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ABSTRACT

The EMIME project aims to build a personalized speech-tesh translator, such that spoken input of a user in one
language is used to produce spoken output that still soukelthle user’s voice however in another language. Thisrdisti
tiveness makes unsupervised cross-lingual speaker dgidaptae key to the project’'s success. So far, research hes be
conducted into unsupervised and cross-lingual casesatefyaby means of decision tree marginalization and HMMestat
mapping respectively. In this paper we combine the two teghes to perform unsupervised cross-lingual speaker adapt
tion. The performance of eight speaker adaptation systeope(vised vs. unsupervised, intra-lingual vs. crogguit)

is compared using objective and subjective evaluationpeBmental results show the performance of unsupervisester
lingual speaker adaptation is comparable to that of thersigesl case in terms of spectrum adaptation in the EMIME
scenario, even though automatically obtained transorngthave a very high phoneme error rate.

Index Terms— unsupervised cross-lingual speaker adaptation, dedisermarginalization, HMM state mapping

1. INTRODUCTION

The language barrier is an important hurdle to overcomederao facilitate better communication between peoplesscro
the globe. It would be exciting and extremely helpful if wellzareal-time automated speech-to-speech translatogialipe
when the translator could reproduce a user’s input voiceaaeristics in its output speech. This is exactly the ppalc
goal of the EMIME project (Effective Multilingual Interaicn in Mobile Environments). Cross-lingual speaker adtmta
is thus one of the key goals of EMIME.

Such a speech-to-speech translator consists of speedaniton, machine translation and speech synthesis. EMIME
focuses on speech recognition and synthesis. Bridging dpebgtween speech recognition and synthesis [1] is also an
implicit goal. Thus, we hope to employ a unified modellingrfievork which applies to both recognition and synthesis. As



speech recognition is typically HMM-based and we want tdlyaKer the voice identity of output speech, the HMM-based
speech synthesis technology [2, 3] is the ideal choice. Astéstcal parametric approach, the HMM-based framework
provides a great deal of flexibility, especially with respiecits generality across languages and the ease of altesing
characteristics of models. Consequently, this paper tigass cross-lingual speaker adaptation based on unifiéisi H
modelling.

We proposed a decision tree marginalization technique]ifof4inified HMM modelling, by which speech recognition
can be performed with speech synthesis models. We foundHisatiechnique made it feasible to conduct unsupervised
intra-lingual speaker adaptation in a unified modellingrfeavork. As a result, employing the HMM state mapping tech-
nigue [5] as well as decision tree marginalization shouldenansupervised cross-lingual speaker adaptation viatde i
unified modelling framework. We investigate the viabilititbe combination of these techniques in this paper.

In Section 2, decision tree marginalization and HMM stat@piag are briefly reviewed. In Section 3, details on apply-
ing the two techniques simultaneously to unsupervisedseingual speaker adaptation are described. We then campar
the performance of supervised and unsupervised crosgdirgpeaker adaptation systems in the context of English and
Mandarin Chinese in Section 4. Conclusions follow in Set&o

2. COMPONENT TECHNIQUES

2.1. Decision Tree Marginalization

Decision tree marginalization [4] allows deriving speeebagnition models from a full-context speech synthesisehsek
according to given triphone labels. Hence, the first stageiring a conventional HMM-based speech synthesis system
from scratch, of which each HMM state emission distribuitypically composed of a single Gaussian PDF.

Conventionally, making a new synthesis model is carriedoyutraversing a synthesis decision tree according to the
new full-context label and eventually assigning one leafento it. The basic idea of decision tree marginalizatiomigyf
straightforward in the sense that it generates a triphacegration model in almost the same manner. The only diffeeen
from making a new synthesis model is that both children of @siten tree intermediate node of the synthesis system
are traversed when the question associated with the intBateenode is irrelevant to any triphone context. So finally a
triphone label is associated with more than one leaf nodé&hwiorm a state emission distribution of multiple Gaussian
components. In other words, a triphone model for recogmitionstructed by decision tree marginalization can be viewe
as a linear combination of full-context single Gaussian et®fbr synthesis. No model parameters are changed durng th
whole process. See Figure 1 for an example.

R_unvoiced?

