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Abstract

When combined with cepstral normalisation techniques, the features normally used in Automatic Speech Recog-
nition are based on Signal to Noise Ratio (SNR). We show that calculating SNR from the outset, rather than relying
on cepstral normalisation to produce it, gives features with a number of practical and mathematical advantages
over power-spectral based ones. In a detailed analysis, we derive Maximum Likelihood and Maximum a-Posteriori
estimates for SNR based features, and show that they can outperform more conventional ones, especially when
subsequently combined with cepstral variance normalisation. We further show anecdotal evidence that SNR based
features lend themselves well to noise estimates based on low-energy envelope tracking.

1 Introduction

An important problem encountered in speech signal processing is that of how to normalise a signal for the effects
of noise. In speech enhancement the task is to remove noise from a signal to reproduce the uncorrupted signal such
that it is perceived by a listener to be less noisy. In Automatic Speech Recognition (ASR), the task is to reduce the
effect of noise on recognition accuracy. In this paper, we will concentrate on the latter (ASR) problem.

Two categories of noise are generally considered: Additive noise is that which represents a distinct signal other
than the one of interest. Convolutional noise is that which alters the spectral shape, and can be associated with
either the signal of interest, or both the signal and the additive noise.

Cepstral Mean Normalisation (CMN) is a well established technique that compensates for convolutional noise.
It is based on the persuasive observation that a linear channel distortion becomes a constant offset in the cepstral
domain. CMN also affords some robustness to additive noise. Cepstral Variance Normalisation (CVN) has been
observed to provide further noise robustness [1], and the combination of CMN and CVN is now quite ubiquitous in
ASR.

Orthogonal to the cepstral normalisation approach, many common practical solutions for additive noise com-
pensation are based on the assumption of a simple additive Gaussian model for both speech and noise in the spectral
domain. In ASR, the spectral subtraction approach of Boll [2] is well established, and often used as a means to
derive a Wiener filter. In speech enhancement, much work is based on the technique of Ephraim and Malah [3].
Both these techniques have influenced the design of the ETSI standard ASR front-end [4].

Techniques that rely on noise subtraction are dependent upon some means of measuring the background noise
in a signal. Often, it is sufficient to simply average the first few frames of an utterance, however this is not robust to
changing noise levels. Ris and Dupont [5] present a survey of methods to measure noise, favouring the low-energy
envelope tracking approach of Martin [6]. Lathoud et al. [7] present a statistical spectral model that yields both
noise and speech estimates.

Cepstral and spectral techniques are often combined. This is a natural approach as, theoretically, the two ap-
proaches are designed to tackle different types of noise. For instance, histogram normalisation, a logical progression
of CMN/CVN to higher order moments, has been successfully combined with spectral compensation techniques by
Segura et al. [8]. Lathoud et al [7], who describe their technique as “Unsupervised” spectral subtraction (USS), also
report good results in combination with cepstral normalisation.

In this paper, we analyse the relationship between spectral and cepstral normalisation. We first present a sim-
plistic analysis, then a more detailed Bayesian analysis, showing that knowledge of the presence of cepstral com-
pensation should influence the chosen approach to spectral compensation. Theoretical results are evaluated leading
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to a conclusion that SNR based features represent a theoretically rigorous but computationally simple approach to
ASR, and could easily be incorporated into more advanced techniques.

2 Simplistic approach to noise

2.1 Cepstral Mean Normalisation

In a simplistic, but informative, view of an ASR front-end, an acoustic signal is Fourier transformed to give a vector
of spectral coefficients (s1, s2, . . . , sF )T. After a linear transform implementing a non-linear frequency warp, the
cepstrum is calculated. The cepstrum involves a logarithm followed by another linear transform. In the presence of
only convolutional noise, (c1, c2, . . . , cF )T, which is multiplicative in the frequency domain, the logarithm becomes

log(cfsf ) = log(cf ) + log(sf ), (1)

where log(cf ) is constant over time, but log(sf ) varies. Hence, subtraction of the cepstral mean results in removal
of the constant convolutional noise term. When the filter-bank is considered, the above holds if the cf are assumed
constant within a given filter-bank bin.

