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Exploiting Long-Term Observations for Track Creation and Deletion
in Online Multi-Face Tracking

Stefan Duffner and Jean-Marc Odobez

Abstract— In many visual multi-object tracking applications,  proposing new features or new multi-cue fusion mechanisms,
the question when to add or remove a target is not trivial and results are demonstrated mostly on short sequences. Few
due to, for example, erroneous outputs of object detectorsro ¢ them address the issue of track initialisation (esphgial

observation models that cannot describe the full variabiliy of hen doi f luati Itis oft od th
the objects to track. In this paper, we present a real-time, oline when doing performance evaluation). Itis often assum a

multi-face tracking algorithm that effectively deals with missing @ face detector is used for that purpose, but how to rely on a
or uncertain detections in a principled way. The tracking face detector? If &igh confidence threshold is used, there is

is formulated in a multi-object state-space Bayesian filtdng g higher risk of missing an early track initialisation. [fav

framework solved with Markov Chain Monte Carlo. Within — threshold is chosen, false track alarms are likely to occur.
this framework, an explicit probabilistic filtering step re lying on inaf
head detections, likelihood models, and long term observians Even fewer works address track terminatioimdeed, how

as well as object track characteristics has been designed to do we know at each point in time that a tracker is doing fine
take the decision on when to add or remove a target from or that there is a failure? This an important issue in pragtic
the tracker. The proposed method applied on three challengig  since a false failure detectiore§. due to the absence of
platasets of more than 9 hour_s_shows a S|gn|f|cant_ performance detected faces) may mean losing a person track for a long
increase compared to a traditional approach relying on head . . . - .
detection and likelihood models only. period until the detector finds the face again. Most algorih
work recursively, and assessing tracking failure is ofefh |
. INTRODUCTION to the (sudden) drop of objective or likelihood measures
The real-time detection of objects is an important comwhich are not that easy to control in practice [8], [9].
ponent in many computer vision applicatioesy. human-  Finally, in many scenarios of interest, the camera is fixed,
computer interaction, video-surveillance, and augmented and due to the application and the room configuration, people
ality. Moreover, faces play a crucial role in human commuin front of the camera tend to occupy the same space or
nication. Thus, the automatic visual detection and tragkinpehave similarly over long periods. However, most of the
of faces is of particular interest in video-conferencinglap existing face tracking methods ignore this long-term infar
cations or in the analysis of social interaction. tion, as they concentrate on videos that are often not longer
The most straightforward approach to solve this problenhan a minute. Or otherwise, long term information is mainly
is to employ a face detector [13]. However, despite muchsed to construct stable appearance models of tracked®bjec
progress performed in recent years on multi-view face dgs], [16], e.g. by working at different temporal scales [12].
tection, and the use of these detectors in “simple” scesari@imilarly, some approaches [1], [4] train an (object-speki
where people predominantly look towards the camera (videfetector online, during tracking, to make it more robust
conferencing, HCI), this is not sufficient, aBd to 40% of  to short-term and long-term appearance changes. Recently,
faces are missed as demonstrated in our results. There gfkami et al. [8] introduced the Memory-based Particle
indeed many situations where faces are not detected, whighter where a history of past states (and appearances [9])
is especially due to variability in face appearance or light s maintained and used to sample new particles. However,
conditions. Above all, it is the consequence of less commafey only addressed single, near-frontal face trackingigh
head poses that people naturally take. to look at other resolution videos and only evaluated the method on 30 to
people in the same room, or to look down (at objects 080 second video clips. Finally, other workad. [6], [11])
a table, or if they are tired or bored) which often involvegackle the problem of long-terwerson tracking by analysing
large head tilts. Unfortunately, the missed detections @b nthe statistics of features from shorter tracks (trackleisy
happen at random time, since for the above reasons, th¢ proposing methods to effectively associate them. These
difficult head postures can last for long periods (up to ongigorithms are essentially different from ours as they pssc
minute in some of our recordings). In practice, this meange dataoff-line, i.e. the observations at each point in time
that face detection algorithms have to be complemented ke known in advance, and they mainly deal with the tracking
robust tracking approaches; not only to interpolate d&tect of whole persons (not just the face).
results or filter out spurious detection as is often assumed,
Igut also to allow head localisation over extended periods of1 gte that principled methods exist to integrate track éweagnd
time. termination within the tracking frameworle.g. Reversible-Jump Markov

Numerous methods for visual tracking of multiple face€hain Monte Carlo (R3-MCMC) [5], [15]. But to be effectivérey require
appropriate global scene likelihood models involving a dixeumber of

have been proposed in .the Iiteratueeg( []_-0]’ [14]’ [7]' [2]) observations (independent from the number of objects), thede are
Most of them work on improving tracking performance bydifficult to build in multi-face tracking applications.



