p(st |v1:T )←

P
st+1

pst,st+1

p(st+1 | st,v1:T )← pst,st+1 / p(st |v1:T )˘
gst ,Gst

¯
← collapse

˘
p(st+1 | st,v1:T ), µst,st+1

,Σst,st+1

¯
end for

end for

5.3.4 Comparison with Existing Methods

To compare the quality of the estimate provided by EC and the various other approximation algo-
rithms, we sequentially generated hidden states ht, st and observations vt from a known model. Given
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Figure 5.3: Number of errors in estimating the state sequence s1:T for S = 2 and T = 100. Hence 50
errors corresponds to random guessing. Plotted are the histograms of the errors over 1000 experiments.
(PF) Particle Filter with 1000 particles, (RBF) Rao-Blackwellised PF with 500 particles, (EP) Ex-
pectation Propagation. (ADFS/M) Assumed Density Filtering using collapse to a single/mixture of
Gaussians. (KimS/M) Kim’s smoother using the results from ADFS/M. (ECS/M) Expectation Cor-
rection using a single/mixture of Gaussians. (Gibbs) Gibbs sampling initialised with ADFM. Models
able to deal with mixtures were using four components.

only the model and the observations, the task was then to infer p(ht, st |v1:T ). Since the exact compu-
tation is exponential in T , a formally exact evaluation of the method is infeasible. A possible alterna-
tive is to assume that the sampled state sequence is the most likely sequence and to perform a Viterbi
decoding [69, 58]. However, since our goal was to compare the quality of the posterior estimate pro-
vided by the various algorithms, we preferred using a simpler alternative where, for each time step, the
sample state st was compared to the most probable posterior smoothed estimate arg maxst

p(st | v1:T ).
We considered a two states (S = 2) model where the dimension of the hidden and observed variables
were H = 30 and V = 1 respectively, and high output noise (ΣV = 30 IV ) was used. The transition
matrices As and the projection matrices Bs were sampled at random (see [7] for details); each random
sampling of parameters generated a problem instance on which the rival algorithms were evaluated.

A histogram of inference performance over 1000 problem instances was constructed, as displayed
in Figure 5.3. All deterministic algorithms were initialised using the corresponding filtered results,
as was Gibbs sampling. For the Particle Filter methods, 1000 particles were used, with Kitagawa
resampling scheme [41]. For the Rao-Blackwellized Particle Filter [23], 500 particles were used, again
with Kitagawa resampling. We include the Particle Filter methods merely for a point of comparison
with ADF, since they are not designed to approximate the smoothed estimate. Gibbs sampling was
initialised with the most likely switch states s1:T obtained from the filtered results of ADFM. The
sampling was first carried out forwards in time until the end of the chain and then backward up to
the first time step. This procedure was repeated 100 times and the mean over the last 80 sweeps was
finally used as the posterior mean approximation.

As expected Kim’s GPB method does not improve much on the filtered results, nor is Gibbs sam-
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pling able to escape the sharp local maxima found by filtering. The poor performance of EP is most
likely due to severe numerical instabilities, particularly when a single Gaussian is insufficient to rep-
resent the posterior well. EC performs admirably using a single Gaussian and improves dramatically
when using a mixture of four Gaussians in this example. The Particle Filter methods most likely failed
since the hidden dimension is too high to be explored well with only 1000 particles. The running time
of all algorithms was set to be roughly equal to that of ECM.

5.4 Summary

The SLDS extends the LDS by introducing a switch variable which allows each observed sample to
be modelled by a potentially different LDS. Contrary to the LDS, where inference can be carried
out exactly by means of the RTS algorithm, finding the posterior distribution of the hidden vari-
able in the SLDS is computationally intractable. We presented the EC algorithm, an extension of
the RTS procedure to the SLDS which addresses some of the limitations of current approximation
methods. By being specifically designed for the SLDS, EC better captures the variability of the
posterior distribution and circumvents the difficulties inherent to more generic methods such as EP
and Particles Filters/Smoothers. EC is similar to GPB; both algorithms use the same forward pass,
but EC backward pass is more accurate because it better preserves the information carried by the
continuous variable. EC is not limited to the simple approximations (5.21) and (5.23), but can readily
be extended to use more elaborate schemes [7]. In thesis, for all the experiments involving the use
of SLDSs, we used EC in its most simple form—with collapse to a single Gaussian—in order to save
computational time and memory. This scheme proved accurate enough and no numerical instabilities
were encountered. It was also significantly much faster than particle-based approaches.
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Chapter 6

A Bayesian Alternative to Gain
Adaptation

The material presented in this chapter has been published in [48].

6.1 Introduction

Whilst useful in practice, Gain Adaptation (GA) does not fit into the usual machine learning frame-
work since, formally, model parameters may only be set on the basis of training data. Otherwise, in
flexible models, setting model parameters on the basis of test data may lead to overfitting. In this
chapter, we consider a statistically principled alternative Bayesian approach to GA which consists in
specifying a prior probability distribution on the model parameters. This approach has two potential
benefits over GA: the variation of the gain can be explicitly controlled and the AR coefficients are
allowed to change, which may be useful to model inter and intra speaker variations for example.

6.2 The Bayesian AR Process

In the formulation of the AR process presented in Section 3.2, the AR coefficients c and the innovation
variance σ2 were considered as free parameters whose setting had to be learned from data. Although
theoretically the optimal setting can be found from training data only, in practice, the amplitude of
the speech signal can vary significantly and better accuracy can often be obtained by allowing the
parameters—in the case of GA, the innovation variance—to be slightly adjusted to a sequence y1:T . A
possible principled way to allow variability into the AR process is to treat the parameters as random
variables whose probability distributions are controlled by hyper-parameters. If we define ν = 1/σ2

and write the dependency of p(yt | ỹt) on c and ν explicitly, then the emission probability given by
Equation 3.2 becomes

p(yt | c, ν, ỹt) =
ν1/2

√
2π

exp
{
−ν

2
(yt − cTỹt)2

}
. (6.1)

After writing the priors on the parameters explicitly, Equation 3.3 reads

p(y1:T , c, ν) = p(c, ν)
T∏

t=1

p(yt | c, ν, ỹt).

The new factor p(c, ν) defines a prior on the AR coefficients c and the inverse variance ν. In order to
keep the model tractable, we choose conjugate priors

c | ν ∼ N (µ, ν−1Σ) and ν ∼ G(α, β)

49
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c

yt−1 yt yt+1

ν

Figure 6.1: DBN representation of a second order Bayesian AR process; c represents the AR coeffi-
cients, ν = 1/σ2 the inverse innovation variance and yt the observed waveform sample.

where G(α, β) is the Gamma distribution defined as

ν ∼ G(α, β) ⇔ p(ν) =
βα

Γ(α)
να−1e−βν

and Γ(·) is the Gamma function [1]. Choosing conjugate priors is particularly useful in this case because
it will allow us to later compute the posterior distribution of the parameters p(c, ν | y1:T ) exactly.
Graphically, the Bayesian AR process can be depicted by the DBN of Figure 6.1. The likelihood of an
observed sequence y1:T is given by integrating out the parameters in the joint distribution p(y1:T , c, ν):

p(y1:T ) =
∫
c,ν

p(y1:T | c, ν) p(c | ν) p(ν).

Contrary to the standard AR process, no GA is required since the priors already account for possible
variations of the parameters. Instead of optimising the AR coefficients and the innovation variance
directly, we optimise the hyper-parameters Ψ = {µ,Σ, α, β}.

6.2.1 Parameter Optimisation & Inference

Following our usual approach in the presence of hidden variables, we use the EM algorithm to find
update equations for the hyper-parameters Ψ. In this case, Equation 2.12 reads1

Ψi+1 = arg max
Ψ

〈
log p(y1:T , c, ν |Ψ)

〉
p(c,ν | y1:T ,Ψi)

. (6.2)

This requires inferring the posterior distribution of the parameters p(c, ν | y1:T ). Since we chose
conjugate priors, the posterior distribution has the same structure as the prior, i.e.,

c | ν, y1:T ∼ N (µ̂, ν−1Σ̂) and ν | y1:T ∼ G(α̂, β̂)

where µ̂, Σ̂, α̂ and β̂ are parameters we need to calculate2. A possible way to compute p(c | ν, y1:T )
is by means of the forward recursion

p(c | ν, y1:t) ∝ p(yt | c, ν) p(c | ν, y1:t−1).

This is analogous to the forward pass for the LDS (Section 4.2.2). If we denote by µt and ν−1Σt

the mean and covariance of c under p(c | ν, y1:t), then, since the joint distribution p(yt, c | ν, y1:t−1) is
Gaussian, after conditioning on yt, we obtain

µt = µt−1 + 〈∆cT∆yt〉〈∆y2
t 〉−1(yt − 〈yt〉) (6.3)

ν−1Σt = ν−1Σt−1 − 〈∆cT∆yt〉〈∆y2
t 〉−1〈∆yt∆c〉 (6.4)

1To simplify notation we consider the case of a single sequence.
2Unless otherwise specified, we will differentiate the prior from the posterior parameters be adding an hat on top of

the latter.
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where ∆x is a shorthand for x− 〈x〉. 〈yt〉 and ∆yt are given by

〈yt〉 = 〈cT〉ỹt + 〈ηt〉 = µT
t−1ỹt, ∆yt = yt − 〈yt〉 = (c− µt−1)

Tỹt + ηt.

The variance of yt and the cross-covariance 〈∆cT∆yt〉 are therefore

〈∆y2
t 〉 = ỹT

t ν
−1Σt−1ỹt + ν−1, 〈∆cT∆yt〉 = ν−1Σt−1ỹt.

= ν−1
(
ỹT

t Σt−1ỹt + 1
)

Hence, Equations 6.3 and 6.4 become

µt = µt−1 + Σt−1ỹt

(
ỹT

t Σt−1ỹt + 1
)−1(

yt − µT
t−1ỹt

)
Σt = Σt−1 −Σt−1ỹt

(
ỹT

t Σt−1ỹt + 1
)−1

ỹT
t Σt−1.

Those formulae can also be written more compactly as

σ2
t = ỹT

t Σt−1ỹt + 1, Kt =
1
σ2

t

Σt−1ỹt,

µt =
(
IR×R −KtỹT

t

)
µt−1 + Ktyt, Σt =

(
IR×R −KtỹT

t

)
Σt−1

where IR×R denotes the R×R identity matrix. The recursion is initialised with µ0 ≡ µ and Σ0 ≡ Σ
and, at the end of the recursion, we have µ̂ ≡ µT and Σ̂ ≡ ΣT . The parameters α̂ and β̂ of p(ν | y1:T )
can be obtained by considering

p(ν | y1:T ) = p(ν) p(y1:T | ν) ∝ p(ν)
T∏

t=1

p(yt | ν, y1:t−1)

where p(yt | ν, y1:t−1) is a Gaussian distribution with mean 〈yt〉 = µT
t−1ỹt and variance 〈∆y2

t 〉 = ν−1σ2
t .