No :
/r—1h+z

L_plosive?

p(o| r-ih+z)=P(Gl | r-ih+z) p(o | Gl) + P(G3 | r-ih+z) p(o | G3)

Fig. 1. An example of decision tree marginalization, showing hawew recognition modelr“- i h+z" is derived from a
decision tree of a speech synthesis systdm’(*“ R_": left/right phone; “G?": clustered state emission digtriion PDFs)

The decision tree marginalization process described alsowetually a special case. It can be extended such that an
arbitrary context combination of full-context labels is ngiaalized out. For instance, we can create tonal monophone
models by marginalizing out all the contexts that are ueel#o the base phone context and tone information.

2.2. HMM State Mapping

We consider the case in which we have adaptation data in arn lapguage {,1) and an average voice model set for
synthesis in an output languagg?). In theory, this prevents us from directly adapting theceddentity of the average
voice model set into that of the adaptation data, becauggigage mismatch eliminates all the correspondence between



the data and the model set. Two possible solutions are {ifigaa bilingual model set [6] and (ii) reconstructing the
correspondence. HMM state mapping [5] is an effective mebttappable of reconstructing the correspondence for cross-
lingual speaker adaptation when a bilingual model set isaiteble.

HMM state mapping requires two decent average voice motelsé 1 and L2, respectively. The two average voices
are presumed to sound like a single person. Each statechfst1 (or L2) is then associated with the most similar one
of L2 (or L1) by matching state-cluster PDFs in the two model sets whae minimum (symmetric) Kullback-Leibler
divergence between them. Itis not guaranteed that evaryshaster ofl.2 (or L1) is touched. Untouched ones are ignored
typically. Wu et al. [5] proposed two ways of applying state mapping rules tostivgyual speaker adaptation:

Transform version is performed by first generating speaker dependent transfby carrying out intra-lingual speaker
adaptation using the acoustic model set trainedZfor Following this, voice characteristics of the acoustic ®lod
set in L2 are converted by applying these speaker-dependent tramsto state-clusters df2’s acoustic models,
according to prepared state mapping rules between the twstc model sets.

Data version is performed by first mapping state-clusters of the acounstidel set in.1 to those ofl.2’s acoustic models.
Then adaptation data ihl is associated with state-clusters/cf through state-clusters @f1. Finally the adaptation
data inL1 is treated as if it were .2 and adaptation is performed usifg’s acoustic models in the “intra-lingual”
sense.

3. COMBINING DECISION TREE MARGINALIZATION AND HMM STATE MA PPING

As discussed above, decision tree marginalization maKeasible to perform unsupervised intra-lingual speakaptat
tion and HMM state mapping makes it feasible to perform suped cross-lingual speaker adaptation. We expected that
their combination would enable unsupervised cross-lihgpeaker adaptation.

First of all, we prepared HMM state mapping rules using twerage voice synthesis model setdiihand L2, respec-
tively, and performed speech recognition with the help aisien tree marginalization in order to obtain estimatgzhione
transcriptions of adaptation data uttered.in

Once estimated triphone transcriptions of adaptationwlate available, either the transform version or the datsioer
of HMM state mapping was used for “supervised” cross-lingpaaker adaptation. Note that estimated transcriptiane w
triphone sequences ihl. So rather than the synthesis model seLin it is the recognition models df1 constructed by
decision tree marginalization that were involved in thegisivised” cross-lingual speaker adaptation.

4. EXPERIMENTS

4.1. Experimental Setup

We trained two average voice, single Gaussian synthesi€hsets on the corpora SpeeCon (Mandarin) and WSJ SI84
(English), respectively, and derived HMM state mappingsuind eight synthesis systems from them. Half of the eight
systems were supervised and the rest were unsupervisealM&ted bilingual adaptation data from two Chinese stiglen
(H andZ) who also spoke English well. The Mandarin and English prismphich were not included in our training data,
were also selected from SpeeCon and WSJ, respectively. Miarahd English were defined as inpii) and output {.2)
languages, respectively, throughout our experiments.

System name formatS(U) (1/2) - (D/T/M)
S/U | supervised / unsupervised

1/2 | cross-lingual / intra-lingual
D/T | data/transform version of HMM state mapping

M | Decision tree marginalization was used instead of HMM
state mapping. The average voice model set of Mandarin
(L1) was therefore unnecessary.

