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Abstract—In this paper, we propose a simple approach to phoneme information to yield better grapheme-based ASR
jointly model both grapheme and phoneme information using system. For instance,

Kullback-Leibler divergence based HMM (KL-HMM) system.
More specifically, graphemes are used as subword units and
phoneme posterior probabilities estimated at output of mutilayer
perceptron are used as observation feature vector. Through
preliminary studies on DARPA Resource Management corpus
it is shown that although the proposed approach yield lower
performance compared to KL-HMM system using phoneme as
subword units, this gap in the performance can be bridged via
temporal modelling at the observation feature vector leveland
contextual modelling of early tagged contextual graphemes

I. INTRODUCTION

State-of-the-art HMM-based automatic speech recognition
(ASR) systems commonly use phoneme as subword unit. More

recently, there has been growing interest in using diretbity
graphemé (orthographic) transcription of the word (without
explicit lexical phonetic level modelling). There are tare

main advantages in using grapheme as subword units. Firstly
dictionary generation is easy. Secondly, grapheme subword

units can be shared across different languggtsus it may

help in porting ASR system trained on languages that have
large resources to languages that have resource constraint
Thirdly, unlike the phoneme-based ASR system where a word
can have pronunciation variants the word representation is
unique (orthographic forms of words do not vary between
speakers). While the use of grapheme as subword unit lim-

its the variability at the word representation level, thekli

between the acoustic waveform becomes weaker (depending
on the language), as the standard acoustic features extract *
from the spectrum of the speech signal characterize phasmieme

For instance, in languages such as Finnish and Spanish there
is good one-to-one unique correspondence between phoneme
and grapheme, so when using grapheme as subword units the
link between acoustic waveform can be as strong as phoneme.
However, it is not the same case for languages such as English

where the correspondence between phoneme and grapheme is
weak. For instance, alphabet [C] can correspond to phonemes

o In[1], the grapheme-based ASR system was trained such
that both grapheme-to-phoneme mapping and HMM state
tying are optimized with a single phonetically motivated
decision tree. In this approach, performance comparable
to phoneme-based ASR system was observed for lan-
guages such as Dutch and German but for English the
performance was lower than the phoneme-based ASR
system.

« Investigating different efficient state tying methods [2],

[3], such as decision trees with question set that incorpo-

rate relation between phoneme and grapheme, or question

set containing simple preceding and following context

(singleton question set), or using bottom-up clustering

for context-dependent grapheme-based ASR system was

studied for different languages.

Joint modelling of phoneme and grapheme information

by training multilayer perceptron (MLP) that classifies

both phoneme and grapheme [4]. During decoding, ei-
ther phoneme or grapheme information is hidden by
marginilizing the posterior distribution and decoding is
performed with grapheme subword units or phoneme
subword units, respectively or joint decoding in both
spaces, i.e., phoneme subword units and grapheme sub-
word units. The latter approach consistently yielding
better performance.

In [5], it was shown that using tandem features which

can carry information more specific to the speech sound,

and less susceptible to speaker and environment, the
gap between phoneme-based ASR system and grapheme-
based ASR system can be effectively reduced.

» Introducing grapheme context information through early

tagging which can avoid capturing of gross distributions

when modelling context-independent grapheme units and

reducing ambiguity as well [6].

/k/ or [ch/. Thus, there has been emphasis on integratiAgart from the above mentioned studies where the motivation
has been to integrate phoneme information, in a more recent
study it was shown that performance similar to phoneme-
based ASR system can be achieved with grapheme-based ASR
system “by sufficient context modelling and using enough

1Grapheme is a written symbol that is used to represent words.