Hence

p(ν | y1:T ) ∝ να−1e−βν
T∏

t=1

ν
1
2√

2πσ2
t

exp
{
− ν

2σ2
t

(
yt − µT

t−1ỹt

)2} (6.5)

which yields

α̂ = α+
T

2
and β̂ = β +

T∑
t=1

1
2σ2

t

(
yt − µT

t−1ỹt

)2
.

6.2.2 Parameter Updating

Update formulae for the parameters in Ψ can be obtained by differentiating Equation 6.2 with respect
to each variable in Ψ. Since p(c | ν,Ψ) is Gaussian, the update formulae for µ and Σ correspond to
the empirical mean and covariance:

µ = 〈c〉q = µ̂ and Σ =
〈
ν(c− µ)(c− µ)T

〉
q

= Σ̂ (6.6)

where q(c, ν) ≡ p(c, ν | y1:T ,Ψi). For α and β, the function we need to optimise is

Fν(α, β) =
〈
α log β − log Γ(α) + (α− 1) log ν − βν

〉
q
.

Differentiating with respect to β and setting the result equal to zero yields β = α/〈ν〉q. Using this
in Fν(α, β), differentiating with respect to α and setting the result equal to zero, gives

logα− ψ(α) = log〈ν〉q − 〈log ν〉q (6.7)

where ψ(·) is the Digamma function [1]. Whilst no explicit formula for α exists, Equation 6.7 is
well-behaved and can be solved using Newton-Raphson’s method, for example; see Appendix B for a
detailed explanation. Although Equation 6.7 can be simplified by writing 〈ν〉 and 〈log ν〉 in function
of α̂ and β̂, this form is more generic and generalises better, as we will see in the next section. A
detailed explanation on how to compute 〈ν〉 and 〈log ν〉 is given in Appendix A.
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sn−1 sn sn+1

cn−1 cn cn+1

yt−2 yt−1 yt yt+1 yt+2

νn

Figure 6.2: DBN representation of a second order Bayesian SAR-HMM; sn represents the hidden
switch state, cn the AR coefficients, νn = 1/σ2

n the inverse innovation variance and yt the observed
waveform sample.

6.3 The Bayesian SAR-HMM

A Bayesian treatment of the SAR-HMM can be achieved by introducing a state dependent prior
distribution on the parameters of the underlying AR process. The sequence of observations yn ≡
ytn:tn+1−1 belonging to the n-th segment is then modelled by an AR process whose coefficients cn and
inverse innovation variance νn are drawn randomly from a prior distribution conditioned on the switch
state sn. Furthermore, the dependency on the segment index n implies that the AR coefficients and
the innovation variance can be different for each pair of segment and state. This scheme is similar
to GA where a different gain was computed for each couple of segment and state. Formally the
Bayesian SAR-HMM defines the joint distribution

p(y1:N , c1:N , ν1:N , s1:N ) =
N∏

n=1

p(yn | cn, νn, ỹtn) p(cn, νn | sn) p(sn | sn−1) (6.8)

where p(s1 | s0) ≡ p(s1) is a given prior distribution. Graphically, this can be depicted by the DBN
of Figure 6.2. The main difference with the SAR-HMM (Figure 3.2) is that the segment emission
distribution

p(yn | cn, νn, ỹtn) =
tn+1−1∏

t=tn

p(yt | cn, νn, ỹt)

indirectly depends on sn, through the prior p(cn, νn | sn). The sample emission distribution p(yt | cn, νn, ỹt)
is given by Equation 6.1. As for the Bayesian LDS, choosing a Normal-Gamma conjugate prior of the
form

cn | νn, sn ∼ N (µsn
, ν−1

n Σsn) and νn | sn ∼ G(αsn , βsn)

will later allow us to perform exact inference.

6.3.1 Parameter Optimisation & Inference

The free parameters of the Bayesian SAR-HMM are

Ψ =
⋃
s

{
µs,Σs, αs, βs, p(s1 = s)

}
∪
⋃
i,j

{
p(st = j | st−1 = i)

}
.

As for the SAR-HMM, training is achieved by means of the EM algorithm. This time however, the
average must be carried out over all the possible sequences of parameters c1:N and ν1:N as well. Hence,
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the equivalent of Equation 2.12 for the Bayesian SAR-HMM reads3

Ψi+1 = arg max
Ψ

〈
log p(y1:N , c1:N , ν1:N , s1:N |Ψ)

〉
q

(6.9)

where q(c1:N , ν1:N , s1:N ) ≡ p(c1:N , ν1:N , s1:N |y1:N ,Ψi). The required posterior distribution q can be
computed with the RTS algorithm.

Forward Pass

The forward pass computes the filtered posterior p(cn, νn, sn |y1:n) by means of the recursion (compare
with Equation 3.10)

p(cn, νn, sn |y1:n) ∝ p(yn | cn, νn) p(cn, νn | sn)
∑
sn−1

p(sn | sn−1) p(sn−1 | y1:n−1)

where p(sn | y1:n−1) is obtained by integrating the filtered posterior at the previous segment over cn−1

and νn. The filtered posterior for the n-th segment can be written as

p(cn, νn, sn |y1:n) = p(cn, νn | sn,y1:n) p(sn |y1:n)
= p(cn, νn | sn,yn) p(sn |y1:n)

because, as can be seen in Figure 6.2, cn and νn are independent of past and future observations
once sn is known. Since we chose conjugate priors, the posterior p(cn, νn | sn,yn) is a Normal-Gamma
distribution of the form

cn | νn, sn,yn ∼ N (µ̂sn
, ν−1

n Σ̂sn) and νn | sn,yn ∼ G(α̂sn , β̂sn).

This corresponds to the posterior distribution of a Bayesian AR process defined on the n-th segment.
The posterior parameters µ̂sn

, Σ̂sn , α̂sn and β̂sn are therefore given by the formulae derived in
Section 6.2.1. The switch state posterior is given by the recursion

p(sn |y1:n) ∝ p(yn | sn)
∑
sn−1

p(sn | sn−1) p(sn−1 |y1:n−1)

where p(yn | sn) is obtained by considering the decomposition

p(yn, cn, νn | sn) = p(cn, νn | sn,yn) p(yn | sn).

When we computed p(cn, νn | sn,yn) in Section 6.2.1, some factors which were not depending on cn

or νn have been left aside. In the Bayesian SAR-HMM, those factors actually depend on sn and
have to be included in p(yn | sn). We must also compensate for the introduction of the normalisation
constant of the posterior distribution p(cn, νn | sn,yn) which also depends on sn. Grouping the various
contributions therefore yields4

p(yn | s) ∝
|Σ̂s|

1
2

|Σs|
1
2

Γ(α̂s)
Γ(αs)

βαs
s

β̂α̂s
s

tn+1−1∏
t=tn

1√
2πσ2

t

.

The first factor is the ratio of the normalisation constant of the prior and posterior distribution of cn,
the second and third are the ratio of the normalisation constant of the prior and posterior distribution
of νn

5, and the last factors occur in Equation 6.5, but are left aside since they do not depend on ν—σ2
t

depends on sn since it is initialised with the prior covariance Σsn .
3As usual, to simplify notation, we consider the case of a single training sequence.
4To simplify notation, we use s instead of sn.
5Numerically, it is more stable to compute the ratio of the Gamma functions by using the Pochammer symbol (x)n,

defined as (x)n = Γ(x + n)/Γ(x).
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Backward Pass

The backward pass corrects the filtered posterior p(cn, νn, sn |y1:n) by including the future infor-
mation coming from yn+1:N . Since cn and νn depend only on yn once sn is known, the filtered
posterior p(cn, νn | sn,yn) is therefore not modified by the backward pass. The smoothed poste-
rior p(sn |y1:N ) can be obtained my means of Equations 3.11 and 3.12.

6.3.2 Parameter Updating

Equation 6.9 is similar to Equation 6.2 for the Bayesian AR process, the only difference being that
the former has an additional average over the switch variable. The update formulae therefore have
the same form as Equations 6.6 and 6.7. For the mean and covariance, we have

µs =
∑

n q(sn = s) 〈c〉q(cn | sn)∑N
n=1 q(sn = s)

=
∑

n q(sn = s) µ̂sn∑
n q(sn = s)

(6.10)

Σs =

∑
n q(sn = s)

〈
νn(cn − µs)(cn − µs)T

〉
q(cn,νn | sn)∑

n q(sn = s)
(6.11)

where the sums are over n ∈ [1, N ]. The formula for Σs is slightly more complicated than Equation 6.6
because, in general, µs 6= µ̂sn

. The average in Equation 6.11 therefore does not reduce to Σ̂sn , but is
equal to 〈

νn

(
cncT

n − cnµT
s − µsc

T
n + µsµ

T
s

)〉
q

=
〈
νn(cn − µ̂sn

)(cn − µ̂sn
)T
〉

q
+
〈
νn

(
µ̂sn

µ̂T
sn
− cnµT

s − µsc
T
n + µsµ

T
s

)〉
q

= Σ̂sn
+ 〈νn〉q (µ̂sn

− µs)(µ̂sn
− µs)

T

since 〈cn〉q = µ̂sn
. The update formula for βs is

βs =
αs

∑
n q(sn = s)∑

n q(sn = s) 〈νn〉q
(6.12)

and αs is given by the implicit equation

logαs − ψ(αs) = log
∑

n q(sn = s) 〈νn〉q∑
n q(sn = s)

−
∑

n q(sn = s) 〈log νn〉q∑
n q(sn = s)

(6.13)

which can be solved in the same way as Equation 6.7, using Newton-Raphson’s method for example—
see Appendix B for a detailed explanation. The update equation for the prior is p(s1) = q(s1) and
the updated transition distribution is given by Equation 2.22.