In the presence of only additive noise, the noise is assumed to remain additive after the Fourier transform. In
this sense, the logarithm operation becomes

log(sf + nf ) = log(nf ) + log
(

1 +
sf
nf

)
, (2)

where (n1, n2, . . . , nF )T is the noise spectrum. The right hand side of (2) is evident from the Taylor series of
log(x+ y), and emphasises that CMN would remove the constant term log(nf ).

2.2 Properties of SNR features

It appears from the above analysis that, if we use CMN, the features that are presented to the ASR decoder are
actually (a linear transform of) the logarithm of one plus the signal to noise ratio (SNR). This will happen even if
the additive noise is simply the minimal background noise usually associated with clean recordings. It follows that
we could try to calculate the SNR from the outset rather than calculate a spectral power measure and rely on CMN
to produce the SNR. A-priori, such an approach has at least two appealing properties:

1. The flooring of the logarithm happens naturally. SNR values cannot fall below zero, so the argument of the
logarithm is naturally floored at unity.

2. SNR is inherently independent of gain associated with microphones and pre-amplifiers.

We will show that SNR is also mathematically appealing.
The approach is analogous to that of Lathoud et al. [7]. The only difference is that Lathoud et al. explicitly floor

the SNR using (in our present notation)

max
(

1,
sf
nf

)
. (3)

3 A more rigorous analysis

In contrast to the previous section, which was left deliberately simplistic, we now present a more rigorous derivation
of a SNR based feature. We begin by defining a Gaussian model of speech in noise, and proceed by showing that
power spectral subtraction can be seen as a particular maximum-likelihood (ML) solution. We then derive ML and
MAP estimators for the SNR.

3.1 Gaussian model

Let us assume that a DFT operation produces a vector, x, with complex components, x1, x2, . . . , xF , where the real
and imaginary parts of each xf are i.i.d. normally distributed with zero mean and variance υf . That is,

f (xf | υf ) =
1
πυf

exp

(
−|xf |

2

υf

)
. (4)
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In the case where we distinguish two coloured noise signals, a background noise, n, and a signal of interest, s,
typically speech, denote the noise variance as ν and the speech variance as ς. In general, the background noise can
be observed in isolation and modelled as

f (nf | νf ) =
1
πνf

exp

(
−|nf |

2

νf

)
. (5)

The speech, however, cannot normally be observed in isolation. It is always added to noise. When both speech and
additive noise are present the variances add, meaning that the total signal, tf = sf + nf , can be modelled as

f (tf | ςf , νf ) =
1

π(ςf + νf )
exp

(
− |tf |2

ςf + νf

)
. (6)

The above model is the basis of the Wiener filter and of the widely used Ephraim-Malah speech enhancement
technique [3]. The goal is usually formulated as requiring an estimate of sf ; this proceeds via estimation of ςf .

We assume that an estimate, ν̂, of ν is available via solution of (5) during, for instance, non-speech segments of
the signal.

Consider using (6) as a basis for estimation of the speech variance, ς. We drop the f subscript for simplicity.
Bayes’ theorem gives

f (ς | t, ν̂) ∝ f (t | ς, ν̂) f (ς) . (7)

If we assume a flat prior f (ς) ∝ 1, substituting (6) into (7), differentiating with respect to ς and equating to zero
gives the well known maximum likelihood estimate,

ς̂ = max
(
|t|2 − ν̂, 0

)
. (8)

This is known to provide a “reasonable” estimate of the speech variance, but always requires regularisation. In ASR,
the ML estimate is known as power spectral subtraction. It is regularised by means of an over-subtraction factor, α,
and a flooring factor, β:

ς̂ = max
(
|t|2 − αν̂, βν̂

)
. (9)

3.2 ML SNR estimate

The purpose of the above derivation is to show that a commonly used speech feature can be seen in a Bayesian
sense as an estimate of the variance ς. We now follow the same procedure, but aim from the outset to estimate
SNR. Define