Following this naming rule, the eight synthesis systemsav&s, S1-M, S1-T, S1-D, U2, U1-M, U1-T and U1-D:
S2 purely built on the English side

S1-M We marginalized out all the English-specific contexts fibst.a result, a Mandarin full-context label was associated
with more than one English state-cluster. Then Mandariptadi@n data could be treated as English data for “intra-
lingual” speaker adaptation.



S1-T & S1-D as described in Section 2.2
U2 purely built on the English side; as described in Section 2.1

Ul-M We marginalized out all the non-triphone contexts and treognized Mandarin adaptation data with English
models. Mandarin adaptation data was thus associatedhvethriglish average voice model set.

U1l-T & U1-D as described in Section 3

As decision tree marginalization was engaged in all the towsupervised systems and S1-M, their transforms were
estimated over multiple Gaussian component models instesidgle Gaussian ones.

Speech features were 39th-order mel-cepgipal), five dimensional band aperiodicity, and their delta andedeéélta
coefficients. The CSMAPLR [7] algorithm and 40 adaptaticiensinces were used. Global variances were calculated on
adaptation data. A simple phoneme loop was adopted as adgagoodel for recognition. The average phoneme error rate
was around 75%.

4.2. System Evaluation

We calculated RMSE of mel-cepstrum (MCEP) arnid as well as correlation coefficients and voicing error rafe&,, for
objective evaluation. See Table 1 (“AV” means “average @9ic

MCEP Fo
RMSE (/frm) || RMSE (Hz/frm) || CorrCoef
H ] Z [ Z | Z

AV 1.39| 1.43 || 26.0 35.9 0.46 | 0.49
S2 1.04| 1.04 || 11.8 9.6 0.46 | 0.56
u2 1.06| 1.08 || 13.0 14.0 0.47| 0.54
S1-T || 1.23| 1.22 || 20.0 12.6 0.47| 0.51
Ul-T || 1.24] 1.26 || 21.1 16.5 0.48| 0.53
S1-D || 1.13| 1.14 | 19.5 12.6 0.47] 0.51
Uil-D || 1.13| 1.13 || 22.7 17.3 0.48| 0.55
S1-M || 1.10| 1.11 || 25.9 22.3 0.48 | 0.54
Ui-M || 1.10| 1.11 || 25.1 21.0 0.48 | 0.53

Table 1. Objective evaluation results

The proposed method was mainly designed for spectrum aéaptdable 1 confirms that the performance of unsuper-
vised adaptation is comparable to that of supervised ati@aptao matter which approach was applied, especially imser
of spectrum. According to Table 1:

(1) Intra-lingual systems provided the best performanderms of spectrum adaptation, which makes sense as there
was no language mismatch.

(2) Itis not surprising that S1-T and U1-T provided worsefpening spectrum adaptation, because the transforms
were estimated on the Mandarin side but used to adjust thisBrayerage voice models; there was an obvious language
mismatch.

(3) In contrast, mapping rules were applied to the Mandatapéation data before transform estimation when the data
version of HMM state mapping was used. Since transforms dieeetly estimated on the Mandarin data and the English
average voice models, the language mismatch in S1-D and dduldl be partly alleviated by the maximum likelihood
linear transformation (MLLT) based adaptation algorittRMSE of MCEP thus decreased.

(4) In S1-M and U1-M, without any explicit mapping rules, thandarin adaptation data was directly associated
with PDFs of the English average voice models by prior phoriatowledge and in an ML-based data-driven manner,
respectively. This could be regarded as an automatic, nrerége, mapping process. So S1-M and U1-M could be slightly
better than S1-D and U1-D in terms of spectrum.

(5) Unfortunately, the great prosody distinction betweaglish and Mandarin meat, adaptation was not nearly as
effective.

Initially we synthesized speech with adapted pitch corgpbat unnatural pitch patterns resulting from unsupedvise
cross-lingual speaker adaptation were perceived durfiogriral listening evaluation. In addition, Table 2 confirratithe
prosody of English (i.e. stress-timed & atonal) is distiftom that of Mandarin (i.e. syllable-timed & tonal). Henpitch
and duration of utterances to be subjectively evaluate@ wgnthesized by the English average voice model set. We then
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Speaker Languag{e Mean StD Min Max
H Mandarin| 137.9 25.2 729 236.3
H English | 128.7 11.8 64.1 222.6
Z Mandarin| 117.9 154 58.1 182.1
Z English | 112.0 10.3 59.3 186.1

Table 2. Fy statistics (Unit: Hz)

shifted the mear#}, value of each synthesized pitch contour to that of speechafehe corresponding bilingual speaker
(H or Z). So our formal listening test merely focused on the perforoe of spectrum adaptation.