6.4 Training & Evaluation

Following Section 3.4, we trained a separate Bayesian SAR-HMM for each of the eleven digits of
the TI-DIGITS database. The Bayesian SAR-HMM of each digit was composed of ten states with a
left-to-right transition matrix. To each state was associated a 10-th order Bayesian AR process and
the model was constrained to stay an integer multiple of 140 time steps (0.0175 seconds) in the same
state. The number of parameters to be trained where therefore 9 transition probabilities and, for each
state: 10 means (µs), 10× 10 covariance matrix elements (Σs), and the parameters αs and βs of the
Gamma distribution. This makes a total of 1129 free parameters. The parameters where updated
by iteratively applying Equations 6.10, 6.11, 6.12 and 6.13 until the relative log-likelihood difference
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SNR (dB) #prms clean 26.3 25.1 19.7 10.6 0.7

HMM (MFCC) 4283 100 100 95.5 50 13.6 9.1
HMM (MFCC) + USS 4283 100 100 90.9 86.4 59.1 9.5

HMM (LPCC) 109 100 95.5 27.3 18.2 9.5 9.1
HMM (LPCC) + USS 109 100 86.4 77.3 18.2 13.6 10

SAR-HMM 119 88.3 25.5 9.7 8.6 9.3 9.4
SAR-HMM + GA 109 97.2 79.8 56.7 22.2 9.7 9.1

AR-SLDS 120 86.8 88.2 87.3 79.1 80 63.6
AR-SLDS + GA 109 96.8 96.8 96.4 94.8 84 61.2

Bayesian SAR-HMM 1129 98.7 38.2 22.7 9.1 9.1 13.4

Table 6.1: Comparison of the word accuracy (in percent), at various SNRs, of the Bayesian SAR-
HMM, the AR-SLDS with and without GA, the SAR-HMM with and without GA (copied from
Table 3.1), and a state-of-the-art ASR system with and without USS (copied from Table 2.1). The
best performance for each column is indicated in bold. The second column indicates the number of
free parameters in the model. A word accuracy of 9.1% corresponds to random guessing.

between two consecutive iterations was less then 10−7 (Equation 3.14). For a given test utterance,
recognition was performed by selecting the model with the highest likelihood.

For each state s, the model parameters were initialised as follows: (i) each speech utterance of
the training set was split into S sequences of equal length, (ii) all the s-th sequences were gathered
together and used to train an AR process for state s, (iii) the shape of the Gamma prior was arbitrarily
set to αs = 10 and βs was set such that the mean of the Gamma distribution matched the inverse
innovation variance νs = 1/σ2

s obtained by training the AR process, i.e., βs = αsσ
2
s , (iv) the AR co-

efficients cs obtained were used as the mean in the Gaussian prior, i.e., µs = cs, (v) the covariance
of the AR coefficients was set to the identity matrix, i.e, ν−1

s Σs = I, (vi) a new state segmentation
was obtained by doing a Viterbi decoding [69, 58] with the so-defined Bayesian SAR-HMM, and steps
(ii) to (vi) were then repeated three times.

6.5 Performance

Table 6.1 shows the recognition accuracy of the Bayesian SAR-HMM on the isolated digit recognition
task described in Section 2.11. For comparison, the performance of the AR-SLDS, the SAR-HMM
and the feature-based HMMs reported in Table 4.1 is also reproduced. In clean conditions, the
slightly better accuracy of the Bayesian SAR-HMM over its gain-adapted counterpart demonstrates
the soundness of the Bayesian alternative to ad-hoc maximum likelihood gain adaptation. Although
both types of SAR-HMM cannot handle noise explicitly, it is nevertheless interesting to compare their
performance in the presence of noise. In noisy conditions, the Bayesian SAR-HMM is less accurate
probably because it explicitly constrains the parameters to change within the limits of what has
been observed in the training data. On the other hand, with GA, no such constraint exists and the
innovation variance can become large to accommodate variations in the signal not observed in the
training data. This can be better seen by looking at the KL divergence

KL
(
q(c1:N , ν1:N , s1:N ) || p(c1:N , ν1:N , s1:N | y1:T )

)
≥ 0

which yields

log p(y1:T ) ≥
−
〈
log q(c1:N , ν1:N , s1:N )

〉
q
+
〈
log p(y1:T , c1:N , ν1:N , s1:N )

〉
q

(6.14)
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where the averages are taken with respect to q(c1:N , ν1:N , s1:N ). Since the posterior distribution q
can be computed exactly in the Bayesian SAR-HMM, the bound in Equation 6.14 is exact. The first
term in Equation 6.14 is the entropy of the posterior distribution and the second is called the energy.
The entropy measures the uncertainty on the setting of the parameters. It has a regularising effect
which prevents the parameters from taking values which are too uncertain, i.e., too different from
those observed in the training data. In contrast, the gain-adapted SAR-HMM does not include an
entropy term and only maximises the energy. A possible explanation for the better accuracy of the
Bayesian SAR-HMM at SNR 0.7 dB is that, for high noise levels, the innovation variance in the gain-
adapted SAR-HMM is significantly adapted, whilst, in the Bayesian case, such a large modification
is prevented by the entropy term. The Bayesian SAR-HMM is therefore more conservative and, as a
result, performs better in conditions where the structure of the speech signal has almost completely
disappeared.

6.6 Summary

A Bayesian treatment of the parameters of the AR process is a statistically principled alternative to
the more traditional GA. The parameters are considered as random hidden variables whose states
have to be inferred from the observed signal. Provided appropriate priors are chosen, inference can be
performed exactly. The proposed Bayesian approach results in simple update formulae which correctly
deal with the uncertainty in the parameter estimates. Contrary to GA, the variability of the parameter
setting is explicitly constrained by prior distributions fitted on training data and no further adjustment
is required. Whilst the performance of the Bayesian SAR-HMM and the SAR-HMM are comparable
on clean data, the additional constraint imposed by the priors makes the Bayesian SAR-HMM less
accurate in noisy conditions. This is expected and desired, since the SAR-HMM is essentially a model
of clean speech. In the next chapter, we propose a Bayesian treatment of the AR-SLDS. Like the
gain-adapted AR-SLDS, the Bayesian AR-SLDS jointly models speech and noise, thereby providing a
level of noise robustness.



Chapter 7

Bayesian Switching Linear
Dynamical Systems

7.1 Introduction

In the previous chapter, we saw that a Bayesian approach is a valuable alternative to GA. However,
the application of the proposed Bayesian SAR-HMM was limited to clean speech. To deal with noise
explicitly without having to train a new model, we devise the Bayesian AR-SLDS, an extension of
the Bayesian SAR-HMM which includes an explicit model of additive Gaussian white noise. In this
model, the a priori unknown noise variance, which was adjusted with GA in the AR-SLDS, is also
considered as a random variable.

Inferring the posterior distribution of the hidden variables in the Bayesian AR-SLDS is considerably
more complex than in the AR-SLDS because, due to the nonlinearities introduced by the priors, the
structure of the posterior distribution is in general not a mixture of Gaussians. To address this issue
we propose a simple variational approximation which yields a two-steps inference procedure where the
posterior of the parameters and the switch states is inferred from a HMM, and the posterior of the
clean waveform is inferred from a LDS.

We also consider an alternative form of Bayesian AR-SLDS where the noisy observed signal is
considered as a scaled and corrupted version of a clean hidden signal which is modelled by a standard
SAR-HMM. Compared to the gain-adapted and Bayesian AR-SLDS, the proposed scale-invariant AR-
SLDS has the advantage of being able to model variations in the signal amplitude explicitly, without
adjusting the parameters of the underlying AR process. The variance and signal scaling factor are
considered as random variables and are therefore automatically adapted. Contrary to the Bayesian
AR-SLDS which can be initialised from a trained Bayesian SAR-HMM, the scale-invariant AR-SLDS
has to be trained directly. To achieve this, we propose a more elaborate variational approximation
where the posterior of the clean waveform and switch states is inferred from a SLDS by means of EC.

So far we have been considering simple additive Gaussian white noise. In this chapter, we also
compare the recognition accuracy of the gain-adapted and Bayesian AR-SLDS to that of a state-of-
the-art HMM system on a more natural source of noise provided by the Aurora database [35].

7.2 The Bayesian AR-SLDS

A Bayesian treatment of the AR-SLDS can be achieved by setting priors on the parameters of the AR-
SLDS. As with the Bayesian SAR-HMM, for the AR coefficients and the inverse innovation variance,
we choose a Normal-Gamma prior conditioned on the switch state sn:

cn | νn, sn ∼ N (µsn
, ν−1

n Σsn) and νn | sn ∼ G(αsn , βsn).
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sn−1 sn sn+1

cn−1 cn cn+1

yt−2 yt−1 yt yt+1 yt+2

νn

vt−2 vt−1 vt vt+1 vt+2

νV

Figure 7.1: DBN representation of a second order Bayesian AR-SLDS; sn represents the hidden
switch state, cn the AR coefficients, νn the inverse innovation variance, yt the hidden clean waveform
sample, vt the observed noisy waveform sample and νV the inverse output noise variance.

To deal with variable levels of additive Gaussian white noise without having to train a new model, we
also introduce a Gamma prior on the inverse noise variance:

νV ∼ G(αV , βV).

Compared to the Bayesian SAR-HMM, the Bayesian AR-SLDS therefore contains two additional free
parameters, αV and βV . As for the AR-SLDS, an observed noisy sample vt is seen as a clean hidden
sample yt corrupted by additive Gaussian white noise. Hence

p(vt | yt, νV) =
ν

1/2
V√
2π

exp
{
−νV

2
(vt − yt)2

}
.

The joint distribution defined by the Bayesian AR-SLDS is

p(v1:T , y1:T , c1:N , ν1:N , νV , s1:N ) = p(νV)
N∏

n=1

p(cn | νn, sn) p(νn | sn) p(sn | sn−1)

×
tn+1−1∏

t=tn

p(vt | yt, νV) p(yt | cn, νn, ỹt) (7.1)

where p(yt | cn, νn, ỹt) is given by Equation 6.1. Graphically, this can be depicted by the DBN of Fig-
ure 7.1. The likelihood p(v1:T ) of an observed noisy sequence v1:T is given by integrating Equation 7.1
over the hidden variables. In temporal models such as the Bayesian SLDS the likelihood can generally
be efficiently computed by means of the recursion

p(v1:T ) =
T∏

t=1

p(vt | v1:t−1)

where p(vt | v1:t−1) is obtained by integrating the unnormalised filtered posterior p(vt, yt, ỹt, cn, νn, νV , sn | v1:t−1)
over the hidden variables yt, ỹt, cn, νn, νV and sn. The filtered posterior of the Bayesian AR-SLDS is
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difficult to compute because of the additional complexity induced by p(cn | νn, sn). Indeed, according
to Equation 3.1, the predicted sample yt depends on the product of two normally distributed random
variables which, in general, is not normally distributed. An alternative is to consider a variational
Bayesian approach [5] where the lower-bound, provided by the KL divergence between an approximate
posterior distribution q and the true posterior distribution, is used instead of the true likelihood. If
we define ϑn = {cn, νn, νV}, then

KL
(
q(y1:T , ϑ1:N , s1:N ) || p(y1:T , ϑ1:N , s1:N | v1:T )

)
≥ 0

implies
log p(v1:T ) ≥ −

〈
log q(y1:T , ϑ1:N , s1:N )

〉
q
+
〈
log p(v1:T , y1:T , ϑ1:N , s1:N )

〉
q

(7.2)

with equality if and only if q is the true posterior. The central idea behind the variational approach is
to approximate the true, intractable posterior distribution by a simpler, tractable distribution q such
that the KL divergence between the two is as small as possible. If the KL divergence is small, then
the lower-bound will be close to the true likelihood.

