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Abstract—In this paper, we propose a simple approach to
jointly model both grapheme and phoneme information using
Kullback-Leibler divergence based HMM (KL-HMM) system.
More specifically, graphemes are used as subword units and
phoneme posterior probabilities estimated at output of multilayer
perceptron are used as observation feature vector. Through
preliminary studies on DARPA Resource Management corpus
it is shown that although the proposed approach yield lower
performance compared to KL-HMM system using phoneme as
subword units, this gap in the performance can be bridged via
temporal modelling at the observation feature vector leveland
contextual modelling of early tagged contextual graphemes.

I. I NTRODUCTION

State-of-the-art HMM-based automatic speech recognition
(ASR) systems commonly use phoneme as subword unit. More
recently, there has been growing interest in using directlythe
grapheme1 (orthographic) transcription of the word (without
explicit lexical phonetic level modelling). There are three
main advantages in using grapheme as subword units. Firstly,
dictionary generation is easy. Secondly, grapheme subword
units can be shared across different languages2 thus it may
help in porting ASR system trained on languages that have
large resources to languages that have resource constraints.
Thirdly, unlike the phoneme-based ASR system where a word
can have pronunciation variants the word representation is
unique (orthographic forms of words do not vary between
speakers). While the use of grapheme as subword unit lim-
its the variability at the word representation level, the link
between the acoustic waveform becomes weaker (depending
on the language), as the standard acoustic features extracted
from the spectrum of the speech signal characterize phonemes.
For instance, in languages such as Finnish and Spanish there
is good one-to-one unique correspondence between phoneme
and grapheme, so when using grapheme as subword units the
link between acoustic waveform can be as strong as phoneme.
However, it is not the same case for languages such as English
where the correspondence between phoneme and grapheme is
weak. For instance, alphabet [C] can correspond to phonemes
/k/ or /ch/. Thus, there has been emphasis on integrating

1Grapheme is a written symbol that is used to represent words.
2Roman alphabet is the most widely used. It covers languages from most

of the European nations, all nations of the America and Oceania, most of the
African nations, and a few Asian nations as well.

phoneme information to yield better grapheme-based ASR
system. For instance,

• In [1], the grapheme-based ASR system was trained such
that both grapheme-to-phoneme mapping and HMM state
tying are optimized with a single phonetically motivated
decision tree. In this approach, performance comparable
to phoneme-based ASR system was observed for lan-
guages such as Dutch and German but for English the
performance was lower than the phoneme-based ASR
system.

• Investigating different efficient state tying methods [2],
[3], such as decision trees with question set that incorpo-
rate relation between phoneme and grapheme, or question
set containing simple preceding and following context
(singleton question set), or using bottom-up clustering
for context-dependent grapheme-based ASR system was
studied for different languages.

• Joint modelling of phoneme and grapheme information
by training multilayer perceptron (MLP) that classifies
both phoneme and grapheme [4]. During decoding, ei-
ther phoneme or grapheme information is hidden by
marginilizing the posterior distribution and decoding is
performed with grapheme subword units or phoneme
subword units, respectively or joint decoding in both
spaces, i.e., phoneme subword units and grapheme sub-
word units. The latter approach consistently yielding
better performance.

• In [5], it was shown that using tandem features which
can carry information more specific to the speech sound,
and less susceptible to speaker and environment, the
gap between phoneme-based ASR system and grapheme-
based ASR system can be effectively reduced.

• Introducing grapheme context information through early
tagging which can avoid capturing of gross distributions
when modelling context-independent grapheme units and
reducing ambiguity as well [6].

Apart from the above mentioned studies where the motivation
has been to integrate phoneme information, in a more recent
study it was shown that performance similar to phoneme-
based ASR system can be achieved with grapheme-based ASR
system “by sufficient context modelling and using enough



training data” [7].
In this paper, we propose a simple approach to jointly model

both grapheme and phoneme information using the flexibility
of recently proposed Kullback-Leibler divergence-based HMM
system[8], [9]. More specifically, grapheme is used as subword
unit (i.e., pronunciation of each word is represented in terms of
its orthographic transcription) and, the phoneme information is
modelled through phoneme posterior probabilities estimated at
each time frame using an MLP, which are used as observation
feature vectors.

