
TROPER
HCRAESER

PAIDI

TOWARDS MIXED LANGUAGE SPEECH
RECOGNITION SYSTEMS

David Imseng        Hervé Bourlard
Mathew Magimai.-Doss

Idiap-RR-15-2010

JULY 2010

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12  info@idiap.ch  www.idiap.ch





Towards mixed language speech recognition systems

David Imseng, Herv́e Bourlard, Mathew Magimai.-Doss

July 6, 2010

Abstract

Multilingual speech recognition obviously involves numerous research challenges, including
common phoneme sets, adaptation on limited amount of training data, as well as mixed language
recognition (common in many countries, like Switzerland).In this latter case, it is not even possible
to assume that one knows in advance the language being spoken. This is the context and motivation
of the present work. We indeed investigate how current state-of-the-art speech recognition systems
can be exploited in multilingual environments, where the language (from an assumed set of five pos-
sible languages, in our case) is not a priori known during recognition. We combine monolingual
systems and extensively develop and compare different features and acoustic models. On Speech-
Dat(II) datasets, and in the context of isolated words, we show that it is actually possible to approach
the performances of monolingual systems even if the identity of the spoken language is not a priori
known.

Index Terms: speech recognition, multilingual speech recognition, combination of mono-lingual speech
recognition systems, mixed language recognition.

1 Introduction

Multilingual speech processing is nowadays witnessing a renewed interest, not only because of real
needs, but also thanks to the convergence of automatic speech recognition (ASR) technologies (mainly
due to high performance English recognizers) in the form of powerful statistical parametric methodolo-
gies such as generative Gaussian Mixture Models (GMMs) [1], discriminative Multilayer Perceptrons
(MLP) as employed in hybrid systems [2] or the combination of discriminative and generative approaches
as employed in Tandem systems [3].

Different methodologies have been applied to multilingual ASR. For instance GMM-based monolin-
gual recognizers were trained on different languages, with (e.g. [4]) and without (e.g. [5]) sharing data
across languages. Hybrid HMM/MLP systems have also been applied to multilingual ASR [6, 7] and
multilingual Tandem systems have been presented in [8] for example.

Even if data from multiple languages was used, most studies required to explicitly identify the lan-
guage in order to process the data with the correct recognizer, properly trained on a particular language.
In the presented work, we also consider systems where the language identity is not a priori known. More
specifically, we compare different features and acoustic models on a monolingual and a mixed language
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isolated word recognition task on SpeechDat(II) data. In the monolingual task, we assume that the lan-
guage identity is known in advance and in the mixed language task, we consider a system that infers
the language implicitly, as a by-product of the recognition process, by running multiple recognizers in
parallel and performing a score-based output decision.

An advantage of systems that are not aware of the language identity (mixed language task) is that they
do not require to explicitly perform language identification. However, usually, the performance of such
systems is lower compared to systems that know the language a priori (monolingual task). We compare
the difference in terms of performance between the mono- and multi-lingual task using different features,
namely, PLP cepstral coefficients, Tandem features, and different acoustic modeling techniques, namely
GMM-based and MLP-based. We demonstrate that there are indeed considerable differences between
the monolingual scenario and the mixed language scenario. Our study exposes two trends if score-based
multilingual output decisions are performed: firstly, MLP-based acoustic modeling seems to be prefer-
able to GMM-based acoustic modeling and secondly, using Tandem features extracted from an MLP
trained to classify a set of universal phonemes (created by merging the phoneme sets of the languages
considered) yields a better system compared to the case where an MLP is trained for each language
individually (to classify the language specific phonemes). We exploit thesefindings by using Tandem
features extracted from an MLP trained to classify universal phonemesand MLP-based acoustic model-
ing to build a system that yields the best performance on our mixed language isolated word recognition
task.

The remainder of this paper is structured as follows: Section 2 presents thedatabases that are used
and defines the monolingual and the mixed language task. Section 3 describes the different features
followed by a presentation of the evaluated systems in Section 4. Section 5 discusses the experimental
results, and finally Section 6 concludes the paper.

2 Databases and Tasks

In this section we introduce the SpeechDat(II) databases that we used and define the tasks on which we
are evaluating and comparing different systems.