7.2.1 Variational Inference

We propose to approximate the true posterior distribution by a simpler q distribution for which the
problematic nonlinear interaction between cn and ỹt is removed. Two alternatives can be considered;
the first is

q(y1:T , ϑ1:N , s1:N ) = q(y1:T | s1:N ) q(ϑ1:N | s1:N ) q(s1:N ) (7.3)

and the second is
q(y1:T , ϑ1:N , s1:N ) = q(y1:T ) q(ϑ1:N | s1:N ) q(s1:N ). (7.4)

The first approximation is less crude than the second, but the dependency of y1:T on s1:N is problematic
because the marginal posterior

q(yt, sn) =
∑

s1:n−1
sn+1:N

q(yt | s1:N ) q(s1:N )

required to evaluate the lower-bound given by the rhs of Equation 7.2, is a mixture with O(SN−1)
components and, in practice, this is generally computationally intractable. The second approximation
is easier to deal with because the posterior distribution of y1:T is completely decoupled from that
of s1:T and, since we chose conjugate priors,

q(ϑ1:N | s1:N ) =
N∏

n=1

q(ϑn | sn).

The individual marginals q(yt), q(ϑn | sn) and q(sn) can therefore be computed exactly. Combining
Equations 7.2 and 7.4 yields the lower-bound

log p(v1:T ) ≥−
〈
log q(y1:T )

〉
q
−
〈
log q(ϑ1:N , s1:N )

〉
q

+
〈
log p(v1:T , y1:T |ϑ1:N , s1:N )

〉
q
+
〈
log p(ϑ1:N , s1:N )

〉
q

(7.5)

The optimal q distribution which satisfies Equation 7.4 is the one which maximises this lower-bound.
After differentiating the rhs of Equation 7.5 with respect to q(y1:T ) and q(ϑ1:N , s1:N ) and setting the
result equal to zero, we obtain

q(y1:T ) ∝ exp
{〈

log p(v1:T , y1:T |ϑ1:N )
〉

q(ϑ1:N ,s1:N )

}
(7.6)

q(ϑ1:N , s1:N ) ∝ exp
{〈

log p(v1:T , y1:T |ϑ1:N )
〉

q(y1:T )

}
p(ϑ1:N , s1:N ). (7.7)
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Starting with a first approximation of either q(ϑ1:N , s1:N ) or q(y1:T ), the posterior distribution q(y1:T , ϑ1:N , s1:N )
can thus be computed by iteratively applying Equations 7.6 and 7.7. Since this scheme guarantees
that the lower-bound on the log-likelihood does not decrease [5], convergence is therefore achieved
when the lower-bound does not change for two consecutive iterations.

Finding q(ϑ1:N | s1:N )

Isolating the factors related to ϑn in Equation 7.7, yields

q(ϑn | sn) ∝ exp

{
tn+1−1∑
t=tn

〈
log p(vt, yt | ỹt, ϑn)

〉
q(yt,ỹt)

}
p(ϑn | sn). (7.8)

Due to conjugacy, q(ϑn | sn) has the same form as the prior p(ϑn | sn) and is therefore a product of
Normal and Gamma distributions, i.e.,

cn | νn, sn ∼ N (µ̂sn
, ν−1

n Σ̂sn), νn ∼ G(α̂sn , β̂sn) and νV ∼ G(α̂V , β̂V).

To find the posterior value of the hyper-parameters, we expand the rhs of Equation 7.8 and group the
factors according to the parameters they contain.

By grouping all the factors in the rhs of Equation 7.8 which involves cn, we find that, up to an
irrelevant constant, the logarithm of q(cn | νn, sn) is equal to

− νn

2

tn+1−1∑
t=tn

[
〈y2

t 〉 − 2〈ytỹT
t 〉cn + cT

n〈ỹtỹT
t 〉cn

]

− νn

2

tn+1−1∑
t=tn

[
cT

nΣ−1
sn

cn − 2µT
sn

Σ−1
sn

cn + µT
sn

Σ−1
sn

µsn

]
where the first term comes from the logarithm of p(yt | cn, νn, ỹt) averaged over q(y1:T ) and the second
from the logarithm of the prior p(cn | νn, sn). After grouping the quadratic and linear terms together,
this can be written as

−νn

2
(cn − µ̂sn

)TΣ̂
−1

sn
(cn − µ̂sn

)− νn

2

tn+1−1∑
t=tn

[
〈y2

t 〉+ µT
sn

Σ−1
sn

µsn
− µ̂sn

Σ̂
−1

sn
µsn

]
.

The first term defines a Normal distribution N (µ̂sn
, ν−1

n Σ̂sn
) with

Σ̂sn
=
[
〈ỹtỹT

t 〉+ Σ−1
sn

]−1

and µ̂sn
=
[
〈ytỹT

t 〉+ µT
sn

Σ−1
sn

]
Σ̂sn .

The second depends only on νn and will be absorbed into q(νn | sn).
After grouping together the factors which depend on νn and which have been left aside during the

computation of q(cn | νn, sn), we find that, up to an irrelevant constant, the logarithm of q(νn | sn) is
equal to

log ν
1
2
n + log ναsn−1

n − βsnνn −
νn

2

tn+1−1∑
t=tn

[
〈y2

t 〉+ µT
sn

Σ−1
sn

µsn
− µ̂T

sn
Σ̂
−1

sn
µsn

]
where the first term comes from the normalisation constant of p(yt | cn, νn, ỹt), the second and third
come from the prior p(νn | sn) and the last is the term which has been left aside during the computation
of q(cn | νn, sn). This defines a Gamma distribution G(α̂sn , β̂sn) with

α̂sn = αsn +
Tn

2
and β̂sn = βsn +

1
2

tn+1−1∑
t=tn

[
〈y2

t 〉+ µT
sn

Σ−1
sn

µsn
− µ̂sn

Σ̂
−1

sn
µsn

]
.
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where Tn = tn+1 − tn is the length of the n-th segment.
For νV , we have that, up to an irrelevant constant, the logarithm of p(νV | sn) is equal to

T

2
log νV −

νV
2

T∑
t=1

[
v2

t − 2vt〈yt〉+ 〈y2
t 〉
]

+ (αV − 1) log νV − βVνV

where the first two terms correspond to the logarithm of the emission distribution p(vt | yt, νv) averaged
over q(y1:T ) and the others come from the prior p(νV). This defines a Gamma distribution G(α̂V , β̂V)
with

α̂V = αV +
T

2
and β̂V = βV +

1
2

T∑
t=1

[
v2

t − 2vt〈yt〉+ 〈y2
t 〉
]
.

Finding q(s1:N )

Equation 7.7 can be alternatively written as a HMM of the form

p(o1:N , ϑ1:N , s1:N ) =
N∏

n=1

p(on |ϑn) p(ϑn | sn) p(sn | sn−1)

where on is an auxiliary observation of dimension Tn = tn+1 − tn, such that

p(on |ϑn) ∝ exp

{
tn+1−1∑

t=tn

〈
log p(vt, yt |ϑn, ỹt)

〉
q(ϑn)

}
.

With this notation, we have q(ϑn | sn) ∝ p(ot |ϑn) p(ϑn | sn) and

q(s1:N ) ≡ p(s1:N |o1:N ) ∝
N∏

n=1

p(on | sn) p(sn | sn−1).

This is exactly Equation 2.7. The posterior q(s1:N ) can therefore be computed using either the
traditional Forward-Backward algorithm or the RTS method. The emission distribution is given by
integrating out ϑn, i.e.,

p(on | sn) =
∫

ϑn

p(on |ϑn) p(ϑn | sn) =
tn+1−1∏

t=tn

|Σ̂sn |
1
2

|Σsn |
1
2

β
αsn
sn

β̂
α̂sn
sn

Γ(α̂sn)
Γ(αsn)

βαV
V

β̂α̂V
V

Γ(α̂V)
Γ(αV)

.

This corresponds to the ratio of the normalisation constants of the prior and posterior distributions.
The normalisation constants of the priors have been left aside during the computation of q(cn, νn | sn)
and those of the posteriors are introduced by the integral over ϑn. Since, for a given pair of segment
and state, the prior and posterior parameters are constant, the emission distribution actually reduces
to the ratio of the normalisation constants raised to the power Tn.

Finding q(y1:T )

For the t-th step, the logarithm of the rhs of Equation 7.6 is, up to an irrelevant constant, equal to

−1
2
〈
νV(vt − yt)2

〉
q(ϑn,sn)

− 1
2
〈
νn(yt − cT

nỹt)2
〉

q(ϑn,sn)
. (7.9)

Since the state of yt depends only on the state of the previous variables, q(y1:T ) is clearly a chain. Belief
Propagation [55] may then be applied to find the required statistics—like the mean and variance of yt,
for example. However, Belief Propagation is potentially numerically unstable and we therefore prefer
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to convert the distribution into the form of a LDS, for which inference is straightforward. Following
the same approach as used in [8], we rewrite (7.9) as a mean plus fluctuation term

−1
2
〈νV〉(vt − yt)2 −

1
2
〈νn〉

(
yt − 〈cn〉ỹt

)2 + ỹT
t 〈νn∆cn∆cT

n〉︸ ︷︷ ︸
Sn

ỹt (7.10)

where the averages are taken with respect to q(ϑn, sn) and ∆cn = cn − 〈cn〉. Explicitly, we therefore
have

〈νV〉 =
α̂V

β̂V
, 〈νn〉 =

∑
sn

q(sn)
α̂sn

β̂sn

and 〈cn〉 =
∑
sn

q(sn) µ̂sn
.