We demonstrate the viability of this approach for English
language through preliminary studies on DARPA Resource
Management (RM) corpus. Our studies using an “off-the-
shelf” MLP trained on RM corpus show that this approach can
achieve performance closer to phoneme-based ASR system
with still a gap of about 1% absolute word error rate. However,
we also show that this gap can be reduced by improving
contextual modelling either at feature level (i.e., by using a
sequence of phoneme posterior probabilities as observation
vector) or by improving contextual modelling by early tagging
as proposed in [6]. Further more, we also show that these
findings generalize to the case where the MLP is trained on
an entirely different database/corpus.

The rest of the paper is organized as follows. In Section II,
we briefly summarize the KL-HMM system and motivate the
proposed approach in Section III. Section IV presents the
experimental studies and in Section VI we conclude.

II. K ULLBACK -LEIBLER DIVERGENCE BASED HMM

In KL-HMM, the observation feature vector is a posterior
probability vectorz = [z(1), · · · z(d), · · · z(D)]T of dimension
D, and emission distribution of a statei is modelled by a multi-
nomial distributiony

i = [yi(1), · · · yi(d), · · · yi(D)]T . The
posterior probability vector can be for instance the phoneme
posteriors estimated by an MLP. The local score is estimated
using KL-divergence. KL-divergence being an asymmetric
measure the local score can be estimated in different ways,
such as,

KL(yi, z) =

D∑

d=1

yi(d) · log(
yi(d)

z(d)
) (1)

RKL(z,yi) =
D∑

d=1

z(d) · log(
z(d)

yi(d)
) (2)

SKL(yi, z) =
1

2
[KL(yi, z) + RKL(z,yi)] (3)

Table I compares the capabilities of KL-HMM with different
types of state-of-the-art HMM-based ASR systems.

In our earlier studies [9], [10] using phoneme as subword
units it was shown that (a) KL-HMM is simpler (fewer number
of parameters) and flexible (it relaxes the tying between each
MLP output unit and HMM-state which otherwise limits the
capability of HMM/MLP) (b) KL-HMM can be trained with

TABLE I
COMPARISON OF CAPABILITIES OFKL-HMM WITH STANDARD

HMM- BASED SYSTEMS. NOTATIONS: GMM - GAUSSIAN MIXTURE

MODELS, EM - EXPECTATION MAXIMIZATION , EV - EMBEDDED V ITERBI,
CI - CONTEXT-INDEPENDENT, CD - CONTEXT-DEPENDENT

System HMM/GMM Hybrid Tandem KL-HMM
HMM/
MLP

Feature Spectral- Spectral- Processed Posterior
based based posterior probabilities

Probabilities
Emission GMM MLP GMM Multinomial
distribution distribution
Local Likelihood Scaled- Likelihood KL-
score likelihood divergence
Training EM/EV EV/EM EM/EV EV /
method EM-like

(possible)
Decoding Viterbi Viterbi Viterbi Viterbi
Subword CI and CD CI CI and CD CI and CD
modelling

a fewer amount of training data using standard embedded-
Viterbi-like framework, (c) KL-HMM can achieve perfor-
mance comparable to state-of-the-art ASR systems, and (d)
Depending upon the type of local score usedKL(yi, z) or
RKL(yi, z) if the reference distribution is reduced to delta
distribution then KL-HMM is equivalent to hybrid HMM/MLP
or discrete HMM, respectively.

III. M OTIVATION

The use of posterior probability estimates of elementary
speech sound units such as phoneme as feature observation in
KL-HMM provides the flexibility of choosing the subword unit
level representation. In this work, we are interested in thecase
where the subword unit is grapheme. In doing so, dictionary
generation is easy and each word has a single pronunciation
and, as the feature space is phoneme posterior probabilities
we can expect to keep the relation to acoustics intact via
contextual modelling.