2Roman alphabet is the most widely used. It covers languages fmost
of the European nations, all nations of the America and Qagamost of the
African nations, and a few Asian nations as well.



training data” [7].

both grapheme and phoneme information using the flexibilit{?°E"

of recently proposed Kullback-Leibler divergence-basétivH

TABLE |

COMPARISON OF CAPABILITIES OFKL-HMM WITH STANDARD
In this paper, we propose a simple approach to jointly model HMM-BASED sYSTEMS NOTATIONS: GMM - GAUSSIAN MIXTURE

S, EM - EXPECTATION MAXIMIZATION , EV - EMBEDDED VITERBI,
Cl - CONTEXT-INDEPENDENT, CD - CONTEXT-DEPENDENT

system[8], [9]. More specifically, grapheme is used as subw

unit (i.e., pronunciation of each word is represented imgeof | SYS'em | HMWGMM | Hybic - Tandem KL-HMM
its orthographic transcription) and, the phoneme inforomeis MLP
modelled through phoneme posterior probabilities estihat | Feature Epecgal- Epecgal- Processed Posgeg_fl{r_
each time frame using an MLP, which are used as observatjon ase ase Do iag | PrOa0eS
feature vectors. Emission | GMM MLP GMM Multinomial
We demonstrate the viability of this approach for Englishd'St“FUt'On SRS — S C}i'ft”bUtlon
Fs H . ALOcCal IKelinoo caleqa- IKellinoo -
language through preliminary studles_on DARPA Resour,égcore likelihood divergence
Management (RM) corpus. Our studies using an “off-the&=Training EM/EV EVIEM EM/EV EV/
shelf” MLP trained on RM corpus show that this approach carmethod EM-like
achieve performance closer to phoneme-based ASR sysfegi_ e — N gﬁt‘:z'ib'e)
with still a gap of about_l% absolute word error rate. _Howev_ **Subword | Cland CD 1 ¢l ClandCD | Cland cb
we also show that this gap can be reduced by improvipgnodelling

contextual modelling either at feature level (i.e., by gsm
sequence of phoneme posterior probabilities as obsenvatio

vector) or by improving contextual modelling by early taug a fewer amount of training data using standard embedded-

as proposed |n_[6]. Further more, we also ShOW tha_lt the\":ﬁ%erbi-like framework, (c) KL-HMM can achieve perfor-
findings generalize to the case where the MLP is trained on

: ) mance comparable to state-of-the-art ASR systems, and (d)
an entirely different database/corpus.

. . . epending upon the type of local score uskd.(y*,z) or
The rest of the paper is organized as follows. In Section K L(y',z) if the reference distribution is reduced to delta

we briefly summarize the KL_'HMM system and motivate th(Eﬁstribution then KL-HMM is equivalent to hybrid HMM/MLP
proposed approach in Section Ill. Section IV presents t%(? discrete HMM, respectively

experimental studies and in Section VI we conclude.
[1l. M OTIVATION

I1. KULLBACK-LEIBLER DIVERGENCEBASED HMM ) N )
The use of posterior probability estimates of elementary

In KL-HMM, the observation feature vector is a posteriogpeech sound units such as phoneme as feature observation in
probability vectorz = [2(1), - -- 2(d), - - - 2(D)]" of dimension KL-HMM provides the flexibility of choosing the subword unit
D, and emission distribution of a statées modelled by a multi- |eve| representation. In this work, we are interested inctimse
nomial distributiony’ = [y*(1),---y'(d),---y*(D)]". The where the subword unit is grapheme. In doing so, dictionary
posterior probability vector can be for instance the phamerjeneration is easy and each word has a single pronunciation
posteriors estimated by an MLP. The local score is estimatgld, as the feature space is phoneme posterior probabilitie

using KL-divergence. KL-divergence being an asymmetrige can expect to keep the relation to acoustics intact via
measure the local score can be estimated in different waygntextual modelling.

such as, To be more specific, unlike earlier studies in grapheme-
based ASR where there has been more emphasis to model the
relation between grapheme subword unit representation and
_ Do i(d acoustic feature directly[2]. This can be difficult depemgi
KL(y'z) = Z y'(d) - 1Og(yz((d)) ) (1) upon the language and also for the reason that acousticdsatu
d=1 can be susceptible to undesirable variabilities (e.g.alspe
i & z(d) variation, channel variation). Here in the proposed apghtpa
RKL(z,y") = Zz(d)'log(yi(d)) (@) this task is split into two independent steps, a phoneme
dl:l posterior estimator that can learn the relation to acosistic
SKL(y',z) = <=[KL(y',z)+RKL(z,y")] (3) a better way, and KL-HMM that learns the relation between