The computation of Sn is a slightly more complicated and is presented in Appendix C. Expression 7.10
is equivalent to the LDS:[

yt

ỹt

]
=
[
〈cn〉 0
IR 0

] [
yt−1

ỹt−1

]
+ ηHt and ηHt ∼ N

(
0,
[
〈νn〉−1 0

0 0

])
(7.11)[

vt

0

]
=
[
1 0
0 Ut

] [
yt

ỹt

]
+ ηVt and ηVt ∼ N

(
0,
[
〈νV〉−1 0

0 IR

])
(7.12)

where IR is the R × R identity matrix and Un is the upper triangular matrix obtained from the
Cholesky decomposition of Sn. Equations 7.11 and 7.12 are similar to Equations 5.2 and 5.1, the only
difference being that the parameters are different for each segment n. The marginal posterior q(yt, ỹt)
can therefore be computed by means of the RTS algorithm, as described in Section 5.2.2. The form of
the RTS algorithm presented in Section 5.2.2 is particularly well suited for cases where the dimension
of the observed variable is smaller than that of the hidden variable. In the case of Equations 7.11
and 7.12, the alternate version of the RTS method proposed in [8] is more appropriate.

Initialisation

A possible way to initialise the variational procedure is to start with an approximation of q(y1:T ) and
then to compute q(ϑ1:N , s1:N ) with Equation 7.7. A good approximation of q(y1:T ) can be obtained
by performing inference with a SLDS whose parameters are set to the average parameter setting of the
Bayesian SLDS. If the EC algorithm is used for example, this would yield the mixture of Gaussians:

p(yt, ỹt | v1:T ) =
∑
sn

p(yt, ỹt | sn, v1:T ) p(sn | v1:T ).

An initial estimate of q(yt, ỹt) can then be obtained by collapsing this mixture to a single Gaussian.

Convergence

The central idea in the variational approximation is to push up the lower-bound, given by the rhs of
Equation 7.5, so that it gets as close as possible to the true log-likelihood p(v1:T ). Computing the
value of the bound is important because it is an indicator of the convergence of the variational approx-
imation. Since applying Equations 7.6 and 7.7 cannot decrease the lower-bound [5, 11], convergence
will eventually be achieved when no significant change occurred between two consecutive iterations.

7.2.2 Performance

We tested the Bayesian AR-SLDS on the isolated digit recognition task described in Section 2.10.
As for the gain-adapted AR-SLDS, the models were not trained but simply initialised with the cor-
responding Bayesian SAR-HMM. To allow the models to automatically adjust to the various noise
levels, we manually set a prior on νV such that the variance of νV was large enough (1010 in our case).
Inference was then carried out using an AR-SLDS initialised with the average parameter setting. Since
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SNR (dB) #prms clean 26.3 25.1 19.7 10.6 0.7

HMM (MFCC) 4283 100 100 95.5 50 13.6 9.1
HMM (MFCC) + USS 4283 100 100 90.9 86.4 59.1 9.5

HMM (LPCC) 109 100 95.5 27.3 18.2 9.5 9.1
HMM (LPCC) + USS 109 100 86.4 77.3 18.2 13.6 10

SAR-HMM 119 88.3 25.5 9.7 8.6 9.3 9.4
SAR-HMM + GA 109 97.2 79.8 56.7 22.2 9.7 9.1

AR-SLDS 120 86.8 88.2 87.3 79.1 80 63.6
AR-SLDS + GA 109 96.8 96.8 96.4 94.8 84 61.2

Bayesian SAR-HMM 1129 98.7 38.2 22.7 9.1 9.1 13.4

Bayesian AR-SLDS 1131 98.5 — 95.5 94.2 89.5 52.3

Table 7.1: Comparison of the word accuracy (in percent), at various SNRs, of the Bayesian AR-SLDS
and all the other models considered so far. The best performance for each column is indicated in
bold. The second column indicates the number of free parameters in the model. A word accuracy
of 9.1% corresponds to random guessing.

the noise level in unknown a priori, we tested three different noise variances (10−10, 10−5 and 10−3)
and the posterior resulting from the most likely AR-SLDS was then used to initialise the variational
procedure. For a given test utterance, recognition was performed by picking the model for which the
lower-bound on the log-likelihood, as given by Equation 7.5, was the highest. The lower-bound is used
as a replacement for the true log-likelihood which, for the Bayesian AR-SLDS, cannot be obtained.

Table 7.1 shows the recognition accuracy of the Bayesian AR-SLDS compared to all the other
models. On clean data, the performance of the Bayesian AR-SLDS is close to that of the Bayesian
SAR-HMM. Although theoretically the Bayesian AR-SLDS reduces to the Bayesian SAR-HMM in
clean conditions, in practice, the accuracy may differ because the lower-bound is used instead of
the true log-likelihood. In general, the accuracy of the gain-adapted and Bayesian AR-SLDS are
comparable. On clean data, the Bayesian SLDS is slightly more accurate probably because it has the
advantage of being able to slightly adapt the AR coefficients while the gain-adapted SLDS cannot.
At SNR 10.6 dB, we would expect the accuracy of the Bayesian AR-SLDS to be close to that of the
gain-adapted AR-SLDS. The fact that, to the contrary, it is more than 5% higher would suggest that
the gain-adapted AR-SLDS has overfitted. At SNR 0.7 dB, the accuracy of the Bayesian AR-SLDS
is significantly lower than that of the gain-adapted AR-SLDS. A possible explanation is that, at a
low SNR, the proposed variational approximation fails to properly localise the position of the clean
speech waveform in the noisy signal. This is likely to happen since the posterior q(y1:T ) essentially
relies on the segmentation given by q(s1:N ) which is computed independently, on the basis of the
difference between the value of the prior and posterior parameters. This effect is particularly visible
in the case of the digit ‘zero’ which, at SNR 0.7 dB, is correctly recognised only 1.79% of the time by
the Bayesian AR-SLDS. Figure 7.2 compares the most likely segmentations and reconstructed signals
provided by the gain-adapted and Bayesian AR-SLDSs. Clearly, the latter is not able to properly
localise the clean waveform. The gain-adapted AR-SLDS is more accurate and is able to correctly
recognise a ‘zero’ 64.3% of the time. In contrast, in the same conditions, the digit ‘eight’ is correctly
recognised 70.5% of the time by the Bayesian AR-SLDS and only 0.9% of the time by the gain-adapted
AR-SLDS. Each model therefore has its pros and cons. On the one hand, the gain-adapted AR-SLDS
is more conservative since it does not allow the AR coefficient to change; however GA is potentially
dangerous because it may lead to overfitting. On the other hand, the Bayesian AR-SLDS is more
versatile and provides a principled alternative to GA, but has the drawback of being too complex to
be dealt with exactly.

An alternative is to use the less crude variational approximation given by Equation 7.3. The main
difference with Equation 7.4 is that the posterior q(y1:T , s1:N ) is computed by running EC on a SLDS
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Figure 7.2: Comparison of the reconstructed signals provided by the gain-adapted and Bayesian AR-
SLDSs. From top to bottom, the original clean waveform of a ‘zero’ taken from the TI-DIGITS
database, the noisy signal obtained by adding Gaussian white noise at SNR 0.7 dB, the reconstructed
clean signals provided by the gain-adapted AR-SLDS and the Bayesian AR-SLDS, respectively. The
dashed lines show the most-likely state segmentation. To facilitate comparison the clean segmentation
is also reproduced on the noisy signal.
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defined in a way similar to Equations 7.11 and 7.12. Unfortunately, in practice, when EC is used with
collapse to a single Gaussian, this approach performs much worse, reaching a recognition accuracy of
only 79.2% on clean data. A likely explanation is that the more complex variational approximation
is trapped into a local maximum which the simpler method can avoid. This is confirmed by the fact
that initialising the more complex variational approximation (Equation 7.3) with the optimal simpler
distribution (Equation 7.4) leads to a comparable performance. This is expected since setting q(yt | sn)
in the more complex approximation to q(yt), obtained from the simpler one, is equivalent to assuming
independence between yt and sn. A possible way to avoid local maxima is to collapse the posterior
to a mixture of Gaussians. However, in practice, this approach is considerably slower than the single
Gaussian case and the large amount of memory required to store the posteriors generally prevents its
use on long time series.

7.3 Modelling Scale Invariance Explicitly

So far we have been addressing the problem of dealing with variations in the signal amplitude by
adapting the innovation variance. A more direct alternative is to consider the observed noisy sample vt

as a scaled version of a scale-invariant clean hidden sample yt corrupted by Gaussian white noise:

vt = byt + ηVt with ηVt ∼ N (0, σ2
V) (7.13)

and to model the clean hidden samples yt with a switching AR process:

yt = cT
s ỹt + ηHt with ηHt ∼ N (0, σ2

H,s). (7.14)

where s denotes the state of the switch variable. In this manner, no innovation-inflation is required,
provided that the observed signal is simply a scaled, noisy version of an underlying AR process. For
a given observed sequence, the setting of b and σ2

V is unknown a priori and needs to be determined.
To solve this problem we treat both parameters as random variables and introduce a Normal-Gamma
prior on b and the inverse noise variance ν = 1/σ2

V :

b | ν, s ∼ N
(
µs, ν

−1σ2
s

)
and ν | s ∼ G(αs, βs). (7.15)

Similarly to the SAR-HMM, we consider a segmental approach where the state, scaling factor and
noise variance are kept constant over a segment. Using ϑn = {bn, νn}, Equations 7.13, 7.14 and 7.15
correspond to the distributions p(vt | yt, ϑn), p(yt | ỹt, sn) and

p(ϑn | sn) = p(bn | νn, sn) p(νn | sn)

respectively. The joint distribution defined by this model is

p(v1:T , y1:T , ϑ1:N , s1:N ) =
N∏

n=1

p(ϑn | sn) p(sn | sn−1)
tn+1−1∏

t=tn

p(vt | yt, ϑn) p(yt | ỹt, sn). (7.16)

Since the internal dynamics is autoregressive and priors are set on some of the parameters, this model
is also a form of Bayesian AR-SLDS. The main difference is that the AR dynamics is learned on
the basis of training data and is not allowed to adapt thereafter. This approach may improve the
recognition accuracy since having a more constrained model will potentially help in noisy conditions
where the speech signal is difficult to localise.

7.3.1 Parameter Optimisation

Compared to the AR-SLDS and the Bayesian AR-SLDS which can be initialised with a SAR-HMM and
a Bayesian SAR-HMM respectively, the proposed scale-invariant AR-SLDS must be trained directly.
Given a set of M training sequences1 {v1

1:T , . . . , v
M
1:T }, we want to find the parameter setting Ψ? which

1For simplicity, we assume that they all have the same length.
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maximises the total log-likelihood of the training sequences, i.e.,

Ψ? = arg max
Ψ

M∑
m=1

log p(vm
1:T |Ψ) (7.17)

where Ψ are the free parameters of the model, i.e.,

Ψ =
⋃
s

{
cs, σ

2
H,s, µs, σ

2
s

}
∪
⋃
i,j

{
p(sn = j | sn−1 = j)

}
.

