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soumis à publication

Résumé. We investigate the use of the log-likelihood of the features obtained from a genera-

tive Gaussian mixture model, and the posterior probability of phonemes from a discriminative

multilayered perceptron in multi-stream combination for recognition of phonemes. Multi-stream

combination techniques, namely early integration and late integration are used to combine the

evidence from these models. By using multi-stream combination, we obtain a phoneme recogni-

tion accuracy of 74% on the standard TIMIT database, an absolute improvement of 2.5% over

the single best stream.
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1 Introduction

Phoneme recognition refers to identifying the underlying sequence of phonemes in a speech utte-
rance without the use of any higher level knowledge such as a word language model or a pronunciation
dictionary. Phoneme recognition has recently received renewed attention as it is useful in applications
such as spoken term detection, language identification, out-of-vocabulary detection etc.

The state-of-the-art approaches to phoneme recognition includes the generative hidden Markov
model (HMM) - Gaussian mixture modeling (GMM) of phonemes [1] with additional discriminative
training [2]. Other discriminative models such as recurrent neural networks [3], large margin classifiers
[4] or multilayered perceptrons (MLP) [5] have given higher phoneme recognition accuracies. In this
work, we investigate if the estimates of the posterior probability of phonemes or the likelihood of the
features given the phoneme model obtained from a generative model and a discriminative model can
be combined effectively to improve the phoneme recognition accuracy.

Two contrasting approaches are investigated to model the acoustic features in an HMM state
- A GMM which is a generative model and an MLP artificial neural network (ANN) which is a
discriminative model. Due to the inherent difference in modeling and the training criteria, we expect
the estimates from these models as ideal candidates for multi-stream combination.

2 Motivation

In this section, we explain the motivation for our work by briefly describing the HMM-GMM and
HMM-ANN systems.

2.1 HMM-GMM Modeling

In the conventional generative HMM-GMM approach to speech recognition, a phoneme is modeled
using a context independent or context dependent hidden Markov model with certain number of states.
The acoustic observation in an HMM state is modeled using a GMM [1]. The model parameters are
trained to maximize the total likelihood of the training data.

The likelihood of the data in an HMM state, which is used in Viterbi decoding, is computed using
the GMM. However, the posterior probability of a phonemic state can still be computed using Bayes’
rule. Suppose xt is the acoustic feature at time t, the posterior probability of the state st = j in
phoneme qt = i is given by

Pg(qt = i, st = j|xt) =
pg(xt|qt = i, st = j)P (qt = i, st = j)

pg(xt)
, (1)

where, the likelihood pg(xt|qt = i, st = j) is estimated using the GMM, and the prior probability
P (qt = i, st = j) is estimated by normalizing the state occupancy counts obtained by force-aligning
the training data to its true labels. The unconditional likelihood pg(xt) is computed indirectly using

pg(xt) =
∑

i,j

pg(xt|qt = i, st = j)P (qt = i, st = j). (2)

2.2 HMM-ANN Modeling

In the discriminative HMM-ANN hybrid approach [6], a multilayered perceptron estimates the
posterior probability of a phonemic state directly [7]. The scaled likelihood of the feature xt in an
HMM state st = j of phoneme qt = i, which is used in Viterbi decoding is derived using Bayes’ rule
as

pm(xt|qt = i, st = j)

pm(xt)
=

Pm(qt = i, st = j|xt)

P (qt = i, st = j)
. (3)
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Here, the posterior probability Pm(qt = i, st = j|xt) is given by the MLP, and the prior probabilities
are same as in (1). Scaled likelihood is used in decoding instead of absolute likelihood because pm(xt)
in (3) cannot be computed in this approach. However, this does not affect the Viterbi decoding as
pm(xt) it is independent of the HMM state.

The generative model fits the training data so that the likelihood of the data given the model is
maximized. On the contrary, in discriminative modeling, decision boundaries are trained to minimize
the classification error. Due to the inherent differences in the modeling as well as the training criteria,
we expect the posterior probabilities derived from these models to be different and hence appropriate
for multi-stream combination. To this end, we investigate (a) the use of posterior probabilities of pho-
nemes and the log-likelihoods of the data from the GMM model as features for hierarchical estimation
of phoneme posterior probabilities using an MLP (b) multi-stream combination techniques such as
early integration and late integration for combining evidence from the GMM and MLP models.

