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Abstract. We propose a new auditory inspired feature extraction technique for automatic speech
recognition (ASR). Features are extracted by filtering the temporal trajectory of spectral energies
in each critical band of speech by a bank of finite impulse response (FIR) filters. Impulse responses
of these filters are derived from a modified Gabor envelope in order to emulate asymmetries of the
temporal receptive field (TRF) profiles observed in higher level auditory neurons. We obtain 11.4%
relative improvement in word error rate on OGI-Digits database and, 3.2% relative improvement
in phoneme error rate on TIMIT database over the MRASTA technique.
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1 Introduction

MRASTA ([2]) technique extracts features by filtering the temporal trajectory of each critical band
energy of speech by a bank of finite impulse response (FIR) filters. Thus each feature represents the
convolution of the corresponding input critical band trajectory with the impulse response of a filter.
the impulse response of each FIR filter is symmetric (even or odd) around the center as shown in the
figure 1. The impulse responses in MRASTA feature extraction attempt to emulate variable lengths
of the temporal envelopes of spectro-temporal receptive fields (STRFs) of auditory neurons at various
frequencies [4, 7, 8].
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Figure 1: Normalized impulse responses of the MRASTA filters, σ = 8 − 130 ms.

In this paper, we propose modifications to these impulse responses, motivated by the asymmetries
of the temporal envelopes of STRFs of the higher level auditory neurons, as shown in the figure 2.
The rest of the paper is organized as follows. The motivation for this work is presented in the section
2. In section 3, we give an overview of the MRASTA feature extraction technique and describe our
proposed technique to emulate asymmetries of the TRF profiles. Then we discuss experimental results
in section 4. Finally we conclude in section 5.

2 Motivation

The peripheral auditory system encodes the acoustic waveform into a neural code in the auditory
nerve. This neural code is then interpreted by the central auditory pathways to identify various
sounds. Neurons in central auditory stations are sensitive to dynamic variations in the temporal,
spectral and intensity composition of the sensory stimulus.

MRASTA approach is motivated to some extent by the recent findings ([4] and [5]) in brain
physiology of some mammal species, where spectro-temporal receptive fields (STRFs) are used to
characterize some of the higher level auditory neurons. STRF, a linear model, describes the spectro-
temporal features of the stimulus (speech) that most likely activate the neuron. Efforts were made in
the past to emulate these STRFs using multiple 2-D Gabor filters [8]. However, as in MRASTA, their
method did not emulate asymmetry in time which is of interest to this paper.

We hypothesize that higher level auditory neurons might encode information about acoustic objects
such as sounds of speech in the form of neural firing rate. Furthermore, it is possible to predict
the neural firing rate of a neuron due to an arbitrary stimulus (speech) by convolving (2-D) the



IDIAP–RR 08-25 3

−500 0 500
−1

−0.5

0

0.5

1
impulse response

am
pl

itu
de

−500 0 500
−1

−0.5

0

0.5

1

time (ms)

Figure 2: Normalized impulse responses of the asymmetric filters, m = −140.

corresponding STRF with the input spectrogram of speech as given by the equation 1 ([7]).

rpre (t) =

nf
∑

i=1

∫

hi (τ) Si (t − τ) dτ (1)

where rpre (t) – predicted firing rate,
nf – number of critical bands,
h{i} (t) – STRF,

hi (t) – temporal receptive field of ith frequency channel (critical band),
Si (t) – ith critical band trajectory of speech.

One can think of this 2-D convolution as several 1-D convolutions at various critical band trajec-
tories of speech and temporal receptive field (TRF) profiles of the STRF, and subsequent summation
of all such convolutions. The TRF profile is obtained by slicing through the STRF at a particular
frequency. Additionally, we note that these profiles (hi (t)) are not symmetric ([6]) for higher level
auditory neurons. In fact, [6] uses a modified Gabor envelope to model these asymmetries in time.
However, MRASTA feature extraction technique fails to emulate these asymmetries as each of its
filter has a symmetric impulse response. This observation motivates us to study the effect of using
asymmetric filters in MRASTA feature extraction technique.

3 Feature Extraction

3.1 MRASTA overview

Detailed description of this technique can be found in [2]. In this section, we describe only the FIR
filter bank.

