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ABSTRACT

The EMIME project aims to build a personalized speech-to-speech translator, such that spoken input of a user in one
language is used to produce spoken output that still sounds like the user’s voice however in another language. This distinc-
tiveness makes unsupervised cross-lingual speaker adaptation one key to the project’s success. So far, research has been
conducted into unsupervised and cross-lingual cases separately by means of decision tree marginalization and HMM state
mapping respectively. In this paper we combine the two techniques to perform unsupervised cross-lingual speaker adapta-
tion. The performance of eight speaker adaptation systems (supervised vs. unsupervised, intra-lingual vs. cross-lingual)
is compared using objective and subjective evaluations. Experimental results show the performance of unsupervised cross-
lingual speaker adaptation is comparable to that of the supervised case in terms of spectrum adaptation in the EMIME
scenario, even though automatically obtained transcriptions have a very high phoneme error rate.

Index Terms— unsupervised cross-lingual speaker adaptation, decisiontree marginalization, HMM state mapping

1. INTRODUCTION

The language barrier is an important hurdle to overcome in order to facilitate better communication between people across
the globe. It would be exciting and extremely helpful if we had a real-time automated speech-to-speech translator, especially
when the translator could reproduce a user’s input voice characteristics in its output speech. This is exactly the principal
goal of the EMIME project (Effective Multilingual Interaction in Mobile Environments). Cross-lingual speaker adaptation
is thus one of the key goals of EMIME.

Such a speech-to-speech translator consists of speech recognition, machine translation and speech synthesis. EMIME
focuses on speech recognition and synthesis. Bridging the gap between speech recognition and synthesis [1] is also an
implicit goal. Thus, we hope to employ a unified modelling framework which applies to both recognition and synthesis. As
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speech recognition is typically HMM-based and we want to easily alter the voice identity of output speech, the HMM-based
speech synthesis technology [2, 3] is the ideal choice. As a statistical parametric approach, the HMM-based framework
provides a great deal of flexibility, especially with respect to its generality across languages and the ease of alteringvoice
characteristics of models. Consequently, this paper investigates cross-lingual speaker adaptation based on unified HMM
modelling.

We proposed a decision tree marginalization technique in [4] for unified HMM modelling, by which speech recognition
can be performed with speech synthesis models. We found thatthis technique made it feasible to conduct unsupervised
intra-lingual speaker adaptation in a unified modelling framework. As a result, employing the HMM state mapping tech-
nique [5] as well as decision tree marginalization should make unsupervised cross-lingual speaker adaptation viable in a
unified modelling framework. We investigate the viability of the combination of these techniques in this paper.

In Section 2, decision tree marginalization and HMM state mapping are briefly reviewed. In Section 3, details on apply-
ing the two techniques simultaneously to unsupervised cross-lingual speaker adaptation are described. We then compare
the performance of supervised and unsupervised cross-lingual speaker adaptation systems in the context of English and
Mandarin Chinese in Section 4. Conclusions follow in Section 5.

2. COMPONENT TECHNIQUES

2.1. Decision Tree Marginalization

Decision tree marginalization [4] allows deriving speech recognition models from a full-context speech synthesis model set
according to given triphone labels. Hence, the first stage istraining a conventional HMM-based speech synthesis system
from scratch, of which each HMM state emission distributionis typically composed of a single Gaussian PDF.

Conventionally, making a new synthesis model is carried outby traversing a synthesis decision tree according to the
new full-context label and eventually assigning one leaf node to it. The basic idea of decision tree marginalization is fairly
straightforward in the sense that it generates a triphone recognition model in almost the same manner. The only difference
from making a new synthesis model is that both children of a decision tree intermediate node of the synthesis system
are traversed when the question associated with the intermediate node is irrelevant to any triphone context. So finally a
triphone label is associated with more than one leaf node, which form a state emission distribution of multiple Gaussian
components. In other words, a triphone model for recognition constructed by decision tree marginalization can be viewed
as a linear combination of full-context single Gaussian models for synthesis. No model parameters are changed during the
whole process. See Figure 1 for an example.

R_fricative?

Yes

No

R_unvoiced?