2 observed phoneme evidence and grapheme subword units.
Table | compares the capabilities of KL-HMM with differentFurthermore, the use of discriminative classifiers such BB M
types of state-of-the-art HMM-based ASR systems. to estimate posterior features helps in reducing the efféct

In our earlier studies [9], [10] using phoneme as subworkthdesirable variabilities.
units it was shown that (a) KL-HMM is simpler (fewer number There is also flexibility in the way one would like to model
of parameters) and flexible (it relaxes the tying betweerh eaghoneme information. For instance, the observation featur
MLP output unit and HMM-state which otherwise limits thespace of KL-HMM can be sub-phonemic posterior feature
capability of HMM/MLP) (b) KL-HMM can be trained with estimated using MLP [11], articulatory feature posteriarlp



abilities estimated using MLP [12], using universal phoeenit may be better to have a posterior feature estimator tcaine
set (e.g. WorldBet), or a combination of them. on a large auxiliary database/corpus. In such a case, this ma
It is known through letter-to-sound rule studies that to mgmossibly lead to the problem of mismatched conditions. So we
a character in a particular word to a phoneme variable numtan possibly ask, what is the effect of using a posterioufeat
of neighboring grapheme context information may be regqllireestimator trained on a different database on the perforemahc
Given this, it is fairly easy to see that the conventiondhe proposed system. We address this issue by using another
approach of modelling a fixed context in grapheme based AS&f-the-shelf” MLP which was originally trained on Wall
system such as modelling one preceding and one followisgreet Journal (WSJ) corpus for phoneme-based KL-HMM
context similar to triphone modelling can bring the subworstudies reported in [9] (with roughly 80 hours of speech).
representation closer to phoneme by reducing ambiguity butBoth the MLPs i.e. the one trained on RM corpus (RM-
this model may not be as powerful as conventional triphomgLP) and the one trained on WSJ corpus (WSJ-MLP) output
model in phoneme-based ASR system. Modelling fixed largehoneme posterior probabilities (also referred to as pioste
grapheme context may not necessarily solve this problefgatures) of dimension 45.

In KL-HMM, the contextual modelling in grapheme-based |n the KL-HMM, each subword unit is modelled by a 3
ASR can be improved by for instance (a) using a timgate left-to-right HMM.

sequence of phoneme posterior probability estimates aséea _In the reminder of this section we present our studies using

observation, (b) modelling larger contexts at subword unjt proposed system and compare it with phoneme-based KL-
level using early tagging method [6], or (c) both. The me#0g,y\y system. Our main interest here is not to out-perform

(a)-(c) can help in striking a good balance between number gk, oneme-based system but to understand better how the
models and size of feature space. To this end, the ability égps between the two systems can be reduced. We note that

train KL-HMM ‘,’Vith fewer amqunt _Of training data for reasonSyhen ever the terms grapheme-based and phoneme-based are
such as posterior features being linearly separable [B¥jnly used we refer to the type of subword unit being used in the
lesser variability can also be put to better use. We demtrlexicon/dictionary

this by investigating the first two methods i.e. (a) and (b) in
this paper.
Though the above discussion has mainly focussed on the #seContext-independent subword unit studies
of both grapheme and phoneme information, it is important to )
note that some of the above discussed methods/approaehes afable Il presents the ASR results when context-independent

applicable to phoneme-based ASR system system as well 9rapheme and phoneme subword units are modelled. As
expected the system modelling both grapheme and phoneme

