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Abstract. Chord progressions are the building blocks from which tonal music is constructed.
The choice of a particular representation for chords has a strong impact on statistical modeling
of the dependence between chord symbols and the actual sequences of notes in polyphonic music.
Melodic prediction is used in this paper as a benchmark task to evaluate the quality of four chord
representations using two probabilistic model architectures derived from Input/Output Hidden
Markov Models (IOHMMs).
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1 Introduction

Probabilistic models for analysis and generation of polyphonic music would be useful in a broad range
of applications, from contextual music generation to on-line music recommendation and retrieval.
However, modeling music involves capturing long term dependencies in time series. This has proved
very difficult to achieve with traditional statistical methods. Note that the problem of long-term
dependencies is not limited to music, nor to one particular probabilistic model [5]. This difficulty
motivates our exploration of chord progressions and their interaction with melodies. A chord is a
group of three or more notes. A chord progression is simply a sequence of chords. In probabilistic
terms, the current chord can be seen as a latent variable (local in time) that conditions the probabilities
of choosing particular notes in other music components, such as melodies or accompaniments. Chord
changes occur at fixed time intervals in most of the musical genres, which makes them much simpler
to detect than beginnings and endings of musical notes, which can happen almost everywhere in
music signal. Thus, knowing the relations between such chords and actual notes would certainly
help to discover long-term musical structures in tonal music. For instance, an interesting challenge
arising in the music information retrieval context is transcription, i.e. converting audio data into any
kind of symbolic representation such as MIDI or traditional music notation. However, because of
fundamental difficulties inherent to the nature of sound, state-of-the-art techniques are not able to
accomplish this task with a sufficient level of precision for most practical applications. An intermediate
goal is to try to infer chord symbols from audio data [3, 18]. This task is simpler than complete
transcription of polyphonic audio signal. Combining reliable chord transcription with a model of the
conditional distribution of other music components (e.g. melodies) given chords could help to improve
transcription error rates of existing algorithms. Following the same idea, such models could even be
included in genre classifiers or automatic composition systems [9] to increase their performance.

In most tonal music theories, chord names are defined by a root note that can either be expressed by
its absolute pitch-class!' or by its relation with the current key. The key of a song is designated by a note
name (the tonic), and is the base of a musical scale from which most of the notes of the piece are drawn.
Most commonly, that scale can be either in major or minor mode. Despite the simple and relatively
universal chord building principles, many different notations have been used through music history to
represent chord progressions [7]. We face the same problem in the computer science literature, where
each author uses a notation corresponding to his musical background [1, 16, 18, 19, 22]. All these
papers describe arbitrary chord representations embedded in probabilistic models, which are mostly
variants of Hidden Markov Models (HMMs). However, to the best of our knowledge, there is no
available quantitative comparative study of the effect of the choice of particular chord representations
to solve practical applications. Each chord representation carries specific information that could be
more adapted to certain tasks (or musical styles) than others. At the same time, all of these notations
encapsulate basic information about a chord, such as its root. What are the usual probabilistic
relations between these chord representations and the actual sequences of notes in polyphonic music?
This paper explores this issue by using melodic prediction [21] given chords as a benchmark task to
evaluate the quality of many chord representations. Likelihoods and conditional and unconditional
prediction error rates are used as complementary measures of the quality of each representations.

Previous papers describe probabilistic models to solve music related problems. Using graphical
models, Cemgil [6] introduces a somewhat complex probabilistic model that generates a mapping
from audio to a piano-roll using a simple model for representing note transitions based on Marko-
vian assumptions. This model takes as input audio data, without any form of preprocessing. While
being computationally costly, this approach has the advantage of being completely data-dependent.
However, strong Markovian assumptions are necessary in order to model the temporal dependencies
between notes. Hence, a proper chord transition model could be appended to such a transcription
model in order to improve polyphonic transcription performance. Raphael and Stoddard [18] use
graphical models for labeling MIDI data with traditional Western chord symbols. Lavrenko and Pick-

LA pitch-class is a note name, like C or D. In this paper, we consider enharmonics (e.g. Eb and D#) to be completely
equivalent.
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Figure 1: A simple probabilistic model where the influence of each chord is direct on melodic observa-
tions. Circles represent random variables and arrows represent conditional probability distributions.
When all chord variables in level 1 are observed, the dashed lines are irrelevant, thus making each
observation completely local in time. Variables in level 2 correspond to melodic observations.