L_plosive?
Syllable_stressed?

p(o | r-ih+z) = P(G1 | r-ih+z) p(o | G1) + P(G3 | r-ih+z) p(o | G3)

G1

G2 G3

G4 G5

r-ih+z

Fig. 1. An example of decision tree marginalization, showing how anew recognition model “r-ih+z” is derived from a
decision tree of a speech synthesis system (“L ” / “ R ”: left/right phone; “G?”: clustered state emission distribution PDFs)

The decision tree marginalization process described aboveis actually a special case. It can be extended such that an
arbitrary context combination of full-context labels is marginalized out. For instance, we can create tonal monophone
models by marginalizing out all the contexts that are unrelated to the base phone context and tone information.

2.2. HMM State Mapping

We consider the case in which we have adaptation data in an input language (L1) and an average voice model set for
synthesis in an output language (L2). In theory, this prevents us from directly adapting the voice identity of the average
voice model set into that of the adaptation data, because language mismatch eliminates all the correspondence between
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the data and the model set. Two possible solutions are (i) training a bilingual model set [6] and (ii) reconstructing the
correspondence. HMM state mapping [5] is an effective method capable of reconstructing the correspondence for cross-
lingual speaker adaptation when a bilingual model set is unavailable.

HMM state mapping requires two decent average voice model sets inL1 andL2, respectively. The two average voices
are presumed to sound like a single person. Each state-cluster of L1 (or L2) is then associated with the most similar one
of L2 (or L1) by matching state-cluster PDFs in the two model sets which have minimum (symmetric) Kullback-Leibler
divergence between them. It is not guaranteed that every state-cluster ofL2 (or L1) is touched. Untouched ones are ignored
typically. Wuet al. [5] proposed two ways of applying state mapping rules to cross-lingual speaker adaptation:

Transform version is performed by first generating speaker dependent transforms by carrying out intra-lingual speaker
adaptation using the acoustic model set trained forL1. Following this, voice characteristics of the acoustic model
set inL2 are converted by applying these speaker-dependent transforms to state-clusters ofL2’s acoustic models,
according to prepared state mapping rules between the two acoustic model sets.

Data version is performed by first mapping state-clusters of the acousticmodel set inL1 to those ofL2’s acoustic models.
Then adaptation data inL1 is associated with state-clusters ofL2 through state-clusters ofL1. Finally the adaptation
data inL1 is treated as if it were inL2 and adaptation is performed usingL2’s acoustic models in the “intra-lingual”
sense.

3. COMBINING DECISION TREE MARGINALIZATION AND HMM STATE MA PPING

As discussed above, decision tree marginalization makes itfeasible to perform unsupervised intra-lingual speaker adapta-
tion and HMM state mapping makes it feasible to perform supervised cross-lingual speaker adaptation. We expected that
their combination would enable unsupervised cross-lingual speaker adaptation.

First of all, we prepared HMM state mapping rules using two average voice synthesis model sets inL1 andL2, respec-
tively, and performed speech recognition with the help of decision tree marginalization in order to obtain estimated triphone
transcriptions of adaptation data uttered inL1.

Once estimated triphone transcriptions of adaptation datawere available, either the transform version or the data version
of HMM state mapping was used for “supervised” cross-lingual speaker adaptation. Note that estimated transcriptions were
triphone sequences inL1. So rather than the synthesis model set inL1, it is the recognition models ofL1 constructed by
decision tree marginalization that were involved in the “supervised” cross-lingual speaker adaptation.

4. EXPERIMENTS

4.1. Experimental Setup

We trained two average voice, single Gaussian synthesis model sets on the corpora SpeeCon (Mandarin) and WSJ SI84
(English), respectively, and derived HMM state mapping rules and eight synthesis systems from them. Half of the eight
systems were supervised and the rest were unsupervised. We collected bilingual adaptation data from two Chinese students
(H andZ) who also spoke English well. The Mandarin and English prompts, which were not included in our training data,
were also selected from SpeeCon and WSJ, respectively. Mandarin and English were defined as input (L1) and output (L2)
languages, respectively, throughout our experiments.

System name format: (S/U) (1/2) - (D/T/M )
S/U supervised / unsupervised
1/2 cross-lingual / intra-lingual
D/T data/transform version of HMM state mapping
M Decision tree marginalization was used instead of HMM

state mapping. The average voice model set of Mandarin
(L1) was therefore unnecessary.