IV. EXPERIMENTS information (grapheme-based) performs significantly wors

We study the proposed approach to model jointly thi@an the standard phoneme-based ASR system. This is mainly
phoneme and grapheme information using KL-HMM for Endue to the fact that the multinomial distribution trained fo
glish language, which has a weaker correspondence betwg@gh state captures gross phoneme posterior informatin. F
phoneme and grapheme. We perform ASR studies on DARBIStance, the multinomial distribution for grapheme mdez!
RM corpus. The RM corpus consists of read queries on tR@n capture information about both phoneme /ch/ and /ki/.
status of Naval resources [13]. The task is artificial in marly can be observed that among the different local measures
aspects such as speech type, range of vocabulary and gra@nely,KL, RKL, andSK L, RKL yields the best system
matical constraint. The training set consists of 3,990rattees When using grapheme as subword units. This can be attributed
spoken by 109 speakers corresponding to approximately togthe fact that state distributions of grapheme subwordsuni
hours of speech. Of this, we use 2,880 utterances for tiuinii'® capturing gross phoneme posterior distribution. Hewev
and 1,100 for cross validation and development. The test §&¢ posterior estimates from the output of the MLP typically
contains 1,200 utterances amounting to 1.1 hours in tote. Thave peaky distribution (i.e., most of the probability mass
test set is completely covered by a word pairgrammarindud@”s in one particular dimension). Given this it can be seen
in the task specification which is used for recognition. from Eqn. (2) that inRK L the MLP posterior estimate is

We use an “off-the-shelf” MLP originally trained on Rrm the reference distribution which brings the ability to stle
corpus and used for an earlier study. For more details ab&gticular dimension (phoneme information) from the gross
the setup and state-of-the-art results reported usingvh@  distribution.
the reader may refer to [5]. In the case of phoneme as subword units the performance

It can be observed that for KL-HMM we need an alreadysing different local measures is consistent with previous
trained phoneme posterior feature estimator. This can @eservation [9]i.e., use K L as local measure yields better
trained on the intended task. In such a case, a question &xatem than boti L and RK L.
arise i.e., if we need to train a phoneme posterior estimatorFurthermore, it can be seen that use of an MLP trained on
than why not simply use phoneme based ASR system. Motarger amount of out-of-domain data i.e., WSJ-MLP leads to
over, there may not be always sufficient resources to trainmprovement in the performance for all the systems excapt fo
reliable posterior feature estimator on the intended t&k. grapheme-based ASR system usiRég L as local measure.



TABLE I

WORD ERRORRATE (WER) EXPRESSED IN% FOR . Thg resultd show that the modelling of grapheme context
CONTEXT-INDEPENDENT GRAPHEME AND CONTEXFINDEPENDENT significantly reduces the performance gap between grapheme
PHONEME SUBWORD UNITS BASECKL-HMM SYSTEMS RM-MLP based KL-HMM system and phoneme-based KL-HMM sys-

REFERS TO THE USE OMLP TRAINED ON RM CORPUS FOR POSTERIOR .
FEATURE ESTIMATION. WSJ-MLPREFERS TO THE USE OMLP TrRainep  t€m. However, from the above results it can be also seen that

ON WSJCORPUS FOR POSTERIOR FEATURE ESTIMATION there still exists a gap of about 1% absolute WER (comparing
the best systems) between grapheme-based and phoneme-

ﬁr‘fi?word k/loecs‘slure M%doéls RM-MLP | WSJ-MLP based systems with the latter being better.

Grapheme| KL >5 763 TN Interestln_gly for grapheme-based s_ystem when compared
RKL 29 252 254 to context-independent systeiik'L yields better system
SKL 29 32.8 32.0 compared toRK L and K L. In the case of phoneme-based