To be more specific, unlike earlier studies in grapheme-
based ASR where there has been more emphasis to model the
relation between grapheme subword unit representation and
acoustic feature directly[2]. This can be difficult depending
upon the language and also for the reason that acoustic features
can be susceptible to undesirable variabilities (e.g., speaker
variation, channel variation). Here in the proposed approach,
this task is split into two independent steps, a phoneme
posterior estimator that can learn the relation to acoustics in
a better way, and KL-HMM that learns the relation between
observed phoneme evidence and grapheme subword units.
Furthermore, the use of discriminative classifiers such as MLP
to estimate posterior features helps in reducing the effectof
undesirable variabilities.

There is also flexibility in the way one would like to model
phoneme information. For instance, the observation feature
space of KL-HMM can be sub-phonemic posterior feature
estimated using MLP [11], articulatory feature posterior prob-



abilities estimated using MLP [12], using universal phoneme
set (e.g. WorldBet), or a combination of them.

It is known through letter-to-sound rule studies that to map
a character in a particular word to a phoneme variable number
of neighboring grapheme context information may be required.
Given this, it is fairly easy to see that the conventional
approach of modelling a fixed context in grapheme based ASR
system such as modelling one preceding and one following
context similar to triphone modelling can bring the subword
representation closer to phoneme by reducing ambiguity but
this model may not be as powerful as conventional triphone
model in phoneme-based ASR system. Modelling fixed larger
grapheme context may not necessarily solve this problem.
In KL-HMM, the contextual modelling in grapheme-based
ASR can be improved by for instance (a) using a time
sequence of phoneme posterior probability estimates as feature
observation, (b) modelling larger contexts at subword unit
level using early tagging method [6], or (c) both. The methods
(a)-(c) can help in striking a good balance between number of
models and size of feature space. To this end, the ability to
train KL-HMM with fewer amount of training data for reasons
such as posterior features being linearly separable [11], having
lesser variability can also be put to better use. We demonstrate
this by investigating the first two methods i.e. (a) and (b) in
this paper.

Though the above discussion has mainly focussed on the use
of both grapheme and phoneme information, it is important to
note that some of the above discussed methods/approaches are
applicable to phoneme-based ASR system system as well.

IV. EXPERIMENTS

We study the proposed approach to model jointly the
phoneme and grapheme information using KL-HMM for En-
glish language, which has a weaker correspondence between
phoneme and grapheme. We perform ASR studies on DARPA
RM corpus. The RM corpus consists of read queries on the
status of Naval resources [13]. The task is artificial in many
aspects such as speech type, range of vocabulary and gram-
matical constraint. The training set consists of 3,990 utterances
spoken by 109 speakers corresponding to approximately 3.8
hours of speech. Of this, we use 2,880 utterances for training
and 1,100 for cross validation and development. The test set
contains 1,200 utterances amounting to 1.1 hours in total. The
test set is completely covered by a word pair grammar included
in the task specification which is used for recognition.

We use an “off-the-shelf” MLP originally trained on RM
corpus and used for an earlier study. For more details about
the setup and state-of-the-art results reported using thisMLP
the reader may refer to [5].

It can be observed that for KL-HMM we need an already
trained phoneme posterior feature estimator. This can be
trained on the intended task. In such a case, a question can
arise i.e., if we need to train a phoneme posterior estimator
than why not simply use phoneme based ASR system. More-
over, there may not be always sufficient resources to train a
reliable posterior feature estimator on the intended task.So,

it may be better to have a posterior feature estimator trained
on a large auxiliary database/corpus. In such a case, this may
possibly lead to the problem of mismatched conditions. So we
can possibly ask, what is the effect of using a posterior feature
estimator trained on a different database on the performance of
the proposed system. We address this issue by using another
“off-the-shelf” MLP which was originally trained on Wall
Street Journal (WSJ) corpus for phoneme-based KL-HMM
studies reported in [9] (with roughly 80 hours of speech).

Both the MLPs i.e. the one trained on RM corpus (RM-
MLP) and the one trained on WSJ corpus (WSJ-MLP) output
phoneme posterior probabilities (also referred to as posterior
features) of dimension 45.

In the KL-HMM, each subword unit is modelled by a 3
state left-to-right HMM.