Our formal listening test consisted of two sections: ndhess and speaker similarity. In the naturalness section, a
listener was requested to listen to a natural utterancedfirdtthen utterances synthesized by the eight systems each as
well as vocoded speech in a random order. Having listeneddh synthesized utterance, the listener was requested to
score what he/she heard on a 5-point scale of 1 through 5evlhereant “completely unnatural” and 5 meant “completely
natural’. The speaker similarity section was designed inghme fashion, except that a listener was requested to liste
to one more utterance which was synthesized directly by ¥eeage voice models and the 5-point scale was such that 1
meant “sounds like a totally different person” and 5 meantitals like exactly the same person”.
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Twenty listeners participated in our listening test. Bessaof the anonymity of our listening test, only two native
English speakers can be confirmed. The results in Figure Faole 3 suggest that unsupervised cross-lingual speaker
adaptation is comparable to or sometimes better than thergspd case in terms of naturalness. We noted that in thee cas
of intra-lingual speaker adaptation with speakés speech adaptation data, the supervised system S2 ariped the
unsupervised one U2. This is probably because spdakpeaks Mandarin accented English while spedkéras a more
natural English accent. In order to avoid the potentialatftd non-standard English accents, only spedkeavas involved
in the speaker similarity evaluation.

It is observed from both objective and subjective evalumatiEsults that for speakéf, *1-D and *1-M followed the
intra-lingual adaptation systems closely while *1-T evithg underperformed. Reviewing the analysis of Table 1, nied
the state emission PDFs of *1-D, *1-M and intra-lingual gyss for transform estimation were all in English, which was
the output language, and that the difference was just laggyigentities of their adaptation data. By contrast, both th
emission PDFs and adaptation data of *1-T for transfornmetton were in Mandarin, which was not the output language.



Hence, it would appear that it is necessary to make sure weuipat language distributions for estimation of crosgplial
speaker transforms. The language identity of adaptatitmiddess important than that of a model set to be adapted.
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The results in Figure 4 were obtained in the EMIME scenaripeaker similarity has to be compared between natural
speech inL1 and synthesized speech Ir2. This figure shows unsupervised speaker adaptation is aavipato the
supervised case in terms of speaker similarity. Howeveguiei 5, where both natural and synthesized speech were in
English, shows an interesting contrast in that supervigegtation outperformed the unsupervised case. We atrthig
phenomenon to human perception being affected by languageatch. Namely, because the prompt of a natural English
utterance was the same as that of synthesized ones, anchéhyusére uttered with close prosody, the listeners could
more easily perceive how similar/dissimilar a synthesizgdrance was to a natural one, and tended to grade supervise
adaptation with higher scores. In the case shown by Figuted4anguage mismatch made it more difficult for the listener
to compare a synthesized utterance with a natural one. $temérs didn't think either synthesized utterance (adapte
supervisedly or unsupervisedly) sounded more similasifchigar to the natural one. This explanation needs to be oefl
by further experiments and analysis.

Comparing with the cross-lingual systems *1-D and *1-M, viendt observe significantly better performance of the
intra-lingual systems. This suggests the MLLT-based spreallaptation technique is able to compensate for language
mismatch between adaptation data and an average voice seidairly well.

5. CONCLUSION

We implemented unsupervised cross-lingual speaker aitaplbyy combining recently developed decision tree mailgaa

tion and HMM state mapping techniques. It was observed thatipervised cross-lingual speaker adaptation was compa-
rable to the supervised case in terms of spectrum adaptatiba EMIME scenario. We have observed language mismatch
is the main problem for cross-lingual speaker adaptationnsoducing some extra techniques to alleviate the mismat
before speaker adaptation would be helpful. Since prostays@an important role in voice characteristics as well, veym
need to pay more attention to improving prosody adaptatiarder to deal with two dissimilar languages.
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