2.1 Databases - SpeechDat(II)

We used data from SpeechDat(II) that currently consists of recordings from 14 different European coun-
tries. In order to be representative, the SpeechDat(II) databases are gender-balanced, dialect-balanced
according to the dialect distribution in a language region and age-balanced. The databases are subdivided
into different corpora. We only usedCorpus A, that contains three isolated read application words per
speaker. The termapplication wordsdescribes a set of about 30 words such as “help” or “cancel”, which
could be used in interactive voice response applications.

To build comparable systems, test sets, that preserve the gender, dialectand age distributions of the
original set, were specified for every database and standardized testroutines were described in [9]. For
this paper, we used the datasets of five languages, namely British English (EN), Swiss French (SF), Swiss
German (SZ), Italian (IT), and Spanish (ES). In Swiss German, there are 2000 recorded speakers. As
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standardized by SpeechDat(II), datasets with a minimum of 2000 speakershave pre-defined test sets that
contain the data of 500 speakers. The remaining 1500 speakers are sub-divided into a development set
(10%, 150 speakers) and a training set (1350 speakers). To avoid any bias in terms of available amount
of data towards a particular language, the same number of speakers was used in all languages, even if
other databases provide data from more than 2000 different speakers. For this purpose, a subset of 2000
speakers was chosen from the whole dataset by using the same procedure as for the test set creation and
then the subset was split into training, development and test sets. Hence, we did not use the pre-defined
test sets, rather used the scripts available at [9] to ensure that the splits can be reproduced.

There are several commonly defined tests on the SpeechDat(II) databases [9]. For our work, we
used theA-test(test on Corpus A) also referred to as application words test which is a small vocabulary
isolated phrase test. Similar to the previous work [5], the utterances with out-of-vocabulary words,
mispronunciation, unintelligible speech or truncations were excluded in all procedures and noise markers
were ignored. Table 1 summarizes the number of utterances out of the total possible 6000 utterances
(three utterances from each of the 2000 speakers) considered for each language and their distribution
across the training, test and development set. The total duration of the utterances is also given (in hours).

Table 1: Number of available utterances (utt.), and total duration in hours (h), for each of the five
considered languages. British English (EN), Spanish (ES), Italian (IT), Swiss French (SF) and Swiss
German (SZ).

Lang. training dev test total
utt. h utt. h utt. h utt. h

EN 3512 1.2 390 0.1 1305 0.4 5207 1.7
ES 3932 1.4 438 0.2 1447 0.5 5817 2.0
IT 3632 1.5 416 0.2 1368 0.6 5416 2.3
SF 3809 1.4 430 0.2 1429 0.5 5668 2.1
SZ 3862 1.3 432 0.1 1426 0.5 5720 1.9
total 18747 6.8 2106 0.8 6975 2.5 27828 10.0

The database provides a lexicon for each language that contains the pronunciations for the words in
terms of the SAMPA1 phoneme set. We use these lexicons for our study. Table 2 displays the number
of phonemes that are used for the application words task. Note that some languages do not use all the
available phonemes for the application words task.

Table 2:Number of phonemes used per language for the application words task.

Language EN ES IT SF SZ
# phonemes 33 29 35 36 46

In this work, we build an isolated word/phrase recognizer for each language and compare them on
two different tasks, namely, monolingual task and mixed language task.

1http://www.phon.ucl.ac.uk/home/sampa/index.html
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2.2 Monolingual task

In the monolingual task, given the trained ASR systems for all the five languages and the language iden-
tity of the test utterance, we select and run the monolingual recognizer corresponding to the language.
In other words, the monolingual task is a system that “knows” the languagea priori during testing,
therefore optimal recognition is performed by decoding each test utterance with the correct monolingual
recognizer. The monolingual task serves as the reference task in our studies. Figure 1(a) depicts the
monolingual task.

2.3 Mixed Language task

In the mixed language task, we consider a system where the spoken language identity is “not known” a
priori and is implicitly inferred by running multiple monolingual recognizers in parallel. In other words,
the mixed language task can be seen as ablack boxsystem as illustrated in Fig. 1(b), where we run all the
five monolingual recognizers and select the one with the maximum likelihood as the recognized output.

feat textSystem 1

.

.