Phoneme | KL 42 7.6 7.4 system all the local measures yield similar performances.
RKL 42 8.0 7.3 Similar to the context-independent subword units study
SKL 42 70 6.9 reported in the previous section, the WSJ-MLP trained on

large amount of training data yields the best system for both

grapheme-based and phoneme-based systems.
B. Context-dependent subword units studies The improvement in the performance using context-

dependent graphemes and the difference in the performances

Table 1l presents the performance of KL-HMM systenfcross different local measures for grapheme-based system

using context-dependent graphemes as subword units and R¢ggests that though modeliing single preceding and fatigw
HMM system using context-dependent phonemes as subw8&F@pheme context brings the models closer to phonemes, ther
units. In this study, similar to[5] we have only modelled wor Still _exists certain amount “ambiguous”/gross informatiid
internal single preceding and following context (similacpn- Not in all but in few models. For instance, the average of the
ventional triphone modelling). Modelling context-depenti €Ntropy of all multinomial distributions co_rrespondmgttte
unit increases the number of models/parameters and this €8ftext-dependent grapheme models trained usirig local
possibly lead to poor model estimation due to lack of sufficieM&asure is 1.325 bits compared to 0.607 bits for context-
data. In such a case, it may be better to do parameter sharfigpendent phoneme models trained ushhg local measure.
However, in this study for both grapheme-based and phonenf&is also suggests that the context-dependent grapheme mod
based system we found on the development data that it€f§ an be limited in terms of their ability to capture phoeem
better to use the model estimated during context-dependi¥g! contextual information compared to context-depende
model training even if the occupancy count is as low as f§loneme models.
frames compared to state/model tying. Furthermore, in theln the following two subsections we present two different
case of grapheme-based KL-HMM system we also foursPproaches for context-dependent grapheme models ta bette
that using context-independent models as initial model f6@Pture/model the contextual information. In the first ajoh
context-dependent models training yields similar perfamoe the number of context-dependent models is preserved and
compared to the use of a flat model (i.e., all dimensions lgaviRPservation feature dimension is increased by using a seque
equal probability) as initial model. In other words, unlikeof posterior feature vectors as observation feature vettor
phoneme-based KL-HMM system the training of contexthe second approach, the observation feature dimension is
independent models is not always necessary for grapherﬁéﬁserved and the number of models are increased using early
based KL-HMM system. Thus, in this paper we report th&gging of contextual graphemes [6].

performance of context-dep_endent graphe_m_e_-based KL'HW Contextual modelling using posterior feature sequence
system where a flat model is used as an initial model.

One way to improve the ability of context-dependent
grapheme models to capture or better model the contextual

TABLE Il : o _
WER EXPRESSED IN% FOR CONTEXTFDEPENDENT GRAPHEME AND information is to use a temporal sequence of posterior featu
CONTEXT-GRAPHEME PHONEME SUBWORD UNITS BASEIKL-HMM vectors as feature observation as opposed to just a single
SYSTEM. RM-MLP REFERS TO THE USE OMMLP TRAINED ON RM frame. In doing so, we can expect the KL-HMM system to
CORPUS FOR POSTERIOR FEATURE ESTIMATIQWSJ-MLPREFERS TO . .
THE USE OFMLP TRAINED ON WSJCORPUS FOR PoSTERIOR FEaTure  DELtEr model the relation between the subword unit (context
ESTIMATION. dependent grapheme) and the evolution of posterior feature

(phoneme posterior probabilities) in a temporal neighbotch

Subword unit k/IOeC;slure Mf)c(i)éls RM-MLP | WSJ-MLP or simply said temporal contextual information. We perfetn
Sraohere =T T == =5 preliminary ASR studies using a posterior feature sequehce
P RKL 1911 6.6 6.2 length 3 (1 frame of each preceding and following context)

SKL 1911 6.3 6.1

Phoneme KL 2305 56 51 3The best performance of 5.5% WER and 6.3% WER for phonemedbas
RKL 2305 5.8 5'1 and grapheme-based system, respectively when using RM-btirfpares

’ ’ favorably to the best phoneme-based and grapheme-baseits resported

SKL 2305 55 51 in [5].