Following this naming rule, the eight synthesis systems were S2, S1-M, S1-T, S1-D, U2, U1-M, U1-T and U1-D:

S2 purely built on the English side

S1-M We marginalized out all the English-specific contexts first.As a result, a Mandarin full-context label was associated
with more than one English state-cluster. Then Mandarin adaptation data could be treated as English data for “intra-
lingual” speaker adaptation.
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S1-T & S1-D as described in Section 2.2

U2 purely built on the English side; as described in Section 2.1

U1-M We marginalized out all the non-triphone contexts and then recognized Mandarin adaptation data with English
models. Mandarin adaptation data was thus associated with the English average voice model set.

U1-T & U1-D as described in Section 3

As decision tree marginalization was engaged in all the fourunsupervised systems and S1-M, their transforms were
estimated over multiple Gaussian component models insteadof single Gaussian ones.

Speech features were 39th-order mel-cepstra,log F0, five dimensional band aperiodicity, and their delta and delta-delta
coefficients. The CSMAPLR [7] algorithm and 40 adaptation utterances were used. Global variances were calculated on
adaptation data. A simple phoneme loop was adopted as a language model for recognition. The average phoneme error rate
was around 75%.

4.2. System Evaluation

We calculated RMSE of mel-cepstrum (MCEP) andF0, as well as correlation coefficients and voicing error ratesof F0, for
objective evaluation. See Table 1 (“AV” means “average voice”).

MCEP F0

RMSE (/frm) RMSE (Hz/frm) CorrCoef
H Z H Z H Z

AV 1.39 1.43 26.0 35.9 0.46 0.49
S2 1.04 1.04 11.8 9.6 0.46 0.56
U2 1.06 1.08 13.0 14.0 0.47 0.54

S1-T 1.23 1.22 20.0 12.6 0.47 0.51
U1-T 1.24 1.26 21.1 16.5 0.48 0.53
S1-D 1.13 1.14 19.5 12.6 0.47 0.51
U1-D 1.13 1.13 22.7 17.3 0.48 0.55
S1-M 1.10 1.11 25.9 22.3 0.48 0.54
U1-M 1.10 1.11 25.1 21.0 0.48 0.53

Table 1. Objective evaluation results

The proposed method was mainly designed for spectrum adaptation. Table 1 confirms that the performance of unsuper-
vised adaptation is comparable to that of supervised adaptation no matter which approach was applied, especially in terms
of spectrum. According to Table 1:

(1) Intra-lingual systems provided the best performance interms of spectrum adaptation, which makes sense as there
was no language mismatch.

(2) It is not surprising that S1-T and U1-T provided worse performing spectrum adaptation, because the transforms
were estimated on the Mandarin side but used to adjust the English average voice models; there was an obvious language
mismatch.

(3) In contrast, mapping rules were applied to the Mandarin adaptation data before transform estimation when the data
version of HMM state mapping was used. Since transforms weredirectly estimated on the Mandarin data and the English
average voice models, the language mismatch in S1-D and U1-Dcould be partly alleviated by the maximum likelihood
linear transformation (MLLT) based adaptation algorithm.RMSE of MCEP thus decreased.

(4) In S1-M and U1-M, without any explicit mapping rules, theMandarin adaptation data was directly associated
with PDFs of the English average voice models by prior phonetic knowledge and in an ML-based data-driven manner,
respectively. This could be regarded as an automatic, more precise, mapping process. So S1-M and U1-M could be slightly
better than S1-D and U1-D in terms of spectrum.

(5) Unfortunately, the great prosody distinction between English and Mandarin meantF0 adaptation was not nearly as
effective.

Initially we synthesized speech with adapted pitch contours, but unnatural pitch patterns resulting from unsupervised
cross-lingual speaker adaptation were perceived during informal listening evaluation. In addition, Table 2 confirms that the
prosody of English (i.e. stress-timed & atonal) is distinctfrom that of Mandarin (i.e. syllable-timed & tonal). Hence,pitch
and duration of utterances to be subjectively evaluated were synthesized by the English average voice model set. We then

4



Speaker Language Mean StD Min Max

H Mandarin 137.9 25.2 72.9 236.3
H English 128.7 11.8 64.1 222.6
Z Mandarin 117.9 15.4 58.1 182.1
Z English 112.0 10.3 59.3 186.1

Table 2. F0 statistics (Unit: Hz)

shifted the meanF0 value of each synthesized pitch contour to that of speech data of the corresponding bilingual speaker
(H or Z). So our formal listening test merely focused on the performance of spectrum adaptation.