Since our aim is to train the model on clean signals and to later test it on noisy data, we do not use
a prior on ν during training and manually set appropriate values for αs and βs during testing. The
likelihood of a sequence v1:T is

p(v1:T |Ψ) =
∑
s1:N

∫
ϑ1:N
y1:T

p(v1:T , y1:T , ϑ1:N , s1:N |Ψ). (7.18)

The sum and integral in Equation. 7.18 make an explicit solution to Equation 7.17 difficult to
obtain. The usual approach would therefore be to use the EM algorithm. However, the non-
linear interaction between yt and ϑn in Equation 7.13 renders computing the required EM poste-
rior p(y1:T , ϑ1:N , s1:N | v1:T ) intractable.

7.3.2 Variational Inference

An alternative to EM is to use a variational Bayesian approach where the true posterior distribution
is approximated by the simpler distribution (Equation 7.3)

q(y1:T , ϑ1:N , s1:N ) = q(y1:T | s1:N ) q(ϑ1:N | s1:N ) q(s1:N ).

The other variational distribution, given by Equation 7.4, is not appropriate in this case because, in
order to train the internal switching AR process, the dependency of y1:T on s1:N must be retained. By
considering the KL divergence between the approximate and true posterior, we obtain the lower-bound

log p(v1:T ) ≥−
〈
log q(y1:T , ϑ1:N , s1:N )

〉
q

(7.19)

+
〈
log p(v1:T | y1:T , ϑ1:N , s1:N )

〉
q
+
〈
log p(y1:T , ϑ1:N , s1:N )

〉
q
.

Maximising the bound with respect to q(ϑ1:N | s1:N ) yields

q(ϑ1:N | s1:N ) ∝

exp
{〈

log p(v1:T | y1:T , ϑ1:N , s1:N )
〉

q(y1:T | s1:N )

}
p(ϑ1:N , s1:N ) (7.20)

and maximising with respect to q(y1:T , s1:N ) yields

q(y1:T , s1:N ) ∝ exp
{〈

log p(v1:T | y1:T , ϑ1:N , s1:N )
〉

q(ϑ1:N | s1:N )

}
× exp

{〈
log

p(ϑ1:N | s1:N )
q(ϑ1:N | s1:N )

〉
q(ϑ1:N | s1:N )

}
p(y1:T , s1:N ). (7.21)

Finding q(ϑ1:N | s1:N )

Isolating the factors related to ϑn in Equation 7.20 gives

q(ϑn | sn) ∝ exp

{
tn+1−1∑

t=tn

〈
log p(vt | yt, bn, νn)

〉
q(yt | sn)

}
p(bn | νn, sn) p(νn | sn)
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which is similar to Equation 7.8. Since we chose conjugate priors, the posterior distribution has the
same form as the prior, hence

bn | νn, sn ∼ N (µ̂sn , ν
−1
n σ̂2

sn
) and νn | sn ∼ G(α̂sn , β̂sn).

Following the same derivation as in Section 7.2.1, for the variance and mean of bn, we obtain

σ̂2
sn

= σ2
sn

[
1 + σ2

sn

∑
t

〈y2
t 〉

]−1

and µ̂sn = σ̂2
sn

[
µsn

σ2
sn

+
∑

t

vt〈yt〉

]
and, for the shape and inverse scale of νn, we have

α̂sn
= αsn

+
1
2
Tn and β̂sn = βsn +

1
2

∑
t

[
v2

t +
µsn

σ2
sn

− µ̂sn

σ̂2
sn

]
where the averages are taken with respect to q(yt | sn), Tn = tn+1 − tn and the sums are carried out
from tn to tn+1 − 1.

Finding q(y1:T , s1:N )

Equation 7.21 can be written as

q(y1:T , s1:N ) ∝
N∏

n=1

q(sn | sn−1)
tn+1−1∏

t=tn

q(vt | yt, sn) p(yt | ỹt, sn) (7.22)

where the logarithm of q(vt | yt, sn) is equal to〈
log p(vt | yt, ϑn, sn)

〉
=

1
2
〈
log ν

〉
− 1

2
〈
ν(vt − byt)2

〉
=

1
2
〈
log ν

〉
− 1

2
〈ν〉
(
vt − 〈b〉yt

)2 − 1
2
〈
ν
(
b− 〈b〉

)2〉︸ ︷︷ ︸
σ̂2

sn

y2
t

and

q(sn | sn−1) ∝ exp
{〈

log
p(bn, νn | sn)
q(bn, νn | sn)

〉}
p(sn | sn−1)

where the averages are over q(bn, νn | sn). Since, 〈b〉 = µ̂sn and 〈ν〉 = α̂sn/β̂sn , we have

q(vt | yt, sn) ∝ exp

−1
2

[
vt − µ̂snyt

σ̂snyt

]T
[

β̂sn

α̂sn
0

0 1

]−1 [
vt − µ̂snyt

σsnyt

] .

This can equivalently be written as a stochastic linear equation defined on an augmented observation,[
vt

0

]
=
[
µ̂sn

σ̂sn

]
yt + ηt with ηt ∼ N

(
0,

[
β̂sn

α̂sn
0

0 1

])
. (7.23)

Together with Equations 7.14 and 7.22, this defines a standard AR-SLDS for which the marginal
posteriors q(yt, ỹt | sn) and q(sn) can be computed using any of the numerous available algorithms
found in the literature—see [7] for a review and comparison. For the experiments presented in this
chapter, we performed approximate inference with the EC algorithm with collapse to a single Gaussian.
We also used EC to find a first estimate of q(yt, ỹt | sn) and q(sn) by running the algorithm on a AR-
SLDS where the parameters where set to their mean value. Variational inference was then carried out
by iteratively applying Equations 7.20 and 7.21.
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7.3.3 Parameter Updating

With the posterior distribution in hands, update formulae for the parameters in Ψ can be obtained
by means of the Variational Bayesian EM algorithm [12]. This corresponds to maximising the lower-
bound given by Equation 7.19 with respect to Ψ. The update formula for the transition distribution is
given by Equation 2.22. For the AR coefficients cs, the update formula is given by Equation 3.13. The
formulae for the mean µs and variance σ2

s of the scaling parameter bn are analogous to Equations 6.10
and 6.11. In this case, they read

µs =
∑

n q(sn = s) µ̂sn∑
n q(sn = s)

and σ2
s =

∑
n q(sn = s)

〈
νn(bn − µs)2

〉
q(bn,νn | sn)∑

n q(sn = s)
.

Finally, the update formula for the innovation variance is

σ2
H,s =

1
〈Tn〉

∑
n

q(sn = s)
tn+1−1∑

t=tn

〈
(yt − cT

s ỹt)2
〉

q(yt,ỹt | sn)

where 〈Tn〉 =
∑

n q(sn = s)Tn.

7.4 Training & Evaluation

Following Section 3.4, we trained a separate scale-invariant AR-SLDS for each of the eleven digits of
the TI-DIGITS database. For each digit the model was composed of ten states with a left-to-right
transition matrix. To each switch state was associated a 10-th order AR process and the segment length
was of 140 samples (1.75 ms). The parameters to be trained were therefore: 9 transition probabilities
and, for each state, the 10 AR coefficients, the innovation variance and the mean and variance of b.
Since the models were trained on clean data, no prior was set on νn. The training was stopped after
convergence of the lower bound given by Equation 7.19. Recognition was performed by picking the
digit model for which the likelihood of the corresponding augmented observation (Equation 7.23) was
the highest. Contrary to the Bayesian AR-SLDS, where the lower-bound is used for recognition, the
bound was not used here because we did not want to penalise models for which the value of the
scaling parameter was too different from the values observed in the training data. To give the model
the opportunity to remove noise, we manually specified a prior on νn with a mean of 1 and a large
variance. If we also add the two free parameters α and β introduced by the prior on νV , the model
therefore contains 10× 13 + 9 + 2 = 141 free parameters.

7.5 Example of Signal Reconstruction

To test the potential benefit of the proposed scale-invariant model, we compared the reconstructions
of scaled noisy signals provided by the scale-invariant and the gain-adapted AR-SLDSs. As a demon-
stration, a clean utterance of a ‘one’ was taken, from which a scaled noisy version of the signal was
then formed and corrupted by additive Gaussian white noise at SNR 0 dB. Given this scaled-noisy
signal, the posterior q(yt, sn) was then used to reconstruct the most likely (ML) signal. Figure 7.3
shows the ML reconstructed clean signal given by the gain-adapted AR-SLDS and the scaled-invariant
AR-SLDS. The latter does not allow the innovation to change, resulting in less variability in the un-
derlying signal and a more accurate denoising, particularly at the edges where the signal level is low.
On the other hand, the gain-adapted AR-SLDS provides a reasonable reconstruction but, as a result
of the extra innovation required to explain the change in signal level, allows the reconstructed signal
too much freedom, particularly in the low signal level areas, as anticipated.
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Figure 7.3: Comparison of signal reconstruction. From top to bottom: original waveform of a ‘one’,
same waveform corrupted by additive Gaussian white noise at SNR 0.7 dB, ML reconstruction as given
by a gain-adapted AR-SLDS and a scale-invariant AR-SLDS. The dashed lines indicate the most likely
state segmentation. The state segmentation of the clean signal is shown on the noisy signal as well.
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SNR (dB) #prms clean 26.3 25.1 19.7 10.6 0.7

HMM (MFCC) 4283 100 100 95.5 50 13.6 9.1
HMM (MFCC) + USS 4283 100 100 90.9 86.4 59.1 9.5

HMM (LPCC) 109 100 95.5 27.3 18.2 9.5 9.1
HMM (LPCC) + USS 109 100 86.4 77.3 18.2 13.6 10

SAR-HMM 119 88.3 25.5 9.7 8.6 9.3 9.4
SAR-HMM + GA 109 97.2 79.8 56.7 22.2 9.7 9.1

AR-SLDS 120 86.8 88.2 87.3 79.1 80 63.6
AR-SLDS + GA 109 96.8 96.8 96.4 94.8 84 61.2

Bayesian SAR-HMM 1129 98.7 38.2 22.7 9.1 9.1 13.4

Bayesian AR-SLDS 1131 98.5 — 95.5 94.2 89.5 52.3

Scale-Invariant AR-SLDS 141 87 — — 83.3 78.3 64

Table 7.2: Comparison of the word accuracy (in percent), at various SNRs, of the scale-invariant AR-
SLDS with all the other models considered so far. The best performance for each column is indicated
in bold. The second column indicates the number of free parameters in the model. A word accuracy
of 9.1% corresponds to random guessing.