and 5 (2 frames of each preceding and following context). karly tagging [6]. In other words, these models can been

this approach, each state is modelled by a stack of multialbmseen as a kind of context-independent phoneme-like units

distributions which are trained jointly. The number of &&in that avoids capturing of gross distribution. This obseorat

is either 3 or 5 depending upon the length (number of framesgn be fairly made if we compare the performance of the

of the posterior feature sequence that is used as observatontext-dependent grapheme system fof. local measure

feature vector. Table IV presents the results of this study. in Table 11l with the performance of the context-independen
phoneme system for different local measures in Table Il. As

TABLE IV described in [6], it is possible to better model the contaktu
WEREXPRESSED IN% FOR CONTEXFDEPENDENT GRAPHEME AND . . -
CONTEXT-GRAPHEME PHONEME SUBWORD UNITS BASEKL-HMM information by building context-dependent models out @ th

SYSTEM WHERE OBSERVATION FEATURE VECTOR IS A SEQUENCE OF  early tagged units. We performed two studies where in the firs

POSTERIOR FEATURE VECTORCONTEXT OF 1 REFERS ONE FRAME OF Study we modelled Single preceding and fOIIOWing context of
BOTH PRECEDING AND FOLLOWING TEMPORAL CONTEXT WHERE AS A

CONTEXT OF2 REFERS TO TWO FRAMES OF BOTH PRECEDING AND  the early tagged units (can be seen as equivalent to moglellin
FOLLOWING TEMPORAL CONTEXT RM-MLP REFERS TO THEUSEOF  two preceding and two following context for each context-

MLP TRAINED ON RM CORPUS FOR POSTERIOR FEATURE ESTIMATION ;i He i ; ;
WSJ-MLPREFERS TO THE USE OMLP TRAINED ON WSJCORPUS FOR independent grapheme units, i.e. quintgraph), and in the se

POSTERIOR FEATURE ESTIMATION ond study we modelled only the following context (can be
seen as equivalent to modelling one preceding context and tw
Subword | Local #of | Context| RM- | WSJ- following context for each context-independent grapheme)
unit Measure| Models MLP | MLP During training the context-dependent early tagged unésew
Grapheme glf}L igﬁ i 2'2 ;g initialized by context-independent early tagged unite. (.
SKL 1911 1 6.4 58 the 1_911 _models_ resulting from context dependent system
Phoneme | K7L 2305 1 58 53 described in Section 1V-B). Table V shows the results fosthe
RKL 2305 1 5.9 5.3 studies.
SKL 2305 1 5.8 51
TABLE V
Grapheme glL(L igii g ég ;g WEREXPRESSED IN% FOR GRAPHEMEBASEDKL-HMM SYSTEM WITH
: ’ CONTEXTUAL MODELLING OF EARLY TAGGED UNITS. SPFREFERS TO
SKL 1911 2 6.0 5.7 SINGLE PRECEDING AND FOLLOWING CONTEXT MODELLING SFREFERS
Phoneme | KL 2305 2 2.9 5.1 TO SINGLE FOLLOWING CONTEXT MODELLING RM-MLP REFERS TO THE
RKL 2305 2 5.8 54 USE OFMLP TRAINED ON RM CORPUS FOR POSTERIOR FEATURE
SKL 2305 2 5.7 5.1 ESTIMATION. WSJ-MLPREFERS TO THE USE OMLP TRAINED ON WSJ
CORPUS FOR POSTERIOR FEATURE ESTIMATIQN
The results show that context-dependent grapheme-basedyoword T Local Fof | Context] RM T WSJ
KL-HMM can benefit from the information present in the | unit Measure| Models MLP | MLP
temporal sequence of posterior features especially when PZGrapheme] KL 3208 SF 6.6 | 6.6
frame preceding and following posterior feature sequence RKL 3208 SF 6.3 | 59
is modelled. It can also be noticed that the performance - SKL 3208 SF 56 | 56
of grapheme-based KL-HMM improves by increasing the| Crapheme; KL 41111 SPE 165 1 5.9
[ . ; RKL 4111 SPF 6.1 5.7
temporal context. Finding the appropriate temporal cdnitex SKL 4111 spE | 56 | 54