ξf =
ςf
νf
, (10)

where ξf is exactly the a-priori SNR of McAulay and Malpass [9], popularised by Ephraim and Malah [3]. The f
subscript indicates that the SNR is frequency dependent. Substituting ςf = ξfνf into (6),

f (tf | ξf , νf ) =
1

πνf (1 + ξf )
exp

(
− |tf |2

νf (1 + ξf )

)
. (11)

The subscript is dropped again hereafter for simplicity.
This time, the posterior is in terms of ξ,

f (ξ | t, ν̂) ∝ f (t | ξ, ν̂) f (ξ) . (12)

Assuming a flat prior, substituting (11) into (12), differentiating and equating to zero,

ξ̂ = max

(
|t|2

ν̂
− 1, 0

)
. (13)

It is shown in section 4 that this result requires no further normalisation to work well. Further, notice that

log(1 + ξ̂) = log

(
max

[
1,
|t|2

ν̂

])
, (14)
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which is the same form as (3). However, no ad-hoc spectral model is necessary.
We note that in the Decision Directed estimator of [3], the ML estimate of ξ of (13) is regularised using an

estimate based on the previous spectral magnitude estimate. This is further explored by Cohen [10], and is used in
a modified form in [4, 11]. Whilst these approaches are beyond the scope of the present study, our approach does
not preclude using them.

3.3 Marginalisation over noise variance

Thus far we have assumed that an estimate, ν̂, of the noise variance is available. The form of (11), however, with
multiplicative instead of additive terms in the denominators, allows marginalisation over the noise variance.

If we have N frames (spectral vectors) of noise, {n}N = {n1,n2, . . . ,nN}, that are observed in isolation, we can
write

f (νf | {n}N ) =
∏N
i=1 f (ni,f | νf ) f (νf )∫∞

0
dν′

∏N
i=1 f

(
ni,f | ν′f

)
f
(
ν′f

) , (15)

where the products are over the likelihood terms, not the priors. Again, hereafter we drop subscripts for simplicity.
The likelihood terms are exactly the form of equation (5), and we arbitrarily choose a non-informative prior f (ν) ∝
ν−1. Equation (15) then reduces to the inverse gamma distribution

f (ν | {n}N ) =
BA

Γ(A)
ν−A−1 exp

(
−B
ν

)
(16)

where

A = N, B =
N∑
i=1

|ni,f |2 . (17)

The MAP solution, ν̂, of ν would be

ν̂ =
B

A+ 1
, (18)

however, we can use the distribution to marginalise over ν. Equation (12) becomes

f (ξ | t) ∝ f (ξ)
∫ ∞

0

dν f (t | ξ, ν) f (ν | {n}N ) . (19)

Substituting (11) and (16) into (19), the forms are conjugate and the integral is just the normalising term from the
inverse gamma distribution.

f (ξ | t) ∝ f (ξ)×

BA

Γ(A)
Γ(A+ 1)
ξ + 1

(
|t|2 + (ξ + 1)B

ξ + 1

)−(A+1)

.
(20)

3.4 Marginal ML estimate

If we assume a flat prior, f (ξ) ∝ 1, as before, differentiating (20) and equating to zero gives

ξ̂ = max

(
A |t|2

B
− 1, 0

)
(21)

Curiously, equation (21) is basically the same as equation (13).

3.5 MAP estimate

Instead of using a flat (improper) prior for the speech variance, it is possible to use a proper prior representing real
information. The prior distribution should allow (encourage, even) the SNR to be zero, but should discourage large
values; greater than a few tens of decibels. Here we use the gamma distribution

f (ξ | α, β) =
1

βαΓ(α)
ξα−1 exp

(
− ξ
β

)
. (22)
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Substituting this into (20), differentiating and equating to zero yields a cubic in ξ

a3ξ
3 + a2ξ

2 + a1ξ + a0 = 0, (23)

with

a3 = −1,

a2 = −β + (α− 1)β − |t|2 /B − 2,

a1 = −β + βA |t|2 /B + (α− 1)β |t|2 /B

+ 2(α− 1)β − |t|2 /B − 1,

a0 = (α− 1)β + (α− 1)β |t|2 /B,

(24)

The cubic is readily solved using the cubic equation [12], and always has at least one real root. The root can,
however, be negative, so the resulting ξ̂ should be floored at zero.