.

feat textSystem 5

(a) Monolingual Task

feat text
.
.
.

System 1

System 5

(b) Mixed language Task

Figure 1:Visualization of the different tasks. Five monolingual recognizers are build. In the monolingual
task, the language is known in advance during testing whereas in the mixed language task, no language
information is available during testing.

Both tasks are evaluated using three different feature types and two different acoustic modeling
techniques.

3 Features

In this section, we describe the different types of features that are used in our work.

3.1 Perceptual Linear Prediction (PLP)

The first type of features are conventional PLP cepstral features [10]. Twelve cepstral coefficients in-
cluding the zeroth coefficient are used and additionally, delta and acceleration coefficients are appended.
The 39 dimensional PLP features are extracted every 10 ms on a 25 ms window after having performed
voice activity detection using Tracter2.

2http://juicer.amiproject.org/tracter/
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3.2 Monolingual Tandem Features

Multilayer Perceptrons (MLPs) can be used as feature extractors as in Tandem systems [3]. For each
language, an MLP is trained to estimate phoneme posteriors based on the extracted PLP features (Sec-
tion 3.1). After having taken the logarithm of the posteriors, the Karhunen-Loève transformation (KLT)
is applied without performing any dimensionality reduction and then the concatenated feature vectors
(PLPs and processed posteriors) are used as input to a monolingual recognizer. The process of extract-
ing Tandem features is done for each language individually, thus we refer to it as monolingual Tandem
features. Figure 2 illustrates one of the five systems based on the monolingual Tandem features.

PLP text

MLP KLT

recognizer

log

Figure 2:Monolingual Tandem features. The estimated posteriors are post-processed by taking the log-
arithm and performing a Karhunen-Loève transformation (KLT) and then used as input to a recognizer
together with the conventional PLP features.

3.3 Multilingual Tandem Features

Instead of extracting Tandem features for every language separatelyby training a separate MLP, some
components of the Tandem feature extraction process can be shared across languages. The dictionaries
of the SpeechDat(II) datasets are all in the international SAMPA format. A universal phoneme set was
built by merging phonemes across languages that are represented by thesame symbol (knowledge-based
approach [11]). The universal phoneme set consists of 92 phonemes (more details can be found in [12]).
In contrast to the monolingual Tandem features, only a single MLP (insteadof five MLPs) is trained
to estimate posterior probabilities of the universal phonemes for all languages. KLT is then used to
perform a dimensionality reduction for each language individually3 such that the multi- and the mono-
lingual Tandem features have the same dimensionality. The individually processed posteriors are then
concatenated with PLP features and used as input for the monolingual recognizers. Figure 3 illustrates
the system based on multilingual Tandem features.

4 System description

We investigate two kinds of acoustic modeling techniques within the framework ofHMM-based ASR
systems. The first kind of acoustic modeling technique uses Gaussian mixturemodels (GMM) to model
the acoustics/feature observation [1], and the second type of acoustic modeling technique, uses an MLP
classifier to model the acoustics/feature observation [2]. Furthermore, we study the two acoustic model-
ing techniques using three different kinds of features. Thus, we build and compare six different systems
(also shown in Table 3):

3The transformation matrix of the KLT is estimated for every language separately on the corresponding training data.
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Figure 3:Multi-Tandem system: only one neural network is trained (instead of five networks) on the data
of all involved languages, then the KLT is used to perform dimensionality reduction for each language
individually.

1. HMM/GMM system: HMM/GMM-based ASR using PLP features.

2. HMM/MLP system: Hybrid HMM/MLP-based ASR using PLP features.

3. Mono-Tandem: HMM/GMM-based ASR using monolingual Tandem features.

4. Mono-MLP-Tandem: Hybrid HMM/MLP-based ASR using monolingual Tandem features.

5. Multi-Tandem: HMM/GMM-based ASR using multilingual Tandem features.

6. Multi-MLP-Tandem: Hybrid HMM/MLP-based ASR using multilingual Tandemfeatures.

Note that the systems Mono-MLP-Tandem (4) and Multi-MLP-Tandem (6) are different from conven-
tional Tandem systems in the sense that they use a discriminative classifier in the form of an MLP instead
of a generative GMM classifier to model the feature observations.