7.6 Performance

We tested the scale-invariant AR-SLDS on the isolated digit recognition task described in Section 2.10.
Table 7.2 compares the recognition accuracy of the scale-invariant AR-SLDS with all the models
considered so far. Although there is a slight improvement at SNR 0.7 dB, the scale-invariant AR-SLDS
is otherwise less accurate than its gain-adapted counterpart. This clearly shows that gain-adaptation
does more than dealing with variations in the amplitude of the signal. It adds a limited form of
variability which also improves accuracy. Furthermore, the similar performance of the scale-invariant
AR-SLDS and the non-gain-adapted AR-SLDS tends to show that modelling scale invariance explicitly
does not significantly help in improving the accuracy.

The proposed scale-invariant AR-SLDS does not adapt the innovation variance and uses only
the scale to allow for changes in the signal. A natural extension would be to add priors on the
AR coefficients and the innovation variance as well. Such a model should have the benefit that the
additional variability will be required only in those cases that cannot be well explained by a simple
rescaling of the underlying clean signal. Unfortunately, in practice, this approach does not perform
well on clean data, reaching a recognition accuracy similar to that of the Bayesian AR-SLDS when
used with the variational approximation given by Equation 7.3. A possible alternative is to use the
simpler variational approximation given by Equation 7.4. However, we did not implement this model
because we did not expect that modelling scale invariance explicitly would significantly improve the
accuracy.

7.7 Experiments with Natural Noise Sources

So far we have been considering simple additive Gaussian white noise. To test the potential advantage
of modelling the speech waveform directly over the more classical feature-based approach, we compared
the recognition accuracy of the gain-adapted and Bayesian AR-SLDS against two state-of-the-art
HMM systems, on the Aurora task [35]. The Aurora database is a modified version of the TI-DIGITS
database where the utterances are convolved with a filter which mimics the frequency characteristic of
a mobile phone, and are then artificially corrupted with real-world type noises recorded in a subway,
car or exhibition hall for example. The training set we used was composed of 220 instances of each
of the eleven digits (0–9 and ‘oh’) found in the database, pronounced by 110 different male or female
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Subway Noise

SNR (dB) clean 20 15 10 5 0 -5

HMM (MFCC) + USS 99.3 88.3 68.8 37.6 13.4 9.2 9.4
HMM (LPCC) + USS 96 58.4 44.6 29.9 19.8 9.1 9.1

AR-SLDS + GA 92.2 64.4 56 40.3 30.9 20.1 13.1

Bayesian AR-SLDS 96.1 52.7 34.2 27.2 19.9 19.8 9.1

Table 7.3: Comparison of the word accuracy (in percent) of two standard HMM systems against the
gain-adapted and Bayesian AR-SLDS, on the ‘subway noise’ part of the Aurora database. The best
performance for each column is indicated in bold. A word accuracy of 9.1% corresponds to random
guessing.

speakers. The clean/noisy test sets were composed of 102/28 instances of each digit pronounced
by 51/14 speakers, different from those of the training set. We trained two different HMM systems,
one using MFCCs and the other LPCCs, following the setup and procedure described in Sections 2.10
and 3.5. The gain-adapted and Bayesian AR-SLDS were not trained directly but initialised with a
gain-adapted and Bayesian SAR-HMM respectively, trained as explained in Sections 3.4 and 6.4. All
the models were trained on clean data and tested on noisy data corrupted with convolutional and
additive noise, apart from the clean test set for which only convolutional noise was used. Since our
primary interest is in modelling additive noise, in our experiments, we did not use any technique which
can potentially deal with convolutional noise—like channel normalisation [43] for example.

Table 7.3 shows the recognition accuracy of the various models on the ‘subway noise’ part of the
Aurora database. For high SNRs, both HMM systems are superior to the AR-SLDSs. For moderate
to low SNRs, the gain-adapted AR-SLDS performs better. The better accuracy of the AR-SLDS at
low SNRs is expected since it uses an internal model of clean speech while, in the case of the HMMs,
features are filtered independently of the model. Although the AR-SLDS can theoretically only deal
with additive Gaussian white noise, in practice, this is sufficient since, at low SNRs, the original
structure of the clean waveform is almost completely lost. Therefore, being able to roughly infer
the clean waveform already provides a significant advantage over a pre-processing method like USS.
In contrast, for high SNRs, the structure of the speech waveform is more evident and it becomes
important to detect it accurately. The performance of the AR-SLDS is worse in this case because the
part of the noise which is not properly filtered out by the Gaussian white noise model is considered as
speech. USS is more accurate in this situation because it is better able to discriminate speech from
noise.

A possible way to deal with more elaborate noise sources in the AR-SLDS is to consider that a
noisy sample vt is a corrupted version of the sum of a clean hidden sample yt and a hidden pure noise
sample ut:

vt = yt + ut + ηVt and ηVt ∼ N (0, σ2
V).

The dynamics of the noise can then be modelled by a Bayesian AR process of the form:

ut = cT
U ũt + ηUt and ηUt ∼ N (0, σ2

U) (7.24)

with a zero mean prior on cU and a prior with a small mean on σ2
U . The central idea behind this

approach is to allow the AR-SLDS to model non-white noise explicitly by means of the AR process
defined by Equation 7.24. A Bayesian treatment is essential in this case since otherwise, with a GA-
type approach, adapting the AR coefficients cU and variance σ2

U for each utterance, without constraint,
would be susceptible to overfitting. In contrast, setting a zero mean prior on cU tells the model that
a bit of correlation is possible between the noise samples ut, but ideally this should not be needed.
Although this approach sounds appealing, in practice, the preliminary experiments we carried out with
this model showed that the noise model is rarely used. Since the accuracy was therefore expected to
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be similar to that of the standard Bayesian AR-SLDS, we did not evaluate the performance of this
model on the complete database. A likely explanation for the fact that an explicit AR model of noise
does not improve the accuracy is that, compared to speech waveforms, most noise sources—in this
case, subway noise—are poorly modelled by an AR process.

Apart from the clean case, the Bayesian approach does not improve the accuracy of the AR-SLDS.
A possible explanation is that the Bayesian AR-SLDS is more conservative than its gain-adapted
counterpart and therefore cannot deal with non-white noise properly. However, on clean data, the
accuracy of the Bayesian AR-SLDS is better than that of the gain-adapted AR-SLDS and comparable
to that of the LPCC-based HMM system. This suggests that the gain-adapted AR-SLDS might be
overfitting.

7.8 Summary

The Bayesian AR-SLDS extends the Bayesian SAR-HMM to include an explicit model of additive
Gaussian white noise. Inference in the Bayesian AR-SLDS is significantly more complicated than in
the original AR-SLDS, preventing the direct use of standard approximation algorithms like EC. To
address this problem we proposed a variational approximation for which inference can be carried out
with traditional methods. In clean conditions, the accuracies of the Bayesian AR-SLDS and SAR-
HMM are comparable and both Bayesian models perform slightly better than their gain-adapted
counterpart. This suggests that the Bayesian approach is a valuable alternative which can potentially
replace GA. The accuracies of the Bayesian and gain-adapted AR-SLDS are comparable for high
to moderate SNRs. However, at lower SNRs, the assumptions made in the proposed variational
approximation may fail to properly localise the position of the clean waveform in the noisy signal and
potentially prevent correct recognition.

We also considered an alternative Bayesian AR-SLDS where scale invariance is explicitly modelled
by representing a noisy signal as a scaled version of a clean hidden signal corrupted with additive
Gaussian white noise. This approach generally results in cleaner reconstructions than approaches
based on GA since it allows for less variability in the underlying signal and a more accurate denoising,
particularly at the edges where the signal level is low. Furthermore, at low SNRs, it is also more
accurate than all the other models considered. However, at high to moderate SNRs, the accuracy of
the scale-invariant AR-SLDS is significantly lower than that of the other models. Furthermore, the
similar performance of the scale-invariant and the non-gain adapted AR-SLDS tends to show that
modelling scale invariance explicitly does not significantly help in improving recognition accuracy.

Although, theoretically, the AR-SLDS can only deal with additive Gaussian white noise, in practice,
this model can also be effective on more natural sources of noise. At high SNRs, the performance
of the AR-SLDS is worse than that of feature-based HMM systems because the part of the noise
which is not properly filtered by the Gaussian white noise model is considered as speech. In contrast,
for moderate to low SNRs, the gain-adapted AR-SLDS is superior because it can recover, thanks to
its internal model of clean speech, a rough approximation of the clean waveform, while the filtering
quality of pre-processing techniques drops significantly in adverse conditions since the structure of the
original clean waveform is almost completely lost.



Chapter 8

Discussion & Future Directions

8.1 Conclusions

This thesis investigated the potential advantages of modelling the speech waveform directly for per-
forming noise robust recognition of isolated digits. The central idea was to use the simple and
well-known AR process as a basic ingredient upon which more refined models were devised. Two
contributions of this thesis were to improve the accuracy of current AR models in noisy conditions
by introducing an explicit model of additive Gaussian white noise, and to propose a probabilistic
principled solution to the problem of dealing with variations in the signal amplitude. Compared to
existing models, where computing the posterior distribution of the hidden variables can be carried out
exactly, inference in the proposed models is formally intractable. Another contribution of this thesis
was therefore to propose a new, stable and accurate approximate inference algorithm which removes
some of the limitations of existing approximation procedures.

8.1.1 Switching Linear Dynamical Systems

We started by investigating the problem of making the original SAR-HMM [27] more robust to additive
noise. This was achieved by viewing an observed noisy sample as a clean hidden sample corrupted
by additive Gaussian white noise. This approach naturally led us to the class of Switching Linear
Dynamical Systems (SLDSs). To deal with noise without having to train a new model, we devised
the AR-SLDS, a special case of SLDSs where the internal dynamics is autoregressive. The advantage
of this approach is that a SAR-HMM trained on clean data can readily be used on data corrupted
by additive noise. Thanks to its internal AR model of clean speech, for moderate to low SNRs,
the AR-SLDS is more robust than a state-of-the-art HMM system. However, for more natural noise
sources, at high SNRs, the HMM system is in general more accurate because the AR-SLDS is not
always able to properly filter out non-Gaussian white noise. A limitation of the AR-SLDS is that its
accuracy crucially depends on the use of Gain Adaptation (GA). GA is problematic because it allows
the parameters to be adjusted on test data and this may lead to overfitting. The Bayesian approach
is an alternative which yields a performance comparable to that of a state-of-the-art HMM system in
clean conditions. However, the difficulty of accurately approximating the likelihood in the Bayesian
AR-SLDS makes its use in noisy conditions problematic.

