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Abstract. Performance of a typical automatic speech recognition (ASR) system severely de-
grades when it encounters speech from reverberant environments. Part of the reason for this
degradation is the feature extraction techniques that use analysis windows which are much shorter
than typical room impulse responses. We present a feature extraction technique based on model-
ing temporal envelopes of the speech signal in narrow sub-bands using Frequency Domain Linear
Prediction (FDLP). FDLP provides an all-pole approximation of the Hilbert envelope of the sig-
nal obtained by linear prediction on cosine transform of the signal. ASR experiments on speech
data degraded with a number of room impulse responses (with varying degrees of distortion)
show significant performance improvements for the proposed FDLP features when compared to
other robust feature extraction techniques (average relative reduction of 24% in word error rate).
Similar improvements are also obtained for far-field data which contain natural reverberation in
background noise. These results are achieved without any noticeable degradation in performance
for clean speech.
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1 Introduction

Even a small amount of reverberation causes significant degradation in ASR performance. This is
primarily due to the temporal smearing of the short-term spectra (which are used for deriving con-
ventional features for speech recognition). Since reverberation is a long term phenomenon, techniques
based on short term spectra generally result in increased word error rates as the models trained in clean
environments fail to match the test conditions. Although several approaches have been proposed for
recognition of multi-channel reverberant speech (for example [1, 2]), single channel reverberant speech
recognition continues to be a challenging task.

In reverberant environments, the speech signal that reaches the microphone is superimposed with
multiple reflected versions of the original speech signal. These superpositions can be modeled by the
convolution of the room impulse response, that accounts for individual reflection delays, with the
original speech signal, i.e.,

r(t) = s(t)  h(t), (1)

where s(t), h(t) and r(t) denote the original speech signal, the room impulse response and the rever-
berant speech respectively. The effect of reverberation on the short-time Fourier transform (STFT)
of the speech signal s(t) can be represented as

R(t,wy) = S(t,wr)H(t, wg), (2)

where S(t,wy) and R(t,wy) are the STFT’s of the clean speech signal s(t) and reverberant speech
r(t) respectively and H(t,wy) denotes the STFT of the room impulse response h(t). The amount
of reverberation in speech is generally characterized by reverberation time (T4p) and the magnitude
distortion in the frequency domain. For analysis windows which are longer than Tgg, the effect of
reverberation can be approximated as multiplicative in the frequency domain [3], i.e., H(f,wy) is not
a function of time and Eq. (2) becomes

R(t,wy) = S(t,w)H (wy). (3)

In the techniques reported in [4, 5], the effect of reverberation is compensated by subtracting from
log (R(t,wy)), its mean.

In this letter, we propose a technique that uses gain normalized temporal trajectories of sub-
band energies to compensate for the room reverberation artifacts. Hilbert envelopes of sub-band
signals are estimated by applying linear prediction in the frequency domain [6] (Sec. 2). Unlike
conventional approaches that use mean compensation for reverberant speech recognition [4, 5], the
proposed technique alleviates the reverberation artifacts present in long temporal envelopes of narrow
frequency sub-bands. For the reverberant speech, the sub-band Hilbert envelopes can be assumed to be
a convolution of the sub-band Hilbert envelope of the clean speech with the sub-band Hilbert envelope
of the room impulse response [10] (Sec. 3). When linear prediction is applied in the frequency domain,
the Hilbert envelope convolution model suggests that the artifacts present in reverberant speech affect
the gain of the sub-band temporal envelopes. This causes the mis-match between the features trained
from clean and reverberant environments. In order to reduce the mismatch, the proposed FDLP
technique normalizes the gain of the auto-regressive models in narrow frequency bands (Sec. 3.2).
The application of the proposed compensation technique to the FDLP features significantly improves
the recognition accuracies for reverberant speech (Sec. 4).

2 Feature Extraction based on Frequency Domain Linear Pre-
diction

Typically, Auto-Regressive (AR) models have been used in speech/audio applications for representing
the envelope of the power spectrum of the signal (Time Domain Linear Prediction (TDLP) [9]). This
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Figure 1: FDLP feature extraction for ASR
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Figure 2: FDLP envelopes for clean and reverberant speech for second sub-band (a) without gain
normalization (b) with gain normalization.

paper utilizes AR models for obtaining smoothed, minimum phase, parametric models for temporal
rather than spectral envelopes. The duality between the time and frequency domains means that
AR modeling can be applied equally well to discrete spectral representations of the signal instead
of time-domain signal samples. Since we apply the LP technique to exploit the redundancies in the
frequency domain, this approach is called Frequency Domain Linear Prediction (FDLP) [6, 8]. For
the FDLP technique, the squared magnitude response of the all-pole filter approximates the Hilbert
envelope of the signal (in a manner similar to the approximation of the power spectrum of the signal
using TDLP [9]).