3 Basic phoneme recognizer

In this section, we describe the database, feature extraction and the basic systems using HMM-
GMM and HMM-ANN modeling. Experiments were performed on TIMIT database, excluding the
‘sa’ dialect sentences. The training set consists of 3000 utterances from 375 speakers, cross-validation
set consists of 696 utterances from 87 speakers and the test set consists of 1344 utterances from 168
speakers. The database, which is hand-labeled using 61 labels is mapped to the standard set of 39
phonemes as explained in [1], except in the way the closures are handled [8].

The speech signal is processed in blocks of 25 ms with a shift of 10 ms to extract 13 perceptual
linear prediction cepstral coefficients for every frame. These coefficients, after speaker specific cepstral
mean/variance normalization, are appended to their delta and delta-delta derivatives to obtain a 39
dimensional feature vector for every 10 ms of speech.

In the HMM-GMM system, each phoneme is modeled using a three state left-right context-
independent HMM. The acoustic features in an HMM state are modeled using a 32 mixture Gaussian
mixture model. The model parameters (transition matrices and GMM parameters) are trained using
Baum-Welch algorithm followed by embedded re-estimation. In cases where single state model is to
be used for analysis, we derive the emission likelihood from the three state model using Bayes’ rule as

pg(xt|qt = i) =

∑
3

j=1
pg(xt|qt = i, st = j)P (qt = i, st = j)

P (qt = i)
, (4)

rather than by explicit single state training. Here, the prior probabilities P (qt = i, st = j) and P (qt = i)
are estimated from the training data. The information in the transition matrix of the HMMs are not
used in the hierarchical estimation.

In HMM-ANN hybrid model, we use a multilayered perceptron to estimate the posterior probability
of a phonemic state. Features are presented to the neural network with a temporal context of 90 ms.
The network is trained using the standard back propagation algorithm with softmax output non-
linearity and cross entropy error criteria. The learning rate and stopping criterion are controlled by
the frame classification accuracy on the cross validation data. The MLP trained on PLP features
consists of 351 input nodes, 1000 hidden nodes, and 39 or 117 output nodes depending on whether a
single state or three state model is used for the phoneme.

While decoding, all phonemes are considered to be equally probable (i.e. no language model). The
performance of phoneme recognition is measured in terms of phoneme accuracy (100 - phoneme error
rate). The optimal phoneme insertion penalty is chosen to give maximum phoneme accuracy on the
cross-validation data.
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Fig. 1 – GMM posterior probabilities as features for phoneme posterior estimation using an MLP.

4 GMM log-likelihoods as features

In the HMM-ANN hybrid approach to acoustic modeling [6], the MLP is trained using spectral
based features such as Mel frequency cepstral coefficients, or perceptual linear predictive coefficients.
In this paper, we explore the use of (a) posterior probability of phonemes given these spectral based
features, and (b) log-likelihood of the features given the phoneme model, which are obtained from
a GMM as features to train the MLP. The block schematic of this hierarchical phoneme posterior
probability estimation is shown in Fig. 1.

In the case of the MLP trained on spectral based features, the input to the network is taken with a
temporal context of 90 ms. In our case, we present a longer context of 210 ms. The MLP is expected to
learn the information in the trajectories of the estimates (posterior probabilities or likelihoods) from
the GMM model across different phonemes.

Table 1 shows the phoneme recognition accuracies for the baseline HMM-GMM system as well
as the proposed hierarchical setup. Results are shown for three state as well as single state modeling
of a phoneme in the GMM stage of the hierarchy. In both these cases, the MLP models a phoneme
as a whole. It can be seen that by using by GMM log-likelihoods as features, we obtain about 7-8%
absolute improvement over the baseline HMM-GMM system. It can also be seen that the likelihoods
are more effective as features to the neural network as compared to the posterior probabilities. This
is due the large dynamic range of the GMM likelihoods, resulting in high posterior probability for
phonemes even in the case of a misclassification.