open for future research.
However, in the case of context-dependent phoneme-based

system no real improvements are seen by modelling the(:ontextual modelling of early tagged units in either way

temporal feature sequence. On the contrary, it is hurtieg tA€/PS in improving the performance of the grapheme-based
system at times. It is possible that there is no useful or OH@"HMM system such that the grapheme-bz?\sed KL-HMM
redundant information is present for phoneme-based systegr¥|5tem usings K’ L as local measure is becoming more com-

but it may be possible that the phoneme-based system ggﬁable (closer) to the phoneme-based KL-HMM system. It

benefit from much longer temporal sequence (about 130-18§02/SC interesting to note that when single preceding and

ms) as seen in some of the MLP-based modelling studies [1}10Wing context is modelled and WSJ-MLP is used as
To summarize. the results tries to show that it can sterior estimator the performances of systems usingreifit
possible to bridge the gap between grapheme-based QJ(EPI measures are becoming comparable. This sugg.ests that
phoneme-based system by modelling the temporal contextfjfen & well trained MLP on large amount of data there is good
information present in the sequence of posterior featuiss, potential in exploiting the contextual modelling of earagyed

it can be observed that the use of phoneme posterior estimé{@its to better capture the phoneme contextual information
from WSJ-MLP yields better system and improve the performance of grapheme-based KL-HMM

system.
D. Contextual modelling using early tagging
Earlier in the Section IV-B we mentioned that the context-
dependent grapheme models are initialized with a flat modelThe studies presented in this paper shows some interesting
and are then trained. In doing so, we in reality are perfogminhings. For instance, simply modelling the single precgdin

V. DISCUSSION



and single following grapheme context (like triphone sysised as observation feature vector. On DARPA RM corpus the
tems) may not endow the grapheme-based ASR system witioposed approach yielded almost 1% absolute WER higher
the same capabilities as a triphone system. However, thyan the phoneme-based KL-HMM system. However, we
modelling single preceding and single following graphem&howed through preliminary studies that the flexibility bét
context the resulting models can be expected to have bettdr-HMM to model contextual information at the observation
modelling capacity than context-independent phonemee(givfeature level and modelling of contextual information gsin
that we choose a right local measure). How much bettearly tagged units can help in reducing the gap between the
this can depend upon factors such as the task at hand.two systems. We also showed that these findings/obsergation
this paper, we performed studies on read speech, and gemeralize to the case where the posterior feature vector
obtained better results than context-independent phonerigeestimated using an MLP trained on an entirely different
based system using KL and RKL local measure when database. Furthermore, it was also found that when context-
modelling single preceding and single following graphemséependent grapheme units are usédL local measure yields
context. However, on spontaneous speech it is possibleeto Hee best system witlR K L being the next best.
that the performance of context-dependent (single pragedi Future work includes (a) finding the appropriate tempo-
and single following grapheme) grapheme system and contexal length of posterior feature vector sequence that can be
independent phoneme system are not too far apart. In suchnadelled effectively, (b) different ways to perform early
case, we expect that the capabilities of KL-HMM system tagging, (c) investigating the combination of both context
model contextual information at the posterior featurelleed modelling of early tagged units and modelling of a sequence
the use of early tagged units in conjunction with lessentraj of posterior feature vector as observation feature veetod,
data requirement can have bigger roles to play in bridgieg tkd) extending the grapheme-based KL-HMM studies to more
gap between context-dependent grapheme KL-HMM systeramplex spontaneous conversational speech recognitgn ta
and context-dependent phoneme KL-HMM system. and handling of unseen contexts.