In the reminder of this section we present our studies using
the proposed system and compare it with phoneme-based KL-
HMM system. Our main interest here is not to out-perform
the phoneme-based system but to understand better how the
gaps between the two systems can be reduced. We note that
when ever the terms grapheme-based and phoneme-based are
used we refer to the type of subword unit being used in the
lexicon/dictionary.

A. Context-independent subword unit studies

Table II presents the ASR results when context-independent
grapheme and phoneme subword units are modelled. As
expected the system modelling both grapheme and phoneme
information (grapheme-based) performs significantly worse
than the standard phoneme-based ASR system. This is mainly
due to the fact that the multinomial distribution trained for
each state captures gross phoneme posterior information. For
instance, the multinomial distribution for grapheme model[C]
can capture information about both phoneme /ch/ and /k/.
It can be observed that among the different local measures
namely,KL, RKL, andSKL, RKL yields the best system
when using grapheme as subword units. This can be attributed
to the fact that state distributions of grapheme subword units
are capturing gross phoneme posterior distribution. However,
the posterior estimates from the output of the MLP typically
have peaky distribution (i.e., most of the probability mass
falls in one particular dimension). Given this it can be seen
from Eqn. (2) that inRKL the MLP posterior estimate is
the reference distribution which brings the ability to select a
particular dimension (phoneme information) from the gross
distribution.

In the case of phoneme as subword units the performance
using different local measures is consistent with previous
observation [9] i.e., use ofSKL as local measure yields better
system than bothKL andRKL.

Furthermore, it can be seen that use of an MLP trained on
larger amount of out-of-domain data i.e., WSJ-MLP leads to
improvement in the performance for all the systems except for
grapheme-based ASR system usingRKL as local measure.



TABLE II
WORD ERRORRATE (WER) EXPRESSED IN% FOR

CONTEXT-INDEPENDENT GRAPHEME AND CONTEXT-INDEPENDENT

PHONEME SUBWORD UNITS BASEDKL-HMM SYSTEMS. RM-MLP
REFERS TO THE USE OFMLP TRAINED ON RM CORPUS FOR POSTERIOR

FEATURE ESTIMATION. WSJ-MLPREFERS TO THE USE OFMLP TRAINED

ON WSJCORPUS FOR POSTERIOR FEATURE ESTIMATION.

Subword Local # of RM-MLP WSJ-MLP
unit Measure Models
Grapheme KL 29 46.3 38.7

RKL 29 25.2 25.4
SKL 29 32.8 32.0

Phoneme KL 42 7.6 7.4
RKL 42 8.0 7.3
SKL 42 7.0 6.9

B. Context-dependent subword units studies

Table III presents the performance of KL-HMM system
using context-dependent graphemes as subword units and KL-
HMM system using context-dependent phonemes as subword
units. In this study, similar to[5] we have only modelled word
internal single preceding and following context (similar to con-
ventional triphone modelling). Modelling context-dependent
unit increases the number of models/parameters and this can
possibly lead to poor model estimation due to lack of sufficient
data. In such a case, it may be better to do parameter sharing.
However, in this study for both grapheme-based and phoneme-
based system we found on the development data that it is
better to use the model estimated during context-dependent
model training even if the occupancy count is as low as 15
frames compared to state/model tying. Furthermore, in the
case of grapheme-based KL-HMM system we also found
that using context-independent models as initial model for
context-dependent models training yields similar performance
compared to the use of a flat model (i.e., all dimensions having
equal probability) as initial model. In other words, unlike
phoneme-based KL-HMM system the training of context-
independent models is not always necessary for grapheme-
based KL-HMM system. Thus, in this paper we report the
performance of context-dependent grapheme-based KL-HMM
system where a flat model is used as an initial model.

TABLE III
WER EXPRESSED IN% FOR CONTEXT-DEPENDENT GRAPHEME AND

CONTEXT-GRAPHEME PHONEME SUBWORD UNITS BASEDKL-HMM
SYSTEM. RM-MLP REFERS TO THE USE OFMLP TRAINED ON RM

CORPUS FOR POSTERIOR FEATURE ESTIMATION. WSJ-MLPREFERS TO

THE USE OFMLP TRAINED ON WSJCORPUS FOR POSTERIOR FEATURE

ESTIMATION.