For the purpose of feature extraction, segments of the input speech signal (of the order of 1000
ms) are decomposed into sub-bands, where FDLP is applied to obtain a parametric model of the
temporal envelope. For short utterances, the input signal is zero-padded to obtain sufficient number
of samples prior to the sub-band decomposition. The whole set of sub-band temporal envelopes forms
a two dimensional (time-frequency) representation of the input signal energy. This two-dimensional
representation is convolved with a rectangular window of duration 25 ms and resampled at a rate of
100 Hz (10 ms intervals, similar to the estimation of short term power spectrum in conventional feature
extraction techniques). These sub-sampled short-term spectral energies are converted to short-term
cepstral features similar to the PLP feature extraction technique [7]. In our experiments, we use 39
dimensional cepstral features containing 13 cepstral coefficients along with the delta and double-delta
features. The block schematic for the FDLP feature extraction technique is shown in Fig. 1.
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3 Hilbert Envelope Convolution Model

3.1 Mathematical Framework

Let s(t) denote a long term speech signal, which is decomposed into contiguous frequency bands
denoted as band limited signals s, (t). Each of these sub-band signals can be modeled in terms of
product of a slowly varying, positive, envelope function Ag,(¢) and an instantaneous phase function
Psn(t) [10] such that

N N
s(t) = sn(t) =Y Aen(t) cos (pan(t))- (4)
n=1 n=1

Reverberant speech 7(t), can similarly be expressed as sum of band limited signals 7, (¢) in sub-bands
as

r(t) =

hWE

N
rn(t) = Z Arn(t) cos (pra(t))

1

3
Il

R
M=

hon(t) * sp,(t)

3
Il

I
M=

Ahn(t) COoSs (phn (t)) * Agn (t) COS ( sn (t)), (5)

3
Il
-

where A,,, As, and A, represent the envelope functions of the bandpassed reverberant speech,
the original speech and the room impulse response; their corresponding phase functions are given by
Drn(t), Dsn(t) and ppy(t). For room impulse responses, it has been shown in [10] that the envelope of
7, (t) can be represented as

j t t t
Am(t)ejp""(t) ~ L;M / Apn(t = t1) Ay (1) dt 1,

where w,, is the center frequency of each band and ¢, (t) is the phase difference between the original
speech and the room response. In narrow sub-bands, the envelope functions are related by

1
Arn = iAhn * Asn~ (6)

If A,, represents the Hilbert envelope of the n*" sub-band, Eq. (6) shows that the Hilbert envelope of
the sub-band signal for the reverberant speech can be approximated as the convolution of the Hilbert
envelope of the clean speech signal in that sub-band with that of the room impulse response. All these
results assume analysis windows longer than the duration of the room impulse response. Since FDLP
is performed on long temporal segments, the Hilbert envelope convolution model can be exploited for
compensating reverberation artifacts in FDLP features.

3.2 Gain Normalization for Reverberant Speech

The Hilbert envelope and the spectral autocorrelation function form Fourier transform pairs [6]. The
Hilbert envelope convolution model in Eq. (6) shows that the spectral autocorrelation function of
the reverberant speech is the multiplication of spectral autocorrelation function of the clean speech
with that of the room impulse response. For the room impulse response, the spectral autocorrelation
function in narrow frequency sub-bands can be assumed to be slowly varying compared to that of the
speech signal. Thus, normalizing the gain of the sub-band FDLP envelopes suppresses the multiplica-
tive effect present in the spectral autocorrelation function of the reverberant speech. For example,
Fig. 2 provides an illustration of the effect of gain normalization on the sub-band FDLP envelopes for
clean and for reverberant speech.
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Table 1: Word Accuracies (%) for FDLP features with and without the gain of the inverse filter and
different window shapes

Features \ Clean Speech \ Revb. Speech
PLP 99.68 80.12
FDLP-MEL-G-WN 99.67 78.70
FDLP-MEL-G-GN 99.53 85.32
FDLP-MEL-R-GN 99.43 89.07
FDLP-UNF-R-GN 99.18 89.49

Table 2: Word Accuracies (%) for FDLP features for clean and reverberant speech using different
number of sub-bands

Number of sub-bands \ Clean Speech \ Revb. Speech

24 99.18 89.49
33 99.13 91.86
67 99.09 92.93
76 99.16 93.60
96 99.07 94.79
108 99.03 94.63
120 98.91 94.55

4 Experiments and Results

We apply the proposed features and techniques in a connected word recognition task with a modified
version of the Aurora speech database using the Aurora evaluation system [11]. We use the “complex”
version of the back end proposed in [12]. The training dataset contains 8400 clean speech utterances,
consisting of 4200 male and 4200 female utterances downsampled to 8 kHz and the test set consist of
3003 utterances [5]. For reverberant speech recognition experiments, the test data was convolved with
a set of 8 different room responses collected from various sources [14, 15, 16] with spectral coloration
(defined as the ratio of the geometric mean to the arithmetic mean of the spectral magnitudes) ranging
from -2.42 dB to -0.57 dB. The use of 8 different room responses results in 8 test sets consisting of
3003 utterances each. One of these test sets (obtained using the impulse response with a spectral
coloration of —1.92 dB) is used to investigate the effect of varying the number of frequency sub-bands.