Energy in each critical band is extracted from 25 ms windowed speech for every 10 ms as described
in [1]. Features are extracted for each frame (10ms) by filtering each of the 15 temporal trajectories
of critical band spectral energies (OGI-Digits database) by a bank of 16 FIR filters (shown in the
figure 1). Thus the total number of features per frame are 15 × 16 = 240. Typically, three
tap FIR filter with impulse response {−1, 0, 1} is used for computing the first frequency derivatives
(16 × 13 = 208 features). Dimensionality is further increased by appending these frequency
derivatives to the features described above (240 + 208 = 448 features). The schematic of this feature
extraction technique is shown in the figure 3.
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Figure 3: Schematic of the feature extraction.
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Figure 4: Impulse, magnitude and phase responses of MRASTA filters (σ = 40 ms), left column: first
Gaussian derivative, right column: second Gaussian derivative.

In MRASTA, impulse response of each filter in the FIR filter bank is a discrete version of either
first or second analytic derivative of the Gaussian function and is given by equation 2 or 3.

g1 [x] ∝ −
x

σ2
exp

(

−
x2

2σ2

)

(2)

g2 [x] ∝

(

x2

σ4
−

1

σ2

)

exp

(

−
x2

2σ2

)

(3)

where x is time, x ∈ (−500, 500) ms with the step of 10 ms; standard deviation σ determines the
effective width of the Gaussian. Filters with low σ values have finer temporal resolution whereas high
σ filters cover wider temporal context and yield smoother trajectories. The impulse response of each
filter is shown in the figure 1 (total eight different σ values are used). Length of all filters is fixed at
101 frames, corresponding to 1010 ms.

Figure 4 shows the impulse, magnitude and phase responses of few MRASTA filters for σ = 40 ms.
Note that each filter has a zero-phase phase response in the passband as the corresponding impulse
response is symmetric (even or odd) around the center. Since interval between the frames is 10 ms, the
highest frequency (modulation) component is 50 Hz as shown in the figure 4. Therefore one can view
this MRASTA technique as performing multiple filtering in modulation spectral domain of speech.
Modulation spectral domain is the Fourier domain of the temporal trajectory of a critical band energy.
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Figure 5: Modified Gabor envelope for m = −72, 0 and 128, a = 600/π, b = 0.09 and c = 55.

3.2 Asymmetric filters (proposed technique)

To fit the observed temporal asymmetry of the TRF profile, [6] uses a modified Gabor function. Their
idea is to first skew the time axis and then to fit a symmetric Gabor function. Generalized version of
their Gabor envelope is given by the equation 4.

g (x) = exp

(

−

(

a tan−1(bx) − m
)2

2c2

)

(4)

xpeak =
tan

(

m
a

)

b
, when |m| <

∣

∣

∣

aπ

2

∣

∣

∣
(5)

The envelope (equation 4) shows asymmetry about its peak point for non zero values of m and the
degree of asymmetry increases with absolute value of m as shown in the figure 5. The value of x for
which envelope reaches its peak is given by the equation 5. Note from the equation 4 that g (x) is an
even function of x when m = 0. The first and second derivatives of the above envelope are given by
the equations 6 and 7 respectively.

g
′

(x) = −

a b exp

(

−
(a tan−1(bx)−m)

2

2c2

)

(

a tan−1(bx) − m
)

c2 (1 + b2x2)
(6)

g
′′

(x) =

2 a b3 exp

(

−
(a tan−1(bx)−m)

2

2c2

)

(

a tan−1(bx) − m
)

x

c2 (1 + b2x2)
2 +

a2 b2 exp

(

−
(a tan−1(bx)−m)

2

2c2

)

(

a tan−1(bx) − m
)2

c4 (1 + b2x2)
2 −

a2 b2 exp

(

−
(a tan−1(bx)−m)

2

2c2

)

c2 (1 + b2x2)
2 (7)

The impulse responses of the asymmetric filters are derived from these derivatives as per the
equations 8 and 9.

g1′ [x] = g
′

( x

10
+ xpeak

)

(8)

g2′ [x] = g
′′

( x

10
+ xpeak

)

(9)
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Figure 6: Impulse, magnitude and phase responses of asymmetric filters (a = 600/π, (b, c) = (0.09, 55)
and m = −140), left column: first derivative (equation 8), right column: second derivative (equation
9).