Subword unit Local # of RM-MLP WSJ-MLP
Measure Models

Grapheme KL 1911 7.7 7.9
RKL 1911 6.6 6.2
SKL 1911 6.3 6.1

Phoneme KL 2305 5.6 5.1
RKL 2305 5.8 5.1
SKL 2305 5.5 5.1

The results3 show that the modelling of grapheme context
significantly reduces the performance gap between grapheme-
based KL-HMM system and phoneme-based KL-HMM sys-
tem. However, from the above results it can be also seen that
there still exists a gap of about 1% absolute WER (comparing
the best systems) between grapheme-based and phoneme-
based systems with the latter being better.

Interestingly for grapheme-based system when compared
to context-independent systemSKL yields better system
compared toRKL and KL. In the case of phoneme-based
system all the local measures yield similar performances.

Similar to the context-independent subword units study
reported in the previous section, the WSJ-MLP trained on
large amount of training data yields the best system for both
grapheme-based and phoneme-based systems.

The improvement in the performance using context-
dependent graphemes and the difference in the performances
across different local measures for grapheme-based system
suggests that though modelling single preceding and following
grapheme context brings the models closer to phonemes, there
still exists certain amount “ambiguous”/gross information if
not in all but in few models. For instance, the average of the
entropy of all multinomial distributions corresponding tothe
context-dependent grapheme models trained usingKL local
measure is 1.325 bits compared to 0.607 bits for context-
dependent phoneme models trained usingKL local measure.
This also suggests that the context-dependent grapheme mod-
els can be limited in terms of their ability to capture phoneme
level contextual information compared to context-dependent
phoneme models.

In the following two subsections we present two different
approaches for context-dependent grapheme models to better
capture/model the contextual information. In the first approach
the number of context-dependent models is preserved and
observation feature dimension is increased by using a sequence
of posterior feature vectors as observation feature vector. In
the second approach, the observation feature dimension is
preserved and the number of models are increased using early
tagging of contextual graphemes [6].

C. Contextual modelling using posterior feature sequence

One way to improve the ability of context-dependent
grapheme models to capture or better model the contextual
information is to use a temporal sequence of posterior feature
vectors as feature observation as opposed to just a single
frame. In doing so, we can expect the KL-HMM system to
better model the relation between the subword unit (context-
dependent grapheme) and the evolution of posterior features
(phoneme posterior probabilities) in a temporal neighborhood
or simply said temporal contextual information. We performed
preliminary ASR studies using a posterior feature sequenceof
length 3 (1 frame of each preceding and following context)

3The best performance of 5.5% WER and 6.3% WER for phoneme-based
and grapheme-based system, respectively when using RM-MLPcompares
favorably to the best phoneme-based and grapheme-based results reported
in [5].



and 5 (2 frames of each preceding and following context). In
this approach, each state is modelled by a stack of multinomial
distributions which are trained jointly. The number of stacks in
is either 3 or 5 depending upon the length (number of frames)
of the posterior feature sequence that is used as observation
feature vector. Table IV presents the results of this study.

TABLE IV
WER EXPRESSED IN% FOR CONTEXT-DEPENDENT GRAPHEME AND

CONTEXT-GRAPHEME PHONEME SUBWORD UNITS BASEDKL-HMM
SYSTEM WHERE OBSERVATION FEATURE VECTOR IS A SEQUENCE OF

POSTERIOR FEATURE VECTOR. CONTEXT OF 1 REFERS ONE FRAME OF

BOTH PRECEDING AND FOLLOWING TEMPORAL CONTEXT WHERE AS A

CONTEXT OF2 REFERS TO TWO FRAMES OF BOTH PRECEDING AND
FOLLOWING TEMPORAL CONTEXT. RM-MLP REFERS TO THE USE OF

MLP TRAINED ON RM CORPUS FOR POSTERIOR FEATURE ESTIMATION.
WSJ-MLPREFERS TO THE USE OFMLP TRAINED ON WSJCORPUS FOR

POSTERIOR FEATURE ESTIMATION.