In this paper, we propose a novel multi-face trackindNote that this is actually feasible since the creation and
algorithm. It relies on a principled Bayesian filter solveithw deletion of targets are defined outside the filtering step
a MCMC sampling scheme that handles object interactionésee next section),e. k; ; is not updated during this step.
The main contributions of the paper are threefold: i) emplof¥he dynamico (X, ;|X;.—1) of visible faces are described
an explicit probabilistic filtering framework to decide whe by a first-order auto-regressive model for the translation
to add or remove an object from the tracker based on @mponents and a zero-th order model with steady-state for
longer-term image features, the output of a face detecsor, the scale and eccentricity parameters. The steady-state is
well as features coming from the face tracker itself(state updated only when a detected face is associated and at a
variance); ii) propose the use bfng-term image observa- much slower pace compared to the frame-to-frame dynamics.
tions in order to cope effectively with missing or uncertain The interaction priop, is defined as
face detections; iii) a thorough performance evaluation on

nearly 10 hours of video conferencing videos involvidgo po(Xilke) = H¢(Xi,t7 X;t)
5 persons per view, with arourz®, 000 annotations. Results {i,jteP 4)
demonstrate the validity of our approach. _ X exp {_ )\ng(Xi,t,Xj,t)},

The paper is organised as follows. The next Section GireP

describes our multi-face MCMC particle filter framework. _ b | h oth h
Section Il presents our approach for track creation and faiPreventing targets to become too close to each other. The

ure detection. And in section IV, we present our experimentSet? = {14, 7} [kiy =1 A kj =1 A i # j} consists of all
possible pairs of objects that are visible. The penalty fionc

results. T 24(BinB;) - : .
9(Xi, Xj0) = TBtaBy 1S the intersection area as a
K i J .
Il. MULTI-FACE TRACKING WITH PARTICLE FILTER fraction of the average area of the two bounding boRes

We tackle the problem of multi-face tracking in a recursiveand B; defined byX, ;, andX, ;, whereqa(.) denotes the area
Bayesian framework. Assuming we have the observatiormperator. The factak, controls the strength of the interaction
Y. from time 1 to ¢, we want to estimate the posteriorprior and was set t6 in our experiments.
probability distribution over the stafX, at timet: ) o

C. Observation Likelihood
p(Xi[Y14) = ip(Yt|X,g) As a trade-off between robustness and computational
C o B ~ complexity, we employ a relatively simple but effective
X / (X Xi—1)p(Xi—1|Y14—1) dXi—1, (1) observation likelihood for tracking. Note that another ralod
X1 could be used as well.
whereC' is a normalisation constant. As closed-form solu- Given our scenario, we assume that the face observations
tions are usually not available in practice, this estimmatioy,; are conditionally independent given the state, leading
is implemented using a particle filter with a Markov Chainto an observation likelihood defined as the product of the
Monte Carlo (MCMC) sampling scheme [5]. The mainvisible individual faces likelihoods:
elements of the model are described in more detail in the -
following sections. p(Y:|Xy) = H P(Yi i Xit). (®)
ilki =1

A. Sate space ) )
. . . The observation model for a face is based®n= 6 HSV
We use a multi-object state space formulation, with our

global state defined a&, — (X, ki), where X, — colour histogramsY;, = h(r,X;,) that are computed on
X1 and k. — {I{ ! b El'r’1e variabletX the face region described by the stag; and compared to
it ri=1..M t = it pi=1..M- it

denotes the state of face which comprises the position histogram model#; ,(r), allowing to define the observation

scale and eccentricityi.é. the ratio between height and likelihood for a tracked face as follows:
6

width) of the face bounding box. Eadf ; denotes the status .
of facei at timet, i.e. k; ; = 1 if the face is visible at time P(YitXi ) o< exp(=Ap ZDQ[hi,t(r)’ h(r, X)), (6)

t, andk; ; = 0 otherwise. Finally A/ denotes the maximum r=1

number of faces visible at a current time step. where D denotes the Euclidean distadcand \p is set to