5 Experimental Results and Discussion

We build context-independent phoneme based isolated word recognition systems, where each context-
independent phoneme is modeled by a three state left-to-right HMM. The number of context-independent
phonemes for each language can be found in Table 2.

We used the HTK toolkit [13] for the training and recognition of the GMM-based systems, where
each state is modeled by 32 mixtures of Gaussians with diagonal covariance matrices.

For the MLP-based systems, a three layer MLP was trained to classify context-independent phonemes
with quicknet software4. The input to the MLP contained the feature vector at the current time frame plus
four frames preceding and following context (i.e., nine frames in total). In case of HMM/MLP systems,

4http://www.icsi.berkeley.edu/Speech/qn.html
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all the MLPs had 600 hidden nodes. The MLPs of the HMM/MLP systems wereused for monolingual
Tandem feature extraction. The MLP for multilingual Tandem feature extraction had 524 hidden nodes
(this was done in order to ensure that in average sense the number of parameters is comparable to a single
monolingual MLP). The MLP classifiers used in the Mono-MLP-Tandem system and in the Multi-MLP-
Tandem system contained 600 hidden nodes.

In the case of the mixed language task, before making a decision (i.e. choosing the output word hy-
pothesis that yields maximum likelihood) a recognizer dependent bias was subtracted from the respective
log likelihood scores similar to [14]. More specifically, we run all the recognizers on the development
set and estimated the average log likelihood, which is used as bias.

The results of the experiments are shown in Table 3. The performance of the systems is expressed
as average performance on all five languages (the individual performance of each language can be found
in [12]).

Table 3:Experimental results. The different approaches are described in Section 4. The performance on
the monolingual and the mixed language task are shown and also the relativechange between the two
tasks is given.

System Acoustic Features Task Relative
modeling monolingual mixed language change

HMM/GMM GMM PLP 98.4 78.2 -21%
HMM/ANN ANN PLP 97.5 86.3 -11%
Mono-Tandem GMM monolingual Tandem 98.7 77.2 -22%
Mono-MLP-Tandem ANN monolingual Tandem 98.5 86.9 -12%
Multi-Tandem GMM multilingual Tandem 98.8 82.9 -16%
Multi-MLP-Tandem ANN multilingual Tandem 98.5 88.8 -10%

On the monolingual task, the HMM/MLP performance is lower than the performance of the other
systems. All the other systems only slightly differ in performance among each other. In literature, it has
been typically observed that the use of Tandem features yields performance improvements. However, for
the monolingual task we do not observe such improvements. This may be due tothe easy nature of the
recognition task, i.e., small vocabulary isolated word recognition.

On the mixed language task however, there are considerable differences between the performance of
different systems. It can be observed that the multilingual Tandem features yield the best system for both,
the GMM-based acoustic model and the MLP-based acoustic model. This may be due to the sharing of
information about different languages through the discriminatively trainedsingle MLP which is used for
the multilingual Tandem feature extraction.

Further analysis of the performance change between the monolingual taskand the mixed language
task among different approaches, exposes a general trend, that theMLP-based acoustic modeling tech-
nique yields less relative loss than the GMM-based acoustic modeling technique. In case of PLP or
monolingual Tandem features, this trend is more pronounced (almost a factor of two when compared
to the respective MLP-based systems). Altogether, these results suggest that it may be better to use a
discriminative acoustic modeling technique such as MLP for the mixed languagetask.
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6 Conclusion and Future Work

In this paper, we investigated the performance of speech recognition systems with different features and
acoustic modeling techniques on a mixed language task (where the language identity of the test utterance
is assumed to be unknown), and compared it against the performance on amonolingual speech recog-
nition task (where the language identity of the test utterance is assumed to be known). Our studies on
isolated word recognition show that there is a significant performance difference between the monolin-
gual task and the mixed language task. However, this difference may be better bridged by the use of
multilingual Tandem features and discriminative acoustic modeling techniques,such as MLP.

In future, we intend to explore other techniques to build a universal phoneme set and propose to
extend our study on mixed language recognition to the use of lexicons defined with a universal phoneme
set (as opposed to language specific phoneme sets) and to the phoneticallyrich sentences task of Speech-
Dat(II) database.
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