The first set of experiments compare the performance of FDLP based features with the conventional
features for clean input conditions. Here, we also investigate the effect of gain normalization of the
FDLP envelopes on the final recognition rate for clean and reverberant speech (for one of the impulse
responses with a spectral coloration of —1.92 dB). The front-end sub-band decomposition is achieved
by windowing the Discrete Cosine Transform (DCT) of relatively long segments of the input signal
(1000 ms) [8].

Table 1 shows the word accuracies for PLP features (PLP) and FDLP features extracted using a
Gaussian shaped mel-filter bank without and with the gain normalization on the temporal envelopes
(FDLP-MEL-G-WN, FDLP-MEL-G-GN respectively) and using a rectangular shaped mel spaced
filter bank with gain normalization (FDLP-MEL-R-GN). For simplicity, we also experiment with
uniformly spaced DCT windows (FDLP-UNF-R-GN). Although the uniform windows cause a slight
drop in performance for clean conditions, they provide an easy framework for increasing the spectral
resolution of reverberant speech in further experiments.

These results show that FDLP-MEL-G-WN features perform similar to PLP features for clean
speech and the gain normalized FDLP-MEL-G-GN features provide significant improvement for the
reverberant speech without any noticeable degradation in performance for clean speech. Further, the
improvement obtained for FDLP-MEL-R-GN over the FDLP-MEL-G-GN is due to the application of
the rectangular windows, which cause the least amount of temporal smearing to the sub-band FDLP
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Figure 3: Comparison of Word Accuracies (%) using different techniques for ASR with reverberant
speech

Table 3: Word accuracies (%) using a far-field mic
Features
PLP | CMS | LDMN | LTLSS | FDLP
75.50 | 77.39 | 80.35 80.92 88.07

envelopes although, the Gaussian shape for DCT windows provides better spectral autocorrelation
estimates for the clean signal [8]. In all further experiments, we employ the gain normalized temporal
envelopes along with rectangular windows in the DCT domain (experiments using other window
shapes were also performed and the rectangular shape was found to provide the best performance for
reverberant speech).

In order to study the effect of finer spectral resolution for the proposed compensation technique,
we increase the number of frequency sub-bands from 24 to 120. This is accomplished by increasing the
duration of the temporal analysis (from 1000 ms to 2400 ms) for a constant width and overlap of the
DCT windows. The test data consist of the reverberant speech using the same impulse response as
before. Table 2 shows the recognition accuracies for the FDLP features when the number of sub-bands
is varied.

Increasing the frequency resolution strengthens the validity of the assumptions made for the com-
pensation technique (Eq. 6) and hence, significantly improves the recognition accuracies. In order to
maintain a sufficient number of frequency samples per sub-band (which in turn decides the maximum
FDLP model order), the width of the temporal analysis window needs to be increased along with
the increase in number of sub-bands. However, the finite duration of the speech utterances in the
database causes the need for zero padding the speech signals to obtain the desired sub-band decompo-
sition with a fixed number of spectral components in each sub-band. For large number of sub-bands,
the speech utterances get significantly zero padded resulting in a small drop in performance (for ex.
decomposition into 120 sub-bands).

In Fig. 3, the results for the proposed FDLP technique are compared with those obtained for
several other robust feature extraction techniques proposed for reverberant ASR namely Cepstral
Mean Subtraction (CMS) [13], Long Term Log Spectral Subtraction (LTLSS) [5] and Log-DFT Mean
Normalization (LDMN) [4]. This is done for the 8 different room impulse responses.

In our LTLSS experiments, we calculated the means independently for each individual utterance
(which differs from the approach of grouping multiple utterances for the same speaker described in
[5]) using a shorter analysis window of 32 ms, with a shift of 8 ms. For the FDLP features, we fix the
number of sub-bands to 96 and use a temporal analysis window of duration 2000 ms. For the different
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room responses, the proposed FDLP features, on the average, provide a relative error improvement of
24% over the other feature extraction techniques considered. The relative improvements are similar
for most of the room responses, although the absolute improvements are higher for room impulse
responses with higher spectral coloration (Fig. 3).

To investigate the performance of the proposed feature extraction for naturally reverberant speech
in background noise, we also perform experiments on a set of connected digits recorded in an ICSI
meeting room using a far-field mic (channel F in [14]). As before, we use the HMM models trained
with the clean speech in the training set of modified Aurora task. The test data consist of 2790
utterances containing 9169 digits. Table 3 shows the word accuracies for the different feature extraction
techniques using the far-field test data, where we obtain a relative error improvement of about 36%.

5 Conclusions

Unlike many single microphone based reverberant speech recognition approaches, the proposed tech-
nique does not normalize speech signals using long term mean subtraction in spectral domain. We
show that the effect of reverberation is reduced when features are extracted from gain normalized
temporal envelopes of long duration in narrow sub-bands. FDLP provides an efficient way to suppress
the reverberation artifacts and hence, FDLP features extracted in reverberant environments provide
significant improvements over other robust feature extraction techniques. The application of the pro-
posed techniques for larger vocabulary tasks and for signals distorted by additive and convolutive
noise are currently pursued.
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