20. More precisely, we divided the face into three horizontal
bands and compute two normalised histograms in each of the
band using two different discretisationsj, = 8 and N, = 4

B. Sate Dynamics
The overall state dynamics is defined as:

o M bins per channel, using the scheme proposed in [10] which
P(X¢|Xi-1) o po(Xefke) [ [ P(XitlXe-1.ke) . (2)  decouples coloured pixels (accumulatediipx Ny, HS bins)
i=1 from greyscale pixels (put iV, separate bins).
i.e. the product of an interaction pripp and of the dynamics  Finally, the histogram models of one face are initialised
of each individual faces. More precisely, when a new target is added to the tracker. To improve the

tracker's robustness to improper initialisation and cliagg

p(Xi | X 1) ifkiy=1
p(Xi,t|Xt71, kt) = ( 4 | 2 ) i, . .
! otherwise 2A Bhattacharyya distance could have been used as well.



lighting conditions, they are updated whenever a detected
face is associated with the given face track (see below). Let
h;{t denote the histograms computed from the detected face

associated with a tracked objectThen: G

hia(r) = (L= ehi, 1 (r) +ehdy(r) ¥r,  (7)

wheree is the update factor (set @2 in our experiments).

Fig. 1. The HMM for tracker target creation, used at each inpixel.
The variablec; indicates if there is a face at a particular position. The
probability of ¢; is estimated recursively using the observatidpsand ;.

D. Tracking algorithm

At each time instant, the tracking algorithm proceeds iRonrolling the proportion of samples generated by each
two main stages: first, recursively estimate the states @f thyixiure component. It relies on the dynamics from past

currently visibI_e faces relying on the model described &0V, ticle to propose good state candidates assuming tempora
and solved using a MCMC sampling scheme. Second, mag?noothness, and on the output of a face detector which is
a decision on adding a new face or on deleting currentlysef,| for handling tracker drift.

tracked faces. This second stage is described in Section IlI

The MCMC sampling scheme allows for efficient sampling Ill. TARGET CREATION AND REMOVAL
in this high-dimensional state space of interacting tarffst ~ The way objects are added and removed from the tracker is
and works as follows. a key feature of the proposed algorithm. In previous work [5]

Let N be the total number of particles and, the number [15], target creation and removal are directly integrated i
of “burn-in” particles. At each tracking iteration, do thethe probabilistic tracking framework. However, this regsi
following steps: global scene likelihood models which are difficult to obtain
1) initialise the MCMC sampler at timewith the sample in this type of application (see footnote 1 on page 1). Our
Xgo) obtained by randomly selecting a particle fromgoal is to achieve a high precision during tracking, we
the set{f(gs_)hs = (Ny+1)...N} at timet —1 and Would like to avoid as much as possible false alarms. This
sample the state of every visible targen XEO) using means t_hat Fhe tracker shoulq be gble to _detect as qwckly
the dynamics(X.¢|Xic1); as possible if there is a tracking fallgre; smultanequﬂy,
2) sample iterativelyV particles from the posterior distri- Should not stop tracking when there is no failure, since the
bution of (1) using the Metropolis-Hastings algorithmalgor'thm may have to wait for a long time before th_e face_' is
according to: detected again. Surprisingly, this problem has receivgé li
N . attention in the past.
3) S?‘mF"e anew P"’(‘S'C'Kf frgm a proposal dis- g propose to use two different Hidden Markov Models
tribution ¢(X; |X; ) (described below); (HMM) for that purpose, as described in the following sec-
b) compute the acceptance ratio: tions. One is used for object creation and the other for @bjec
=~ > ()< ! removal, and they receives different types of observations
e = min <1, pXt Vi) ¢(Xs / X+ ) 8) A face detector (for both frontal and profile views) is
p(Xt(S)|Y1;t) (X, |Xt(s)) called every 10 frames.é. roughly once per second, as our
o s (1) ., algorithm is able to process around 10 frames/s in real time)
c) accept the particlei.g. define X, = X¢)  The HMMs are updated only at these instants, but rely on
with probabilitya. Otherwise, add the old particle ppservations computed on all frames since the last update.