Tab. 1 – Phoneme recognition accuracy using GMM posteriors and likelihoods as features compared
to direct HMM-GMM decoding.

classifier 3-state 1-state

HMM-GMM 64.1 62.1
hierarchy, GMM posteriors 68.4 67.1

hierarchy, GMM log-likelihoods 71.0 70.3

Table 2 shows the phoneme recognition accuracy with the standard hybrid setup where the MLP
is trained using PLP features with a temporal context of 90 ms. In the case of single state modeling,
by using GMM log-likelihoods as features, we obtain 2% improvement over the baseline HMM-ANN
system. We also compare these results to hierarchical estimation method proposed in [8] [9], with
a setup similar to Fig. 1, except that the GMM is replaced by another MLP, which estimates the
posterior probabilities of phonemes given the PLP features. A detailed analysis on the improvement
in performance using an hierarchy of two MLPs has been earlier performed in [8]. As seen from the
results, the hierarchical posterior estimation using MLP posteriors outperform GMM likelihoods as
features. However, the proposed method can be useful in combination with the posterior probabilities
derived from the MLP.

The proposed setup can be considered as the converse of the Tandem system [10], where the
posterior probability of phonemes derived from an MLP are modified (logarithm followed by principal
component analysis) and used as features in the standard HMM-GMM system. In an attempt to
understand the Tandem system, experiments were designed in [11] where, posterior probability of
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Tab. 2 – Phoneme recognition accuracy using MLP posteriors as features compared to direct HMM-
ANN decoding.

classifier 3-state 1-state

HMM-ANN 71.6 68.1
hierarchy, MLP posteriors 73.4 71.5

phonemes from the MLP were replaced by those derived using a GMM. One of the conclusions in this
work was that the effectiveness of the Tandem system features comes from the better estimates of the
posterior probabilities using the MLP. Experimental results in this paper also suggest that an MLP
gives a better estimate of the phoneme posterior probabilities as compared to a GMM. However, the
log-likelihoods from a GMM, when taken with a temporal context of around 200 ms are effective as
features to an MLP.

5 Multi-stream Combination

The posterior probability of phonemes obtained from an MLP trained on PLP features forms
one stream of information and the likelihoods of the features given phonemes, and derived using a
GMM forms another stream of information. The two streams can be combined using early and late
integration multi-stream combination techniques.

Multi-stream combination is useful when the individual streams bear complimentary information.
To get some idea on how much the two streams of information differ, we compare the frame level
agreement between these streams and the ground truth. Phonemes are identified at every frame by
maximum a posteriori classification using the posterior probabilities from the GMM and MLP models.
The recognized phonemes are compared to the ground truth labels and their agreement/disagreements
are computed.

Tab. 3 – Frame level agreement/disagreement (in percentage) between the posterior probabilities esti-
mated from GMM and MLP models.

gmm correct gmm wrong

mlp correct 47.5 22.1
mlp wrong 6.7 23.7

Table 3 shows the percentage of times the posteriors from GMM and MLP agree/disagree in the
TIMIT test set. As seen in the table, using oracle analysis [12] (cheating experiment), we can obtain
a maximum frame accuracy improvement of 6.7% compared to the best stream. In an attempt to
exploit this towards improving the phoneme recognition accuracy, we explore the following multi-
stream combinations.

5.1 Early integration

In early integration, the streams of information (GMM likelihoods and MLP posteriors in our case)
are simply concatenated and presented to the classifier (another MLP in our case) as shown in Fig.
2. The MLP is trained to learn the relation in the two streams taking a context of 210 ms.

In the case of single state modeling, by using early integration, we get a higher recognition accuracy
of 72.5% as compared to 70.3% obtained using only GMM log-likelihoods and 71.5% obtained by
using only MLP posterior as features. By using GMM posteriors instead of likelihoods, we obtain
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Fig. 2 – Block diagram of early integration scheme for combining evidence from GMM and MLP
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Fig. 3 – Late integration scheme for combining hierarchical phoneme posterior probabilities derived
from GMM likelihoods and MLP posteriors

a recognition accuracy of only 71.9%, which further supports our earlier observation that GMM
likelihoods are indeed better features than posteriors for hierarchical posterior estimation. Henceforth,
we only use the GMM likelihoods as features.