ens [14] propose a generative model of polyphonic music that employs Markov random fields. While
being very general, this model would benefit from having access to more specific musical knowledge.
For instance, we go a step further in this paper by using abstract chord representations as a smooth-
ing technique towards better generalization. Begleiter et al. [2] provide an interesting comparison
of variable order Markov models used for polyphonic music prediction, but without any use of chord
information to overcome long term dependencies. Harmonization is the generation of a chord progres-
sion for a given melody. Allan and Williams [1] designed a harmonization model for Bach chorales
using HMMs. While generating excellent musical results, this model has to be provided polyphonic
music with specific 4 voice structure as input, restricting its applicability to very specific settings.
Our proposed models are more general in the sense that it is possible to extract the appropriate
chord representation from any polyphonic music, whatever the specific labeling, harmonic structure,
or musical style.

2 Melodic Prediction Models

In order to assess the effect of using particular chord representations for melodic prediction, we propose
two kinds of probabilistic models.

2.1 A Local Model

The first proposed strategy is to look at the direct effect of particular chord representations without
any influence from past observations. In the remainder of this paper, we refer to this model as the
local model, presented in Figure 1. Variables in level 1 are associated with chord observations. Their
particular form is described in Section 2.3. Such variables are observed during training and testing.
Thus, the dashed horizontal links are not relevant in this context, making each time-step independent
of the others. While these variables are discrete, their number of possible values depend on the
chosen chord representation, as described in Section 2.3. Variables in level 2 correspond to melodic
observations. In this paper, we assume octave invariance for the melodic observations. In other words,
all notes belonging to the same pitch-class are considered to be the same (e.g. all C notes regardless of
octave are associated to the same random variable value). In level 2, we assign one value to each pitch-
class, plus one extra value for silence, leading to a total of 13 possible melodic values. This melodic
representation does not account for note similarities. In the proposed models, the probability of the
melodic observations given appropriate other random variables is modeled by multinomials. Such a
distribution does not embed any notion of similarity between its possible outcomes. However, we chose
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| { { {
Figure 2: Variant of an IOHMM model. The variables in level 1 are observed and correspond to

chord observations. Variables in level 2 are hidden, while variables in level 3 correspond to melodic
observations.

this melodic representation for its simplicity and also to avoid introducing bias while measuring the
quality of the chord representations for melodic prediction. While this model is overly simplistic for
practical purposes, it has the advantage of isolating the direct effect of particular chord representations
on the choice of melodic notes. Since all the variables are observed, parameters for this model can be
easily computed over a training set by standard maximum likelihood techniques.

2.2 TOHMM Model

A more realistic model can be designed by adding extra hidden variables in the previous model to
consider influences from the past when trying to predict a melody note. The model presented in
Figure 2 is very similar to an input/output hidden Markov model (I0HMM) [4]. In our implementation,
all the variables in the model are discrete. Variables in level 1 are always observed and again correspond
to chord observations. Variables in level 2 are always hidden and are used to introduce dependencies
between time frames in the model. Variables in level 3 correspond to melodic observations and have 13
possible values as in the local model presented in Section 2.1. There is no link between level 1 and level
3 variables on Figure 2, contrary to standard IOHMMSs [4]. The number of possible values is highly
variable from one chord representation to another. Considering that, we chose to remove the usual
links between inputs and outputs in IOHMMSs in order to limit the impact of the particular choice
of a chord representation on the capacity of the model. This way, the number of possible values of
the chosen chord representation has an impact on the parameterization of the conditional distribution
of the hidden variables, but not on the conditional distributions of the predicted melodic variables.
Learning in the model is done with the standard EM algorithm [8]. Marginalization must be carried
out in the proposed model both for learning (during the expectation step of the EM algorithm) and
for evaluation. Exact marginalization with the standard Junction Tree Algorithm [13] is tractable in
IOHMMSs because of their limited complexity.