(i.e. setXt(TH) =X, S)) According to our experiments, applying the detector to yver
At the end of iterationt, the particle set{XES)}ﬁ’:NW framg did not greatly improve the tra<_:king performa_nce and
represents an estimation of the posteyio)it|Y1;t). considerably slowed down the algorithm. A detection gets

The proposal functiop() allows to select good candidatesaSSOF:iated w_ith a target_if their distance is smaller than
for the particle set. Efficiency in the MCMC is obtained by!Wo times their average width. Naturally, only un-assaat
modifying object states one at a time. More precisely, thdetections are considered for the initialisation of a negea

new sample is selected by letti§, = X, randomly A. Creation

select a facer amongst the visible ones, and sample the 5 geciding when to add new targets to the face tracker,
proposed stat&; , of facei from: we propose a simple HMM that estimates the state of a
1 L os) hidden, discrete variable,(i, 7) indicating at each image

NN, Zp(Xi,t|Xi,t71) position (4, j) if there is a face or not at this position. Fig. 1

T illustrates this. (In the following, we drop the indexesndj
+ ap(XQ_JXf)} (9) for clarity.) The HMM uses two different types of observed

' image features: one based on the output of the face detector,
where X¢ denotes the state of the closest detection coming, and a long-term “memory” of the statese( positions)
from a face detector [13] and associated with fac&hat of tracked faces];. The posterior probability(c:|l1.¢, d1.+)
is, the proposal is defined as a mixture with = 0.3 is recursively estimated and then used to validate or reject

(X}, 1Xe) = |(1- )




T T

)

Fig. 3. The HMM for tracker target removal, used for eachkeakcface.
Fig. 2. Example image with corresponding tracking memoryirdu  The variablek; indicates for a given face if it is still tracked correctly ibr
tracking a failure occurred. The probability df; is estimated recursively using the
observationsd:, I+, y¢, andv;.

detections coming from a face detector, helping to ingali

new tracking targets. Note that here we define the transition probability
The first observation measured at iteratiorand each p(ci|c;_1) = 1 iff ¢; = ¢;_1 and 0 otherwise. Thus we

image position(i, j) is based on the output of the facedon't include the term in 15.

detector: Now, for each face detection that is not associated to any

1 if (4,7) is covered by one of the boundingtracker target we take its centre positichj) and compute
di(i,7) = boxes coming from the face detector, the probability ratio:

0 otherwise. . . .

" (10) (i) = Pleelisd) = Udiain ). Lialin 7)) g
t\% - N . P .

The likelihoodp(d;|c;) can be approximated with plee(is j) = Oldua (i, 1), b (4, 7))
p(d; =0|c, =0)=1— fa, p(dy=1|c; =0) = fa, If r¢(i,7) > 1, a new track is initialised from the detection.
p(dt = O|Ct = 1) = md, P(dt = 1|Ct = 1) =1-md, B. Removal
Wherefa is the empirical false alarm rate andl the missed In a similar manner, for each tracked facave emp|0y a
detection rate of the face detector. Here weBet= 0.0001  HMM for estimating the hidden status variatilg, indicating
andmd = 0.4. that the face is visible or not. We will drop the indéjn

The second likelihoodh(l:|c;) is based on a history of the following. Fig. 3 illustrates this model. In addition e
past image positions of tracked fadgswhich we will call  tracking memoryl, and the output from the face detector
“tl’aCking memory” in the fO”OWing. At each iteration of the dt: two other observations are use:dt:’ the observation
tracker, the tracking memory is updated slowly according tgkelihood of the mean state, ang, the maximum of the

the mean of the current state distributiah: variances inz and y direction of the particle distribution
I = (1—B)ly_1 + BIL, (11) of the respective face. We assume _that if the target_|s still
tracked correctly the observation likelihogdshould be high
whereg = (0.001 and and the variance, of the particles should be low.
1 if (i,7) is covered by one of the Here, p(d,|k;) is the same a(d;|c;) for creating a
I,(i,j) = bounding boxes described 1, (12) target, except that it is now calculated per object and not
0 otherwise per image location. The other three observation likelilood

) _  p(l|ke), p(ye) k), p(ve k) have been modelled with three
Fig. 2 shows an example of the tracking memory during gifferent sigmoid functions fok: = 1 and with their inverse
run of the face tracker. Intuitively, we would like to inilise | _ p(-|k = 1) for k = 0 (c.f. 13-14). The parameters of
targets more quickly in regions where a person has begfese sigmoids have been learnt from data gathered from
seen” previously. We approximatetll;|c;) with a pair of  rea| tracker runs on annotated videos.