Subword Local # of Context RM- WSJ-
unit Measure Models MLP MLP
Grapheme KL 1911 1 7.3 7.5

RKL 1911 1 6.4 5.8
SKL 1911 1 6.4 5.8

Phoneme KL 2305 1 5.8 5.3
RKL 2305 1 5.9 5.3
SKL 2305 1 5.8 5.1

Grapheme KL 1911 2 7.2 7.0
RKL 1911 2 6.0 5.7
SKL 1911 2 6.0 5.7

Phoneme KL 2305 2 5.9 5.1
RKL 2305 2 5.8 5.4
SKL 2305 2 5.7 5.1

The results show that context-dependent grapheme-based
KL-HMM can benefit from the information present in the
temporal sequence of posterior features especially when 2
frame preceding and following posterior feature sequence
is modelled. It can also be noticed that the performance
of grapheme-based KL-HMM improves by increasing the
temporal context. Finding the appropriate temporal context is
open for future research.

However, in the case of context-dependent phoneme-based
system no real improvements are seen by modelling the
temporal feature sequence. On the contrary, it is hurting the
system at times. It is possible that there is no useful or only
redundant information is present for phoneme-based system,
but it may be possible that the phoneme-based system can
benefit from much longer temporal sequence (about 130-150
ms) as seen in some of the MLP-based modelling studies [11].

To summarize, the results tries to show that it can be
possible to bridge the gap between grapheme-based and
phoneme-based system by modelling the temporal contextual
information present in the sequence of posterior features.Also,
it can be observed that the use of phoneme posterior estimates
from WSJ-MLP yields better system.

D. Contextual modelling using early tagging

Earlier in the Section IV-B we mentioned that the context-
dependent grapheme models are initialized with a flat model
and are then trained. In doing so, we in reality are performing

early tagging [6]. In other words, these models can been
seen as a kind of context-independent phoneme-like units
that avoids capturing of gross distribution. This observation
can be fairly made if we compare the performance of the
context-dependent grapheme system forKL local measure
in Table III with the performance of the context-independent
phoneme system for different local measures in Table II. As
described in [6], it is possible to better model the contextual
information by building context-dependent models out of the
early tagged units. We performed two studies where in the first
study we modelled single preceding and following context of
the early tagged units (can be seen as equivalent to modelling
two preceding and two following context for each context-
independent grapheme units, i.e. quintgraph), and in the sec-
ond study we modelled only the following context (can be
seen as equivalent to modelling one preceding context and two
following context for each context-independent grapheme).
During training the context-dependent early tagged units were
initialized by context-independent early tagged units (i.e.,
the 1911 models resulting from context dependent system
described in Section IV-B). Table V shows the results for these
studies.

TABLE V
WER EXPRESSED IN% FOR GRAPHEME-BASEDKL-HMM SYSTEM WITH

CONTEXTUAL MODELLING OF EARLY TAGGED UNITS. SPFREFERS TO

SINGLE PRECEDING AND FOLLOWING CONTEXT MODELLING. SFREFERS

TO SINGLE FOLLOWING CONTEXT MODELLING. RM-MLP REFERS TO THE
USE OFMLP TRAINED ON RM CORPUS FOR POSTERIOR FEATURE

ESTIMATION. WSJ-MLPREFERS TO THE USE OFMLP TRAINED ON WSJ
CORPUS FOR POSTERIOR FEATURE ESTIMATION.

Subword Local # of Context RM WSJ
unit Measure Models MLP MLP
Grapheme KL 3208 SF 6.6 6.6

RKL 3208 SF 6.3 5.9
SKL 3208 SF 5.6 5.6

Grapheme KL 4111 SPF 6.5 5.9
RKL 4111 SPF 6.1 5.7
SKL 4111 SPF 5.6 5.4

Contextual modelling of early tagged units in either way
helps in improving the performance of the grapheme-based
KL-HMM system such that the grapheme-based KL-HMM
system usingSKL as local measure is becoming more com-
parable (closer) to the phoneme-based KL-HMM system. It
is also interesting to note that when single preceding and
following context is modelled and WSJ-MLP is used as
posterior estimator the performances of systems using different
local measures are becoming comparable. This suggests that
given a well trained MLP on large amount of data there is good
potential in exploiting the contextual modelling of early tagged
units to better capture the phoneme contextual information
and improve the performance of grapheme-based KL-HMM
system.