2.3 Chord Representations

The chord representations that we introduce in this section consider chord symbols as they are rep-
resented in musical analysis instead of actual instantiated chords. In other words, we observe chord
symbols such as they appear in music sheets [20] instead of observing the notes that would be played
by a musician reading these chord symbols. As we noted in Section 1, chords can be seen as a latent
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variable (local in time) that conditions the probabilities of choosing particular notes in other music
components, such as melodies or accompaniments. The chord symbol “C Maj7” is usually constructed
using the pitch classes C, E, G, and B. However, it really defines a conditional probability over all
pitch classes. For instance, the pitch class D would normally be much more likely over this particular
chord than the pitch-class Bb. Note that it is easy to infer valid chord symbols from the actual notes
in most datasets with deterministic methods, which is done by most of the MIDI sequencers today.
Hence, a model observing chord symbols instead of actual notes could still be used over traditional
MIDI data with minimal preprocessing effort.

Four chord representations have been used in the experiments described in Section 3. First,
what we call a Naive representation is to consider every chord (including the choice of the root) as
a distinct observation. This representation has the disadvantage of excluding any notion of chord
similarity. Moreover, this representation leads to a large number of states for the associated random
variables (e.g. 152 in the current experiments, corresponding to each different chord found in the
dataset described in Section 3). This can be harmful when learning over small datasets because of
the high number of parameters. Despite all these drawbacks, such a representation can be useful if
the notions of chord similarities are included in others parts of the models, such as in the conditional
probabilities between variables [15].

Another possible chord representation is to discard any information except the root, yielding
random variables with 12 possible values. While having a reasonable number of possible values, such
a representation introduces a lot of smoothing in the models. It is possible to automatically detect
the key and the mode (major or minor) of a song. Given that information, the root is very often
sufficient to predict the whole structure of the rest of the current chord. For instance, given a song in
C major and observing a root C, it is very likely that the complete chord associated to this root is a
variant of C major.

We can also restrict ourselves to a subset of all possible chords [3, 19] by mapping more complex
observed chord symbols to a subset of simpler ones. Such a representation is also used in the experi-
ments described in this paper. We define only whether a chord is minor, major or dominant, leading
to chord random variables with only 3 possible values. In this case, if we observe for instance the chord
C74#5b9, we map this chord to the value corresponding to a dominant (7) chord. In the remaining of
the paper, this representation is referred to as the mM7 (minor-Major-dominant 7th) representation.

Finally, we can combine the Root representation and the mM7 representation. This leads to discrete
random variables with 36 possible values (12 roots times 3 chord qualities).

3 Comparing Chord Representations

53 jazz standards melodies [20] were recorded by the first author in MIDI format. Corresponding chord
labels were also manually added to this corpus. The complexity of the chord sequences and melodies
found in the corpus is representative of the complexity of common jazz and pop music. The songs were
transposed to the key of C. This simplification has no impact on the generality of the experiments
since automatic key detection is relatively reliable. Every song was 16 bars long, with four beats per
bar, and with one chord change every two beats. The shortest notes in the dataset are half notes.
Hence, two melodic observations were made for each beat, yielding observed sequences of length 128.
Since chords span multiple melodic observations, their symbols were repeated multiple times (e.g. a
6 beat chord is represented as 12 distinct observations). This has no impact on the quality of the
model since chords are acting as latent variables. Hence, the fact that chords are repeated in input
sequences does not imply actual repetitions in the corresponding melodic signal.

3.1 Local Model

Out-of-sample classification errors for the local model described in Section 2.1 and for each of the chord
representations given in Section 2.3 are presented in Table 1. 5-fold cross-validation [10] has been used
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Table 1: Out-of-sample classification error and average negative log-likelihood for local models

’ Model \ % of Error | Neg. Log-Likelihood ‘
Naive 77.39 357.48
Roots + mM7 | 80.93 316.33
Roots 81.40 293.95
mM7 82.41 295.29
’ Freq 83.34 301.40

to calculate the prediction error rates. Let :r:f” and cfw- be respectively the melodic observation and

the chord observation in sequence n of the test set associated to the i-th fold of the cross-validation
process at time t. Assume also that the i-th fold in the cross-validation process contains N; test
sequences, that there is a total of I folds in the cross-validation process and that all the sequences
have length T'. The rate of error is given by