SIngId functions Let o, = {Oi,tﬁ:l} = {dt,lt,yt,vt} be the set of

B B 1 observations at time. Analogous to 15, we can estimate
plliler = 1,0) = a arctan(ails — w)) + 2’ (13) the posterior probability of(k:|o:) recursively:
p(lt|0t = O, ("‘)) =1 —p(lt|0t = 1) (14)
i . kilo1.) =
wherea is set to%, and the paramete®; = (d;, 1), 1.e. plki[or:1) . Lok L
the slope and the offset of the sigmoid, have been trained [, p(0is|ki) %’( 1 /t,l) p(ki—1]o1:4-1) . an
offline with a set of observations collected from real tragki >k 11 ploitlkL) p(Kilke—1) p(ke—1]o1:e-1)]

sequences.

Given the observations at timeand the previous esti-
mate of the posterior probability(c;—1|d1.t-1,11:4—1), We
compute the new posterior:

p(delee)p(leles) ples—1ldiie—1,lie—1)

cildie, i) = =
pleckdies i) = S Dypalel) pler a1 T 1) vy = Pl = Loy (18)
(15) p(ke = Olot)

The state transition probability(k:|k:—1) is 0.999 for stay-
ing in the same state artd001 for changing state.

Finally, the tracking of a target is considered to have thile
if the probability ratior] < 1, where




set | duration | # videos | # persons| # different | # annotated 1
in view persons frames S B e o
1 4 h 6 2 5 5000 0.9 B
2 25h 32 1-5 27 12000 cBEEE
3 25h 2 2-4 7 4800 08
TABLE | —
STATISTICS ON THE THREE EVALUATION DATA SETS 3 o7 L
g _—
0.6
0.5
04 | face detection B
: MCMC baseline
MCMC with target creation HMM -- 3 - -
03 MCMC‘with target greation and ‘removal HM‘M ics

0 0.05 0.1 0.15 0.2 0.25 0.3
false positive rate

Fig. 5. False positive rate vs. recall for Dataset 1

sS4 e where B; is the ground truth rectanglé.€. a bounding box

Fig. 4. Example frames from datasets 1 (top left), 2 (toptigand 3 of the_ent|re head_) ang; is the rectangle output from face
(bottom row). Faces are blurred for privacy reasons. detection or tracking. We further define the recall and false
positive rate as:
G G
IV. EXPERIMENTAL RESULTS D i 0id; D ino Oifi
R==7— FP==Z7——, (20)
A. Data Disa 0i Ding 0i

Experiments have been conducted on a total amount @hereG is the number of annotated frame'sthe proportion
more than 9 hours of video data that has been extensively correctly tracked/detected faces in framéaccording to
annotated. We used three sets of video files recorded in difg), f, is the number of false positive outputs divided by
ferent environments (see Table 1). According to our scenarthe number of ground truth objects in frameandd; is the
of interest, the recorded people have been sitting arounddaration between frameandi: — 1.
table and filmed by a central camera. They are playing online 2) Algorithms: We compared the following algorithms:

games with people in a remote location using a laptop or , 5 standard face detector [13] with models for frontal
touchscreeni.e. they are often looking downwards, and in and profile view

the videos their faces are often not detected by a standard, 5, MCMC baseline tracket,e. the tracking algorithm
face detector [13]. For efficiency reasons, the videos are yaoseribed in section II. Every (un-associated) face de-
processed at a resolution ®f0 x 360 pixels, and the original tection is initialised as a new tracking target, up to a
frame rate has been changgd t0 12.5 fps. maximum number o5 targets in a given frame. We also
Figure 4 ShOWS_ ex_ample images from the three datase.ts. tried to initialise a target only after several successive
In dataset 1, the lighting conditions are good. Howeverpas i detections but this didn’t have a big impact on the
the other datasets, there are long periods where faces are no precision measures. A tracked target gets removed if
detected. In dataset 2, the overall complexity of the videos i has no associated detections for 100 frames §

is higher because of more difficult lighting conditions and seconds) or if the likelihood drops below®% of the
because it contains more people including children, so the running average of its likelihood.