Furthermore, the superiority of local measure& L and ACKNOWLEDGMENT
RK L over K L when modelling context-dependent grapheme

. . This work was supported by the Swiss National Science Foun-
systems can be more attributed to the ability of these meas PP y

TR S . u(Ij’ation (SNSF) through the project MULTI and the Swiss Nalon
to handle gross distributions (or ambiguity present in mak . .
. N . . . . . “ Center for Competence in Research (NCCR) under the project
mial distribution) in conjunction with reliable (and “pegk . ) .
. . . . Interactive Multimodal Information Management (IM2) pzof.
posterior estimate obtained at the output of MLP at time &#am REFERENCES

The context-dependent grapheme-based KL-HMM syste o .
. . . . . TI] S. Kanthak and H. Ney, “Context-dependent acoustic rioglausing
investigated in this paper can be contrasted with context- graphemes for large vocabulary speech recognitionPrioceedings of

dependent grapheme-based HMM/GMM system using tandem ICASSP Orlando, USA, 2002, pp. 845-848.

; i 2] M. Killer, S. Stuker, and T. Schultz, “Grapheme baseéexh recogni-
features (see also Table I) such as the one studied in [5}eThé fion.” in Proceedings of Eurospeach003, pp. 3141, 3144,

are a few advantages with KL-HMM approach over tandengs) B. Mimer, S. Stiker, and T. Schultz, “Graphembasierzasherken-
system. Tandem system uses transformed posterior proba- nung unter verwendung flexibler entscheidungbaumeFlektronische

bilities and in the course of transformation the dimension? Sprachsignalverarbeitung ESS2004. o
. L . 4] M. Magimai.-Doss, S. Bengio, and H. Bourlard, “Joint ddimng for
lose the phoneme identity information where as KL-HMM" " 5neme-grapheme continuous speech recognitionPrateedings of

preserves it. Retaining the identity of phoneme informmatio  ICASSP Montreal, Canada, 2004, pp. I-177-1-180.

can be beneficial. For instance, it is possible to initiatize [5] J: Dines and M. Magimai-Doss, "A study of phoneme and beape
P based context-dependent ASR systems,MaMI 2007, ser. Lecture

multinomial _dis_tribUtion for a ContEXt'depe_ndent g_rapleern Notes in Computer Science No. 4892, 2008, pp. 215-226.
subword unit given the grapheme context information usings] G. Anumanchipalli, K. Prahallad, and A. Black, “Signdicce of early

such as letter-to-sound rules. Also, retaining the phoneme t@g9ed contextual graphemes in grapheme based speeclessgriind
9 P recognition systems,” ifProceedings of ICASSR008.

identity information may give flexibility in learning the € (71 y.4_ sung, T. Hughes, F. Beaufays, and B. Strope, “Rtwi
lation between the subword units and posterior featuresiwhe  graphemes with increased amount of data,Pioceedings of ICASSP

modelling temporal context at observation feature leveths 2009.

. . éslj G. Aradilla, J. Vepa, and H. Bourlard, “An acoustic mod®ised on
as the way we did in this paper. Furthermore, we noted earlier | pack-leibler divergence for posterior features,” Rroceedings of

that it was beneficial to retain model parameters of the KL- ICASSP 2007.

HMM system at the end of training even if the occupancy®l G: Aradilla, H. Bourlard, and M. Magimai-Doss, “Using Kbased
acoustic models in a large vocabulary recognition taskPiioceedings

count for a model is as low as 15 frames. A similar flexibility  of |nterspeech2008.
may not be feasible/useful with tandem feature based systg) G. Aradilla, “Acoustic models for posterior features speech recogni-

where more parameters are modelled. tion,” Ph.D. dissertation, EPFL, Lausanne , Switzerlar@D&
[11] J. P. Pinto, H. Hermansky, B. Yegnanarayana, and M. MagiDoss,
VI. CONCLUSION “Exploiting contextual information for improved phonemecognition,”

in "Proceedings of ICASSR"2008.
In this paper, we proposed a simple approach to joint[§'2] S. King an_d P. Taylor, “Detection of phonological fesi in continuous
. . . speech using neural network§bmputer Speech and Languagel. 14,
model both grapheme and phoneme information using KL- 0"/ pp. 333-353, 2000.
HMM, where, grapheme are the subword units and thes] P.J. Price, W. Fisher, and J. Bernstein, “A databasedatinuous speech