N

T
1 1 1
T2, 2 2 i (1)
i=1"""n=1" t=1
where _ ) . .
d 1 if (argmaxxexpnyi,t(x\cm, e 7cm)) F Ty, @)
st 0 otherwise

! ¢! .) being the probability

with X being the set of possible melodic observations and p, ; +(z|c;, ;5 - - -, ¢, ;

of observing melodic value z in sequence n of the test set associated to the i-th fold of the cross-
validation process at time t, estimated by the evaluated model. Note that we condition over all
previous chords in Equation (2), while a melodic prediction in the local model only depends on
the current chord observation. This notation will also be useful for evaluating the IOHMM models
presented in Section 2.2. In words, the out-of-sample error is just the average number of times the
algorithm makes a mistake when trying to predict melodic observations over songs unseen during
training. It should be pointed out that this criterion is really the one we want to minimize when
developing models for practical applications. In such a context, the system must make a decision at
each time step. As an example, a melodic model could be appended to a transcription algorithm. In
such a context, the model would have to guess what is the most likely next note, given the previous
notes and the audio measurements.

On each iteration of cross-validation, one fold of the dataset is not used for training. This subset
of the dataset (referred to as the test set in machine learning literature) can be used to evaluate the
model. Hence, it is always possible to observe a chord symbol during evaluation (or testing) that has
not been observed previously when training the model. Dirichlet priors [11] have been used on all
the chord variables in the algorithms described in this paper in order to avoid propagating infinite
negative log-probabilities in the models in this case.

Parameters are tied over time in the Local model presented in Figure 1. In other words, the
arrows between level 1 and level 2 always correspond to the same probability table in one fold of the
cross-validation. As a benchmark, we also introduce the Freq model in Table 1, which is simply an
algorithm that always selects the most frequent melodic observation in the training set. It corresponds
to removing level 1 random variables in Figure 1, just leaving independent observations.

The capacity is the complexity of a function chosen from a parameterized family of functions. For
good generalization, we normally want to find in this family the function with the minimal capacity
that is able to model the training set. With the Local model, it is impossible to optimize capacity
because no parameter is available which relates to the number of degrees of freedom in the model.
Thus in the Local model, the only way to increase capacity is to use a chord representation with more
possible values. Looking at the obtained results, we see that the rate of error increases when using
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Table 2: Out-of-sample classification error and average negative log-likelihood for TOHMM models

’ Model \ % of Error | Neg. Log-Likelihood ‘
Naive 79.05 281.84
Roots 82.09 223.67
Roots + mM7 | 83.17 247.48
mM?7 84.71 212.47
| HMM | 86.56 196.27

chord representations with fewer possible values. It is then possible that all these models somehow
underfit, making the Naive representation (with 152 possible chord values in the current experiments)
the best choice in this context. Not surprisingly, the Freq model, which always chooses the most
frequent melodic observation, is the worst model in terms of classification error rate. Generalization
capabilities of a model can benefit from the smoothing produced by a simplified chord representation,
since this simplification is done by clustering perceptual properties of chords (e.g. all chords with the
same root are clustered together in the Root representation). This is obviously not the case when
using the Freq model.

Table 1 also shows the average negative out-of-sample log-likelihoods obtained with the same
models again using cross-validation. Using the same notation as in Equation (1) and (2), this measure
is given by

3

T
Hpmt n,i|cwlL,i""?C£L,i)) (3)

1t=1

1]
~7 2 los(

n

which is equal to

og (Prit (@l i ) (4)

I\M'ﬂ

1L N

122
This performance measure is the one that was optimized over the training set when learning the
parameters of the models with the EM algorithm.

As can be observed, the negative log-likelihood results are not coherent with the classification error.
For instance, the Freq model has a lower negative log-likelihood than the Roots + mM7 and Naive
models! This result is counterintuitive since one would expect that adding current chord information
would help the model to guess what would be the current melody note.

These discrepancies between classification error rate and negative log-likelihood could be explained
by the fact that the terms of the sum on the right hand side of Equation (3) are not bounded negatively.
Suppose that a model fits most of the data quite well but some of the out-of-sample examples have
very low probabilities. Then, the terms associated to these examples in Equation (3) can take very
large negative values that could dominate the average negative log-likelihood for all the examples. On
the other hand, the cost of encountering a very unlikely out-of-sample sequence (with respect to the
model being evaluated) in Equation (1) is only proportional to ﬁ, with N being the total number
of examples in the dataset. This observation raises the following somewhat controversial question: Is
the likelihood of the model over the observed data the best criterion to optimize when what we really
want to do is to minimize the error of classification? We further discuss this question in Section 4.