8.1.2 Approximate Inference in the SLDS

We presented the EC algorithm, a novel approximation procedure which addresses some of the lim-
itations of current approximation techniques. EC is based on the RTS method which was originally
developed for the Linear Dynamical System (LDS). It is a forward-backward-type algorithm where
the backward pass corrects the result from the forward pass to form the desired posterior. Both
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passes produce posteriors under the form a mixture of Gaussians whose number of components grows
exponentially with the length of the time series. Like the Generalised Pseudo Bayes (GPB) technique,
the main approximation within EC is to collapse the mixture to a mixture with less components or,
even more drastically, to a single Gaussian. Compared to GPB, EC’s backward pass is more accurate
since more of the available future information is used to update the posterior of the switch state.
In this thesis, for computational and memory efficiency, we used EC in its most simple form—with
collapse to a single Gaussian—for all the experiments involving a SLDS. In general, EC proved to be
more stable than Expectation Propagation while being more accurate and faster than Monte-Carlo
methods.

8.1.3 A Bayesian Alternative to Gain Adaptation

Another issue we investigated in this thesis is how to deal with variations in the signal amplitude
in AR models. We proposed a Bayesian alternative to GA where the parameters were considered as
random hidden variables. A potential advantage of the Bayesian approach is that the variability of the
parameter setting is explicitly controlled by prior distributions fitted on training data and no further
adjustment is required. In clean conditions, the performance of the proposed Bayesian SAR-HMM was
comparable to that of the gain-adapted SAR-HMM. To deal with noise without having to train a new
model, we devised the Bayesian AR-SLDS, an extension of the Bayesian SAR-HMM which includes an
explicit model of additive Gaussian white noise. We addressed the problem of performing approximate
inference in the Bayesian AR-SLDS by devising a variational approximation for which inference could
be carried out with existing inference methods. For data artificially corrupted with additive Gaussian
white noise at high to moderate SNRs, the performance of the Bayesian AR-SLDS was comparable
to that of its gain-adapted counterpart. At low SNRs, the assumption that the clean waveform and
the switch states could be inferred independently was probably too limiting and prevented the correct
identification of the clean waveform. We tried to address this problem by proposing a model where
the observed signal is considered as a scaled and corrupted version of a clean hidden signal, which
is modelled by a standard SAR-HMM. Although this approach is better able to localise the clean
waveform at low SNRs, alone it is too limited to deal with variabilities which cannot be considered
as simple rescalings of signals. Nevertheless, in conjunction with innovation noise, rescaling should,
in principle, aid the extraction of clean waveforms in noisy environments.

8.1.4 Computational Tractability

The models proposed in this thesis are computationally very expensive. For example, processing a
noisy utterance of one second takes, on a 2.6 GHz dual core Pentium 4, about one minute and a half.
Since there are eleven digits, recognition is therefore 11×90 = 990 time slower than real time. A more
problematic issue is that, in general, the complexity of performing approximate inference in the SLDS
is O(S2 · R3 · T ), and the memory required to store the various statistics is O(S2 · R2 · T ), where S
is the number of states, R the number of AR coefficients and T the number of samples. Although
the complexity can be reduced by using a segmental approach, a left-to-right transition matrix and
AR dynamics, the computational time and memory consumption quickly becomes prohibitive in more
generic cases. For example, on a single machine, for the gain-adapted AR-SLDS, the time required to
obtain a single result reported in the third line of Table 7.3, was about 22 days. Testing the proposed
models on more complicated tasks, like the recognition of connected digits, or in a large vocabulary
application, will therefore require algorithmic surrogates. In the future, with the improvement of
computational resources, the models we considered might nevertheless become much more attractive
and might also be applicable beyond ASR.
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8.2 Application to Other Fields

The application of the SLDS is of course not limited to speech since this class of models is used in
many disciplines concerned with time series modelling or prediction, including econometrics, biology,
brain-computer interfaces and machine learning in general—see for example [6, 20, 32, 39, 40, 45, 54]
and also [46, 72] for a review of recent work. The work done during this thesis is therefore potentially
useful to other fields as well. For example, though it might not be useful for ASR, the proposed
Bayesian treatment of the SLDS is transferable to other applications where allowing the model to
adapt to changing conditions is important. The EC algorithm is another example, since it is a generic
algorithm for performing inference in any kind of SLDSs, it can potentially be applied in any place
where a SLDS is used.

8.3 Limitations & Future Directions

In the context of isolated digits recognition, the experiments we performed suggest that modelling
clean speech can potentially significantly enhance noise robustness. Although we took the extreme
choice of modelling the clean waveform directly, less drastic approaches might potentially be more
successful and might scale better to applications such as large vocabulary ASR. Our choice of working
with the waveform was motivated by the fact that, at this level, modelling additive noise is easy.
However, this approach introduces a number of problems which are difficult to address at the waveform
level. We mainly considered the problem of dealing with variations in the signal amplitude, but other
problems like the modelling of subword unit duration or non-stationary sources of noise are also
worth considering. Modelling duration is expected to enhance the quality of the signal reconstruction
because it can potentially prevent the appearance of too long segments at the edges of the signal where
the signal level is low. As we have seen in our experiments on the Aurora task, properly modelling
non-stationary and non-Gaussian white noise is also important to improve accuracy on real-world
noise sources. Our approach to this problem was to include an explicit Bayesian AR model of noise.
However, this strategy did not work in practice, most likely because an AR model is not appropriate
to model the kinds of complex noise environments in real world scenarios which may express greater
variability than can be reasonably modelled by an AR process.

The choice of the AR process to model the speech waveform is also debatable since it is known
to have difficulties to properly model fricatives and voiced speech [67]. AR models are nevertheless
appealing because they have a small number of parameters and can generally be dealt with exactly.
This is the main reason why, in this thesis, we limited ourselves to modelling the speech waveform
with an AR model. A possible future direction could be to consider a generic SLDS and to see what
performance it has on ASR. A potentially fruitful direction could be to work in the Fourier domain
and to model the harmonic components of the signal instead of the waveform. A good example of this
type of approach applied to acoustic modelling can be found in [18], where a SLDS is used for music
transcription. Working in the Fourier domain is however considerably more demanding in terms of
computational power because the dimensionality is much bigger than at the waveform level. Another
problem with working with a generic SLDS is that, in general, it does not reduce to a simpler model—
like the AR-SLDS which reduces to the SAR-HMM in clean conditions—and the problem of training
such a complex model must therefore be considered.

Another clear limitation of the proposed approach is its computational complexity. This limits its
practical use to relatively simple tasks like the recognition of isolated digits and prevents its applica-
tion to more challenging tasks like large vocabulary ASR. For example, given current computational
resources, performing continuous speech recognition, which requires modelling the speech signal at the
phoneme level, is almost impossible without the development of algorithmic surrogates. Furthermore,
to keep the running time of the experiments acceptable, we only considered the setting proposed in [27]
for the segment length, the number of states and the order of the AR processes. In the future, when
more computational power will be available, it might be interesting to investigate how those param-
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eters affect the accuracy of the proposed models. Another potentially fruitful future direction might
also be to consider a discriminative approach to training the models. Discriminative training becomes
increasingly popular in classical feature-based speech recognition and has been shown to significantly
enhance the accuracy of the models [68]. Discriminative training approaches such as those described
in [37] could be applied to the SAR-HMM and potentially yield similar performance improvements.
In many situations, the proposed maximum likelihood approach was nevertheless capable to identify
and reconstruct an approximate clean signal even in very noisy conditions. This suggests a possible
future application where, instead of being used for recognition, the AR-SLDS would be used as an
elaborate pre-processing step which would provide filtered clean speech signals to a standard feature-
based HMM system. A potential advantage of this approach over a more traditional one, like USS, is
that the dynamics of the resulting reconstructed clean waveform will be closer to that of the training
examples, thereby facilitating recognition by the HMM.



Appendices

A Properties of the Gamma Distribution

Given ν ∼ G(α, β), then

〈ν〉 =
βα

Γ(α)

∫ +∞

0

ν να−1e−βνdν =
βα

Γ(α)
Γ(α+ 1)
βα+1

=
α

β

where, for the last equality, we used the fact that Γ(α + 1) = αΓ(α). The average of the logarithm
of ν is given by

〈log ν〉 =
βα

Γ(α)

∫ +∞

0

log(ν) να−1e−βxdν.

This integral can be evaluated by considering the partial derivative, with respect to α, of the normal-
isation constant of the Gamma distribution1. Hence

〈log ν〉 =
βα

Γ(α)
∂

∂α

∫ +∞

0

να−1e−βνdα =
βα

Γ(α)
∂

∂α

Γ(α)
βα

and since
∂

∂α

Γ(α)
βα

= Γ′(α)
1
βα
− Γ(α) log(β)

1
βα

we end up with
〈log ν〉 = ψ(α)− log β

where ψ(·) = Γ′(α)/Γ(α) is the Digamma function [1].

B Solution to Equations 6.7 and 6.13

Our goal is to find α̂ such that
log α̂− ψ(α̂) = Ω

where Ω denotes the rhs of either Equation 6.7 or Equation 6.13. A solution can be efficiently obtained
by using the Newton-Raphson’s method. If we define

f(α) = logα− ψ(α)− Ω

then, given the i-th estimate αi of α̂, the next estimate is given by

αi+1 = αi −
f(αi)
f ′(αi)

(1)

1Thanks to David Barber for pointing this out.
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where f ′(·) denotes the derivative of f with respect to α. A good initial estimate α0 can be obtained
by considering the asymptotic expansion [1]:

ψ(α) = logα− 1
2α
− 1

12α2
+O(α4).

The first derivative of f(·) required by Equation 1 is given by

d

dα

[
logα− ψ(α)

]
=

1
α
− ψ1(α)

where ψ1(·) is the Trigamma function [1].

C Computing Sn

Using the convention that, unless explicitly specified, the averages are taken with respect to q(ϑn, sn),
we have

Sn =
〈
νn(cn − 〈cn〉)(cn − 〈cn〉)T

〉
= 〈νncncT

n〉 − 〈νncn〉cT
n − cn〈cT

nνn〉+ 〈cn〉〈νn〉〈cT
n〉

with 〈
νncncT

n

〉
=
∑
sn

q(sn) 〈νncncT
n〉q(cn,νn | sn)

=
∑
sn

q(sn)
[〈
νn(cn − µ̂s)(cn − µ̂s)

T
〉

q(cn,νn | sn)
+ 〈νn〉q(νn | sn) µ̂sµ̂

T
s

]
=
∑
sn

q(sn)

[
Σ̂sn +

α̂sn

β̂sn

µ̂sn
µ̂T

sn

]

and 〈
νncn

〉
=
∑
sn

q(sn) 〈νn〉q(νn | sn)〈cn〉q(cn | νn,sn) =
∑
sn

q(sn)
αsn

βsn

µ̂sn
.
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