V. D ISCUSSION

The studies presented in this paper shows some interesting
things. For instance, simply modelling the single preceding



and single following grapheme context (like triphone sys-
tems) may not endow the grapheme-based ASR system with
the same capabilities as a triphone system. However, by
modelling single preceding and single following grapheme
context the resulting models can be expected to have better
modelling capacity than context-independent phoneme (given
that we choose a right local measure). How much better
this can depend upon factors such as the task at hand. In
this paper, we performed studies on read speech, and we
obtained better results than context-independent phoneme-
based system usingSKL and RKL local measure when
modelling single preceding and single following grapheme
context. However, on spontaneous speech it is possible to see
that the performance of context-dependent (single preceding
and single following grapheme) grapheme system and context-
independent phoneme system are not too far apart. In such a
case, we expect that the capabilities of KL-HMM system to
model contextual information at the posterior feature level, and
the use of early tagged units in conjunction with lesser training
data requirement can have bigger roles to play in bridging the
gap between context-dependent grapheme KL-HMM system
and context-dependent phoneme KL-HMM system.

Furthermore, the superiority of local measuresSKL and
RKL overKL when modelling context-dependent grapheme
systems can be more attributed to the ability of these measures
to handle gross distributions (or ambiguity present in multino-
mial distribution) in conjunction with reliable (and “peaky”)
posterior estimate obtained at the output of MLP at time frame.

The context-dependent grapheme-based KL-HMM system
investigated in this paper can be contrasted with context-
dependent grapheme-based HMM/GMM system using tandem
features (see also Table I) such as the one studied in [5]. There
are a few advantages with KL-HMM approach over tandem
system. Tandem system uses transformed posterior proba-
bilities and in the course of transformation the dimensions
lose the phoneme identity information where as KL-HMM
preserves it. Retaining the identity of phoneme information
can be beneficial. For instance, it is possible to initializethe
multinomial distribution for a context-dependent grapheme
subword unit given the grapheme context information using
such as letter-to-sound rules. Also, retaining the phoneme
identity information may give flexibility in learning the re-
lation between the subword units and posterior features when
modelling temporal context at observation feature level, such
as the way we did in this paper. Furthermore, we noted earlier
that it was beneficial to retain model parameters of the KL-
HMM system at the end of training even if the occupancy
count for a model is as low as 15 frames. A similar flexibility
may not be feasible/useful with tandem feature based system
where more parameters are modelled.

VI. CONCLUSION

In this paper, we proposed a simple approach to jointly
model both grapheme and phoneme information using KL-
HMM, where, grapheme are the subword units and the
phoneme posterior estimates obtained at the output of MLP are

used as observation feature vector. On DARPA RM corpus the
proposed approach yielded almost 1% absolute WER higher
than the phoneme-based KL-HMM system. However, we
showed through preliminary studies that the flexibility of the
KL-HMM to model contextual information at the observation
feature level and modelling of contextual information using
early tagged units can help in reducing the gap between the
two systems. We also showed that these findings/observations
generalize to the case where the posterior feature vector
is estimated using an MLP trained on an entirely different
database. Furthermore, it was also found that when context-
dependent grapheme units are usedSKL local measure yields
the best system withRKL being the next best.

Future work includes (a) finding the appropriate tempo-
ral length of posterior feature vector sequence that can be
modelled effectively, (b) different ways to perform early
tagging, (c) investigating the combination of both contextual
modelling of early tagged units and modelling of a sequence
of posterior feature vector as observation feature vector,and
(d) extending the grapheme-based KL-HMM studies to more
complex spontaneous conversational speech recognition task
and handling of unseen contexts.
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