where x is time, x ∈ (−500, 500) ms with the step of 10 ms; xpeak is given by the equation 5.
Furthermore, these impulse responses are symmetric for m = 0. We choose a set of parameters (not
unique) a = 600/π and (b, c)={(0.09, 13), (0.09, 20), (0.09, 29), (0.09, 38), (0.09, 55), (0.09, 70), (0.08,
80), (0.07, 90)} such that for each combination, the variance of the envelope g (x) (equation 4) with
m = 0 matches that of the underlying Gaussian function (i.e., σ2) of MRASTA. Parameter m can
be used to control the degree of asymmetry after fixing these remaining parameters. Figure 2 shows
asymmetric impulse responses for the above choice of parameters and m = −140. Magnitude and
phase responses of some of these asymmetric filters are shown in the figure 6. Note that zero mean
property of the impulse response is preserved1 but we no longer have the zero-phase response as the
impulse response is asymmetric around the center.

Features are extracted from speech by using these asymmetric filters for different values of m.
The section below describes the ASR experiments conducted on different databases and lists the
performances of the proposed approach and the baseline MRASTA technique.

4 Experiments

Initial set of experiments consists of small vocabulary continuous digit recognition (OGI Digits database).
Recognized words are eleven (0 − 9 and zero) digits in 28 pronunciation variants. Features are ex-
tracted from speech every 10 ms as described in section 3. Multi-layer perceptron feed forward neural
net (MLP) with 1800 hidden nodes is trained on the whole Stories database plus training part of
Numbers95 database to estimate posterior probabilities of 29 English phonemes. Around 10% of the
data is used for cross-validation. Log and Karhunen Loeve (KL) transforms are applied on these
features in order to convert them into features appropriate for a conventional HMM recognizer ([3]).
The HMM based recognizer, trained on training part of Numbers95 database, is used for classifica-
tion. The performance of the proposed features is compared against the baseline MRASTA features
in terms of word error rate (WER) below.

The WER of baseline MRASTA features on OGI-Digits database is 3.5%. Figure 7 shows the
WER of proposed features for different values of the parameter m (values of other parameters are as
in section 3.2). Though variances of the envelopes are matching, however, the baseline performance
is slightly better than that of the proposed features when m = 0. This can be attributed to the fact

1Except the largest two first derivatives as they are not close to zero at the point of truncation.
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Figure 7: Word error rate as a function of parameter m on OGI-Digits database, optimal m = −140.
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Figure 8: Word error rate as a function of parameter m on TIMIT database, optimal m = −136.

that time axis is skewed by arctan asymmetry resulting in different rate of change. Observe from
the figure that the best WER of about 3.1% corresponds to the parameter value m = −140. –a
relative improvement in WER of over 11.4% on OGI-Digits database. The impulse responses of the
asymmetric filters corresponding to these parameters are shown in the figure 2.

Table 1: Comparison of performances (in %) of proposed features and baseline MRASTA features.
Asymmetric filters MRASTA (baseline)

OGI-Digits (WER) 3.1 3.5
TIMIT (PER) 35.7 36.9

In order to test the effectiveness of the proposed features on a different database, phoneme clas-
sification experiments are conducted on TIMIT. MLP with 1000 hidden nodes is trained to convert
input speech features into posterior probabilities of phoneme classes and decisions are made based on
these probabilities (Viterbi decoding). Phoneme error rate (PER) is used as a measure to evaluate
performance of the features. The PER of the baseline MRASTA features is 36.9% while that of the
proposed features (m = −140) is 35.7%. Thus the proposed features yield a relative improvement

of about 3.2% over the baseline features on TIMIT database. We summarized the results in table
1. Figure 8 shows the PER as a function of the parameter m on TIMIT database and the optimal
value of m is −136. Thus optimal parameter values on two different databases (m = −140, −136 on
OGI-Digits and TIMIT respectively) are matching when optimized the performance with respect to
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the parameter m. This shows that found asymmetry applies equally well to different databases.

5 Conclusions

A new auditory inspired feature extraction technique, motivated by the asymmetries of the TRF pro-
files of higher level auditory neurons, has been proposed and tested for an ASR task. Results from
the experiments on different databases seem to be promising, suggesting that careful emulation of
STRFs of higher level auditory neurons would lead to better performance. With the proposed ap-
proach, we obtained more than 11.4% relative improvement in WER on OGI-Digits database and 3.2%
relative improvement in PER on TIMIT database. Experimental results indicate that the proposed
asymmetric filters generalize well over different databases.
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