To set the hyper-parameters, we find that simply constraining the expectation of the gamma distribution to be
the average ML SNR of the current frame works satisfactorily,

E (ξf ) = αβf (25)

βf =
1
α
E (ξf ) =

1
α

 1
F

F∑
f=1

|tf |2

ν̂f
− 1

 , (26)

and, empirically, α = 0.01.
For illustration, figure 1 shows a histogram of SNR (actually |t|2 /ν̂) at 1000 Hz for the clean part of the aurora

2 training data. Also shown is a gamma distribution with α = 0.01 and β set such that the expectation is 48dB, the
approximate SNR of the clean aurora 2 data. The plot is in the log domain. Notice that the gamma distribution
is basically flat (caused by α being close to 0), but falls rapidly for high values, i.e., it is largely uninformative but
discourages high SNR.

We choose a gamma prior in this study for simplicity. Other authors (a recent example is [13]) have made
persuasive cases for the speech prior being closer to a generalised gamma distribution. In ASR, the speech prior is
often represented by a large Gaussian mixture [14].

4 Experiments

To allow comparison with [7] we present experimental results on aurora 2. The aurora 2 task [15] is a well
known evaluation for noise compensation techniques. It is a simple digit recognition task with real noise artificially
added in 5dB increments such that performance without noise compensation ranges from almost perfect to almost
random. Both clean (uncorrupted) and multi-condition (additive noise corrupted) training sets are provided, along
with three test sets:

A Data corrupted with the same noise used in the (multi-condition) training.

B As test set A, but using different noise.

C A subset of the noises above, but additionally with a convolutional filter.

Aurora 2 does not distinguish evaluation and test data, so results may be biased towards this dataset and should be
considered optimistic.

We used a simple “MFCC” front-end with a 256 point DFT every 10ms. The noise reduction techniques were
applied in the power-spectral domain (129 bins), after which a filter bank of 23 mel-spaced triangular bins was
applied. The usual logarithm and truncated DCT then produced 13 cepstral coefficients (including C0) plus first
and second order delta coefficients. Where CMN and CVN were applied, the means and variances were calculated
separately for the whole of each utterance.

The noise values were obtained using the low-energy envelope tracking method described in [5], but with a
simplified correction factor from [16]: The 20 lowest energy samples in a sliding 100 frame (1 second) window
were averaged, and multiplied by a correction factor, C. See section 5.2 for a discussion of this factor.
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Figure 1: Histogram of clean data at 1000 Hz and gamma distribution with α = 0.01 and αβ = 48dB. The gamma
distribution is largely flat (uninformative), but imposes an upper limit. log(SNR) would normally be floored at 0.

Complete results are shown in Figure 2. Each graph represents a full aurora evaluation with both multi-condition
and clean training. The SNR of clean testing data was measured to be around 48dB, and is off the axis, but the
result is shown as the first number in parentheses in the legend. The second number in the legend is the usual
aurora figure of merit: the average of the scores from 0dB to 20dB.

Each graph in the left column represents use of CMN, whereas the right column represents use of CVN (implying
CMN also). The four rows are, respectively, the value passed to the filter-bank being

1. The usual non-SNR (power spectral) features.

2. As 1, but with spectral subtraction.
ς̂ = max

(
|t|2 − αν̂, βν̂

)
, (27)

with α = 1 and β = 0.1, found with a coarse grid search.

3. One plus the maximum likelihood estimate of SNR from the marginal distribution

ξ̂ + 1 = max

(
A |t|2

B
− 1, 0

)
+ 1, (28)

= max

(
A |t|2

B
, 1

)
. (29)

4. One plus the MAP estimate of the SNR with a gamma prior,

ξ̂ + 1, (30)

where ξ̂ is the solution of the cubic in (23) and (24).