3.2 IOHMM Model

Table 2 shows out-of-sample classification error and average negative log-likelihood for the IOHMM
model (Section 2.2) These results are qualitatively similar to those in Table 1 for the Local model.
This time, the number of possible values for hidden variables in level 2 of Figure 2 was optimized
using 5-fold double cross-validation, which is a recursive application of cross-validation where both
the optimization of the parameters of the model and the evaluation of the generalization performance
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of the model are carried out simultaneously. Standard cross-validation was then applied to each subset
of 4 folds with each hyper-parameter setting and tested with the best set of parameters (on average)
on the remaining hold-out fold.

The same parameters are used over time to define the conditional probability distributions. For
instance, all the vertical arrows between variables in level 1 and level 2 in Figure 2 represent the
same probability table. The fact that it was possible in this context to optimize the capacity of the
models by adjusting the number of states for the hidden variables makes the results in Table 2 more
trustworthy than the ones found in Table 1, although they are similar. It should be pointed out that
the capacity of the models was optimized with respect to the appropriate error measure. For instance,
when reporting results about prediction error rates, capacity is optimized with respect to prediction
error rate (while the models are trained by maximizing the likelihood with the EM algorithm).

The HMM model referred to in Table 2 is similar to the I0HMM model but removing the chord inputs
layer. It can be represented by the model in Figure 1 with the horizontal dashed arrows being present.
In this case, variables in level 1 are hidden and variables in level 2 are still melodic observations. As
expected, the HMM model produces higher out-of-sample classification error than the IOHMM models,
which can take advantage of the chord symbols given as inputs. Interestingly, the Naive representation
for chords seems to be consistently efficient for melodic prediction. In Table 2, the Naive representation
gives statistically significantly better results than the Roots representation with a confidence level of
99%?2. This is an indication that developing probabilistic models with this representation could be a
viable approach, especially if perceived relations between chords are included in the models via the
conditional probabilities related to these chords [15]. The representation including only the roots also
performs well. Given these results, this representation appears to be a good compromise given its
relative simplicity and the fact that it inherently embodies perceptually relevant smoothing. Using
basic chord information (mM7 representation) does not seem to help with respect to unconditional
classification error.

Again, average negative log-likelihoods contradict average classification error rates. Even worse, the
HMM model performs much better than the IOHMM models in terms of likelihood! This is an indication
that such a measure favors models that are more uniform in essence, thus giving a relatively high
probability to unseen sequences. However, such models are weaker when asked to make a decision,
meaning that they define distributions with modes less precisely adapted to the training data.

3.3 Conditional Classification Error

The goal of the models presented here is to predict the melodies in the dataset. It is out of the
scope of this work to evaluate the subjective artistic quality of the predicted melodies. A more
interesting measure of melodic prediction is the out-of-sample conditional classification error, given
by Equation (1), but using instead

Q.= { 1 if (argr?axrexpn%t(ﬂc}m, cel, cfm», I,}L’Z—, .. ,x:;ll)) + xf” (5)

o 0 otherwise

This measure is very similar to the unconditional error described in Section 3.2. However, the models
have access to the true previous melodic observations when trying to guess the next one.

The only objective performance measure we can provide about a melodic prediction given a chord
progression is to tell if a predicted melody is similar or not to the one provided in the dataset with
the same chord progression. However, while the space of plausible melodies is huge, we only have
access to a very small number of sequences to measure the performance of the models given a chord
progression. Moreover, given a particular sequence of chords, one can imagine that a very high number

of melodies would be considered more or less musically similar to the ones in the dataset. Among all
these melodies, some of them may not share a single note with the true melody associated with this

2We used a standard proportion test, assuming a binomial distribution for the errors and using a normal approxi-
mation.
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Table 3: Out-of-sample conditional classification error rates for I0HMM models

| Model | % of Error |
Roots 57.41
Roots + mM7 | 58.21
mM7 58.32
Naive 69.77
] HMM \ 85.27

sequence of chords in the test set. A good melodic prediction model would be likely to generate any
one of these melodies, thus producing a very high unconditional error rate.