Our formal listening test consisted of two sections: naturalness and speaker similarity. In the naturalness section, a
listener was requested to listen to a natural utterance firstand then utterances synthesized by the eight systems each as
well as vocoded speech in a random order. Having listened to each synthesized utterance, the listener was requested to
score what he/she heard on a 5-point scale of 1 through 5, where 1 meant “completely unnatural” and 5 meant “completely
natural”. The speaker similarity section was designed in the same fashion, except that a listener was requested to listen
to one more utterance which was synthesized directly by the average voice models and the 5-point scale was such that 1
meant “sounds like a totally different person” and 5 meant “sounds like exactly the same person”.

4.5 2.9 2.8 2.0 2.73.0 2.9 2.2 2.6
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

vocoder intra *1-D *1-T *1-M

supervised unsupervised

95% confidence interval

Fig. 2. Naturalness score (speakerH)
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4.5

5.0

vocoder intra *1-D *1-T *1-M

supervised unsupervised

95% confidence interval

Fig. 3. Naturalness score (speakerZ)

Twenty listeners participated in our listening test. Because of the anonymity of our listening test, only two native
English speakers can be confirmed. The results in Figure 2 andFigure 3 suggest that unsupervised cross-lingual speaker
adaptation is comparable to or sometimes better than the supervised case in terms of naturalness. We noted that in the case
of intra-lingual speaker adaptation with speakerZ ’s speech adaptation data, the supervised system S2 outperformed the
unsupervised one U2. This is probably because speakerZ speaks Mandarin accented English while speakerH has a more
natural English accent. In order to avoid the potential effect of non-standard English accents, only speakerH was involved
in the speaker similarity evaluation.

It is observed from both objective and subjective evaluation results that for speakerH , *1-D and *1-M followed the
intra-lingual adaptation systems closely while *1-T evidently underperformed. Reviewing the analysis of Table 1, we noted
the state emission PDFs of *1-D, *1-M and intra-lingual systems for transform estimation were all in English, which was
the output language, and that the difference was just language identities of their adaptation data. By contrast, both the
emission PDFs and adaptation data of *1-T for transform estimation were in Mandarin, which was not the output language.
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Hence, it would appear that it is necessary to make sure we useoutput language distributions for estimation of cross-lingual
speaker transforms. The language identity of adaptation data is less important than that of a model set to be adapted.
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Fig. 4. Similarity score (Mandarin reference uttered by speakerH)
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Fig. 5. Similarity score (English reference uttered by speakerH)

The results in Figure 4 were obtained in the EMIME scenario – speaker similarity has to be compared between natural
speech inL1 and synthesized speech inL2. This figure shows unsupervised speaker adaptation is comparable to the
supervised case in terms of speaker similarity. However, Figure 5, where both natural and synthesized speech were in
English, shows an interesting contrast in that supervised adaptation outperformed the unsupervised case. We attribute this
phenomenon to human perception being affected by language mismatch. Namely, because the prompt of a natural English
utterance was the same as that of synthesized ones, and thus they were uttered with close prosody, the listeners could
more easily perceive how similar/dissimilar a synthesizedutterance was to a natural one, and tended to grade supervised
adaptation with higher scores. In the case shown by Figure 4,the language mismatch made it more difficult for the listeners
to compare a synthesized utterance with a natural one. The listeners didn’t think either synthesized utterance (adapted
supervisedly or unsupervisedly) sounded more similar/dissimilar to the natural one. This explanation needs to be confirmed
by further experiments and analysis.

Comparing with the cross-lingual systems *1-D and *1-M, we didn’t observe significantly better performance of the
intra-lingual systems. This suggests the MLLT-based speaker adaptation technique is able to compensate for language
mismatch between adaptation data and an average voice modelset fairly well.

5. CONCLUSION

We implemented unsupervised cross-lingual speaker adaptation by combining recently developed decision tree marginaliza-
tion and HMM state mapping techniques. It was observed that unsupervised cross-lingual speaker adaptation was compa-
rable to the supervised case in terms of spectrum adaptationin the EMIME scenario. We have observed language mismatch
is the main problem for cross-lingual speaker adaptation, so introducing some extra techniques to alleviate the mismatch
before speaker adaptation would be helpful. Since prosody plays an important role in voice characteristics as well, we may
need to pay more attention to improving prosody adaptation in order to deal with two dissimilar languages.
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