In Fig. 2, due to feature concatenation, there is an increase in the number of input nodes of the
MLP compared to the MLP in Fig. 1. Hence, the number of hidden nodes in the MLP classifier in
early integration is appropriately modified so that the model parameters are same as in both the
cases. This ensures that any improvement in the performance is indeed due to the combination of the
features and not due to the increase in the MLP model capacity. In our experiments, we consider a
context of 21 frames corresponding to 210 ms. Hence, for single state modeling, the number of input
nodes in the MLP in early integration scheme is 1638 (39.21+39.21). The neural network has 2050
hidden nodes and 39 output nodes corresponding to the number of phonemes. The neural network
that takes either of the two streams has 819 (39.21) input nodes, 4000 hidden nodes and 39 output
nodes.

5.2 Late integration

In the late integration multi-stream scheme, individual streams are presented to separate classifiers
and the classifier outputs are appropriately combined. As shown in Fig. 3, GMM log-likelihoods are
presented to a MLP classifier to obtain a stream of phoneme posterior probabilities. Similarly, MLP
posterior probabilities (conditioned on spectral features) are presented to another MLP classifier
to derive another stream of phoneme posterior probabilities. As in the early integration scheme,
the input to these MLPs are taken with a context of 210 ms. The output of the two classifiers,
which are probabilities are combined using various multi-stream combination techniques such as sum,
product [13] [14], inverse entropy [15], and Dempster Shafer [16] combination.

Table. 4 shows the phoneme recognition accuracies for different multi-stream combinations. As
seen from the results, for both single state as well as three state (i.e. input to the MLP classifiers are
three state posteriors/likelihoods) modeling of a phoneme, multi-stream combination gives significant
improvement over the single best stream. The improvement in recognition is seen in all the multi-
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Tab. 4 – Phoneme recognition accuracy using late integration scheme for multi-stream combination.
Results shown for sum, product, inverse entropy (IE) and Dempster Shafer (DS) combination as well
as individual GMM and MLP streams

gmm mlp sum prod I.E. D.S

1-state 70.3 71.5 73.6 74.0 73.5 73.7
3-state 71.0 73.4 74.2 74.6 74.4 74.6

stream combinations with product combination giving the best performance. Results also show that
posterior probability of phonemes from MLP forms the single most reliable stream.

5.3 Oracle analysis

We also perform frame level agreement/disagreement analysis between the two individual streams
used in late integration combination by comparing them to the ground truth phoneme labels. The
results are tabulated in Table 5.

Tab. 5 – Frame level agreement/disagreement (in percentage) between the posterior probabilities esti-
mated using GMM log-likelihoods and MLP posteriors as features.

gmm correct gmm wrong

mlp correct 64.1 9.2
mlp wrong 8.3 18.4

To estimate the best recognition accuracy using late integration, we perform oracle analysis [12],
where we pick the stream with the maximum posterior probability for the ground truth phoneme. Using
oracle analysis, we observe a recognition accuracy of 80.50%, which is the best phoneme recognition
accuracy that can be achieved using late integration multi-stream combination. The remaining error
is attributed to the case where both the GMM and MLP agree and are wrong.

In this work, we have not used any phoneme language model. For comparison with other works, we
use a bigram phoneme language model on hierarchically estimated posteriors and obtain an accuracy
of 75.0 %. Furthermore, by considering silence class while evaluation, as done in some of the prior
works, we obtain an recognition accuracy close to 76.0%.

6 Conclusions

We show that log-likelihood of the typical spectral based features modeled by a GMM can be used
as a feature to estimate the posterior probability of phonemes using a neural network. Multi-stream
combination using GMM log-likelihoods as one feature stream and posterior probability of phonemes
from an MLP as another gives significant improvement in the phoneme recognition accuracies com-
pared to the single best stream.
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