scene is more dynamic. Also, occlusions are occurring more | o proposed MCMC tracker with the HMM for target
frequently. The videos of dataset are rather challenging creation (see section IlI-A). Target removal has been
for face tracking as people sit close to each other. Also, jne as for the baseline

the Iightipg condition and.image quality is worse |n the | ihe proposed MCMC tracker with HMMs for target
;econq video of this set. F!nally, the number of participant creation and removal (see sections IlI-A and I1I-B).

's varying throughout the videos. 3) Results: We plotted the recall and false positive rate
B. Tracking evaluation 20 for the different algorithms with varying face detector
1) Performance measures: In a given video frame, a threshold. Fig. 5-7 show the results. Clearly, for low digec
face detection or tracker output is counted as correct if tHresholds the false positive (FP) rate of the face detérzdr
F-measure with the ground truth is greater thah. The solid lines) is much too high for many practical application

F-measure is defined as: For higher thresholds, the detector misses a lot of faces. We
2a(B; N B;) can see that for an acceptable FP rate((1) the recall is
F= a(B) +aB) (19)  rather low (betweer.4 and 0.7). The dashed green lines
g J

show the results of the baseline tracker. Although it ddesn’
3Dataset 3 is available at http://www.idiap.ch/datas2t/ta use the HMMs for target creation and removal it achieves a



1 face tracking HMM 1 | HMM 1
detection | w/o HMMs +HMM 2
0.9 recall 61.0% 89.5% 86.5% 95.6%
o 1 | FP rate 4.64% 11.47% 5.3% 8.02%
08 # interruptions 350 305 141
& recall 61.6% 78.4% 81.3% | 82.2%
= o I E— 2 | FPrate 4.66% 1.8% 3.7% 1.2%
© ] ] # interruptions | — 967 794 647
0.
recall 59.6% 85.1% 78.1% 95.5%
05 3 | FP rate 1.21% 2.12% 0.95% 1.78%
' / # interruptions | — 403 407 96
o4 f ST — TABLE Il
os MCMC with tzr;ﬂrge’\fgr;v;\'t?oﬁ‘gneégfnagl\?g EW e PERFORMANCE COMPARISON ON THE THREE DATASETEWITH FACE
o 0.05 0.1 0.15 0.2 0.25 0.3 DETECTOR THRESHOLD3).
false positive rate
Fig. 6. False positive rate vs. recall for Dataset 2

considerably with respect to a tracker not using long-term
observations and HMMs.

0.9 [

0.8

0.7

recall

0.6

05 ,/
face detection

04 MCMC baseline 1

MCMC with target creation HMM - -
MCMC‘with target greation and ‘removal HM‘M

(1]
(2]

on

0.3

0 0.05 0.1 0.15

false positive rate

0.2 0.25 0.3

(3]

Fig. 7. False positive rate vs. recall for Dataset 3

(4]

good performance. When using the HMM for target creations]
(blue dashed lines) there is a slight increase in performanc
The improvement is only marginal here because the facg
detector produces very few false positives. Finally, thiepfzu
dotted lines show the results of the proposed algorithm witH”]
both HMMs. The performance in terms of recall and FP rate
is clearly better than for the baseline system without HMMs.[8]
This can also be seen in Table Il, where we compared the
performance of the different algorithms with a given facejg
detector threshold.g. 3). Note also the the total number of
interruptions of the tracker is decreased.

Note that the proposed algorithm runs in real-time,
around10-15 frames/s at a resolution 6f10 x 360 pixels on
an Intel PC at 3.16 GHz.

[10]

V. CONCLUSIONS [12]

We presented a multi-face tracking algorithm that effec-
tively deals with situations where detections are rare qt3]
uncertain. To achieve this, long-term observations from t 4
image and the tracker itself are collected and processed ina
principled way using two separate HMMs, deciding on whers]
to add and respectivelyemove a target to the tracker.

We evaluated our approach on more than 9 hours of
recorded videos with extensive annotation, and the results]
show that the proposed algorithm increases the performance
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