We stress that these results are not state of the art for this database; the purpose is to compare techniques.
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Figure 2: Results. The left column is for CMN, right for CMN+CVN. The four rows top to bottom are respectively:
No noise compensation, Spectral Subtraction, ML SNR and MAP SNR with gamma prior. See the text for details of
the database.
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5 Discussion

5.1 Performance

The most significant result of these experiments is that the CVN results for the SNR features agree with, even exceed,
those in [7]. This is despite the fact that no involved spectral model is used to distinguish the speech and noise. It
seems that simply being able to track the background noise level with the low-energy envelope is enough.

The use of the simple gamma prior has a small benefit, but at the cost of an extra parameter and finding the
solution to a cubic equation. Whilst this is not computationally onerous, it is doubtful whether it is worthwhile
given the good performance of the much simpler ML solution. However, the spirit of the approach is important; it
shows a principled way to incorporate prior information.

Spectral subtraction gives an improvement over the baseline, but does not respond to CVN. This is at odds with
the results in [8], but in agreement with our own anecdotal evidence. This is a curious result since there is not a
large theoretical difference between SNR features and spectral subtraction. The practical difference between the
two is that SNR features normalise before the filter-bank, whereas CMN works after it. If we denote the filter-bank
weights for a single bin by w1, w2, . . ., the SNR features presented to the decoder are of the form

log (1 + w1ξ1 + w2ξ2 + · · · ) , (31)

whereas the spectral subtraction features are closer to the form

log
(

1 +
w1s1 + w2s2 + · · ·
w1n1 + w2n2 + · · ·

)
. (32)

Given that log(a+ b) ≈ log max(a, b), we hypothesise that a large noise component anywhere in the band spanned
by the given bin could dominate the latter expression. This in turn offers some explanation for the improved
performance of SNR features. It remains a subject for further investigation.

5.2 Noise tracker correction factor

The low-energy envelope tracker normally requires correction as its estimate is biased too small. In [16], Lathoud
et al. suggest that a multiplicative correction factor

C =
1

(1.5γ)2
, (33)

works well, where γ is the fraction of samples assumed to be noise. In our case, γ = 0.2 so C = 11.1. In fact, we
found that, whilst this correction factor was necessary for the spectral subtraction approach, a value of C = 1 was
better for SNR features (the results in Figure 2 are for these values).

It is tempting to conclude that SNR features do not need a correction factor. However, it is more likely that the
noise tracker with C = 1 was producing noise estimates about 11 times too small, so the SNR estimates were 11
times too large. Writing the situation as

log(1 + 11ξ) = log(11) + log
(

1
11

+ ξ

)
, (34)

it is clear that this corresponds to using a smaller floor in the logarithm. This floor is also very close to the one
empirically found to work well as the parameter β in spectral subtraction.

The low-energy envelope is a noise floor rather than a noise estimate; it is intuitively reasonable that this floor
is also the level below which speech and noise cannot be distinguished. We hypothesise that the optimal value of
C in low-energy envelope tracking is the same as the optimal floor for SNR. Thus, when using SNR based features,
these values cancel out giving a parameter-free feature. Proof that C = 1 is optimal for SNR features, however, will
require a careful mathematical and experimental analysis.

6 Conclusions

SNR features for ASR have several practical and mathematical advantages over the more usual spectral power
features. The naive SNR estimate is actually the optimal estimate under a fairly rigorous Bayesian analysis, and the
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framework leaves room for further incorporation of prior information, as is common recently in ASR. SNR features
perform well in noisy conditions, and outperform other features when combined with CVN. Prior information
incorporated via a gamma prior distribution improves results still further, although the difference may not merit the
extra complexity. In practice a different prior form, or one trained on real data ought to work better.

We have some evidence that the optimal correction factor used in low-energy envelope tracking cancels exactly
the flooring used in the logarithm for SNR features, making SNR features almost parameter-free when noise is
estimated in this manner.
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