The conditional error rate alleviates this problem by measuring the prediction performance of a
model in regions of the observation space where data is present, leading to a much more reliable
performance measure in this context. Moreover, distributions that would generalize well according to
such a measure could also be sampled to generate realistic melodies given chord progressions and initial
melodic motives. The Junction Tree Algorithm for marginalization [13] allows us to fix the state of
some variables in the graphical model while finding the most probable states for other variables. Out-
of-sample conditional classification error rates for the IOHMM models presented in Section 2.2 are shown
in Table 3. We do not provide conditional classification error rates for the Local model described in
Section 2.1, because they would be identical to the unconditional classification error rates shown in
Table 1. When making a prediction, such models are completely unaware of previous observations in
time. Also, we do not provide average negative log-likelihoods, since this measure is not well adapted
to prediction tasks, as we noted in Section 3.

Again, the HMM model produces higher out-of-sample conditional classification error rate than the
T0HMM models which benefit from chord symbols given as inputs. In Table 3, the conditional error rates
are much lower than the unconditional ones for the same models. For each chord representation, the
prediction accuracy gained when observing previous melodic notes is much higher than the differences
in error rates for each chord representations obtained in Table 2. This means that observing previous
melodic notes gives more information about the likely choices for the current melody than any chord
information.

In Table 2, the Naive representation was the best one in terms of unconditional prediction error
rate. On the other hand, this representation has the highest conditional prediction error rate among all
the IOHMMs. When knowing nothing about the previous melodic observations, the model performs
better when provided with a more detailed chord representation. However, given previous melodic
observations, smoothed chord representations lead to better generalization in terms of prediction
error rate. The Naive representation overfits the training data because it leads to models with higher
capacity. Finally, no representation is statistically significantly better than another with a confidence
level of 90% among the three best representations in Table 3.

4 Conclusions

The main motivation behind this paper was to better understand the statistical relations between
chord representations and the actual choice of notes in polyphonic music. To this end, we compared
four chord representations using melodic prediction as a benchmark task. Surprisingly, the Naive rep-
resentation where each chord is conceived as a discrete observation apparently performs well in terms
of unconditional prediction error rates. Nevertheless, this representation overfits when past melodic
observations are used to condition the predictions. In this case, smoothed chord representations seems
more appropriate. Given the obtained results, representing chords only by their roots seems to be
a good compromise, especially when all the songs to be analyzed are transposed to the same key.
While being extremely simple, this representation inherently includes smoothing related to perceptual



10 IDIAP-RR 08-50

relations between notes. The Root+mM7 representation that is used in some important music informa-
tion retrieval papers [3, 18] is not optimal in terms of out-of-sample classification error and average
negative log-likelihood for both probabilistic models presented in this paper. However, in practice,
the actual choice of a chord representation should always be made considering the application to be
developed.

An interesting observation when looking at the results of the experiments done in Section 3 is
that the behavior of the average out-of-sample likelihood does not follow the trends of the average
prediction error rate (conditional or unconditional). On the one hand, the likelihood is a measure
of the fit of a whole distribution to a dataset. However, the classification error seems to be a better
descriptor of the fit of the modes of a distribution. Provided a nearly infinite amount of data, these
two measures would lead to the same ranking of the models. Thus, likelihood and prediction error
would probably be more comparable when measured with models trained and evaluated with much
more data. How much data is needed in this particular framework to obtain such a behavior is still an
open question that needs to be addressed. However, given realistic datasets, optimizing the likelihood
of a model with respect to training data may not be the best strategy when one is only interested in
the modes of the distribution, which can be the case when doing prediction. An alternative learning
strategy would be to maximize the sum of the differences between the probabilities of the observed
classes and the probabilities of the most probable wrong classes instead of just maximizing the sum of
the log probabilities of the observed classes. This approach is referred to as the minimum classification
error (MCE) algorithm [12].

Further development of the models proposed in this paper are possible. First, it would be in-
teresting to append these models to existing music information retrieval algorithms to increase their
performance. As a comparison, language models are regularly used in speech recognition algorithms
to constrain their search space to reasonable solutions [17].
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