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Abstract

Efficient learning from massive amounts of information

is a hot topic in computer vision. Available training sets

contain many examples with several visual descriptors, a

setting in which current batch approaches are typically slow

and does not scale well. In this work we introduce a theo-

retically motivated and efficient online learning algorithm

for the Multi Kernel Learning (MKL) problem. For this

algorithm we prove a theoretical bound on the number of

multiclass mistakes made on any arbitrary data sequence.

Moreover, we empirically show that its performance is on

par, or better, than standard batch MKL (e.g. SILP, Sim-

pleMKL) algorithms.

1. Introduction

A common trend in computer vision research is the ex-

ploitation of massive amounts of information to achieve a

performance increase. In particular, learning from huge col-

lections of labeled images collected from the Web, and us-

ing multiple discriminative features, has led to a significant

boost of performance on problems considered very hard for

many years (for example, see [8, 11, 27] and references

therein). Yet, current classification batch algorithms, such

as Support Vector Machines (SVM), do not scale well with

the training set size. For this reason, researchers are con-

stantly looking for new ways of learning efficiently from

large-scale datasets.

A further issue hampering the application of batch learn-

ing to vision is that many computer vision problems are in-

trinsically sequential; e.g., applications with “human in the

loop” in robotic vision [10, 16] and computer vision [14]. In

these problems the system is primed on a small dataset, and

then keeps updating its current model as more data are ac-

quired (often through an interaction with the user). This is

in contrast with batch algorithms, where updating the model

often means re-training from scratch.

A framework for learning algorithms designed with a

clear focus on incremental learning and scalability is online

learning [4]. The algorithms developed in the online learn-

ing framework are designed so that their current model can

be efficiently updated after each sample is received. The

time needed for each update is small, typically at most lin-

ear in the number of observed examples. In online learn-

ing there is no distinction between a training and a testing

phase: learning proceeds sequentially and the knowledge

is continuously exploited and updated. More specifically,

at each time step the system is presented with a new input

vector and uses the current model to predict the associated

label. The correct label is then revealed, and the system can

update the model based on the received feedback. The goal

is to minimize the number of prediction mistakes, regardless

of the mechanism generating the samples. For this reason

the online learning framework is suitable to model situa-

tions in which that i.i.d. assumption on the samples is not

realistic. Yet, in case the data are really i.i.d., it is still pos-

sible to have algorithms with the same (or better) statistical

guarantees as the batch algorithms. In this sense, the online

learning scenario is both harder and more general than the

batch one.

Online learning algorithms have been successfully ap-

plied to many computer vision tasks where the amount of

data is so big [5, 13] that standard batch algorithms would

have unacceptably long training times. On the other hand,

the practical performance of online learning algorithms is

usually lower compared to batch methods. Ideally, we

would like to get best of both worlds, i.e., high performance

and fast computation w.r.t. sample size.

The current state-of-the-art methods for object catego-

rization are based on the combination of multiple dis-

criminative and robust features via machine learning tech-

niques [11, 18, 26, 27]. Among these approaches, Multi

Kernel Learning (MKL) [18, 26, 27] has attracted consider-

able attention. However, even if many attempts have been
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made to speed up the training process [21, and references

therein], this approach is still slow and does not scale to big

datasets. Some recent work has tried to address this prob-

lem using online learning method. Cavallanti et. al. [3] pro-

posed a p-norm multiview Perceptron. However, they as-

sume that all the cues live in the same space, meaning that

same kernel must be used on all the cues. Jie et. al. [15]

present a wrapper algorithm using a two-layer structure,

which can use most of the known online learning methods

as base algorithms. The specific version proposed in [15]

has a bounded memory complexity, but there is neither mis-

take bound nor convergence guarantee.

In this paper, we first introduce a generalization of the

multi-class MKL learning problem that allows to tune the

level of sparsity of the solution in the domain of the kernels.

This enable us to design a theoretically motivated online

learning algorithm, which we call OM-2 for Online Multi-

class Multi-kernel, with a guaranteed mistake bound on any

individual data sequence. OM-2 achieves state-of-the-art

performance for online algorithms on standard benchmark

databases. We also show that in the traditional train/test

setup, OM-2 achieves a performance close to MKL batch

algorithms while requiring an update time linear in the num-

ber of past examples.

In the next section we describe the online learning frame-

work and the building blocks that we use in our online MKL

architecture (Section 2 and 3). Section 4 describes our ex-

perimental findings. Section 5 contains the conclusions.

2. Preliminaries

In this section we first formally define the multiclass on-

line learning problem and the p-norm MKL framework. We

start by introducing some basic notions of classification and

convex analysis.

In the following bold letters are used to denote the

elements of a linear space (e.g., vectors x in R
d).

Let (x1, y1), . . . , (xT , yT ) be a sequence of examples

(instances-label pairs), with (xt, yt) ∈ X × Y, where yt ∈
Y = {1, . . . ,M} and M ≥ 2.

Multi-class classification. We consider multiclass classi-

fiers of the form

ŷ(x) = argmax
y∈Y

s(x, y) (1)

where s(x, y) is the value of the score function when in-

stance x is assigned to class y. Hence, the predicted class

ŷ(x) in (1) is the class achieving the highest score.

We use linear1 score functions s(x, y) = w · φ(x, y),
where w are the linear parameters and φ is a kernel fea-

ture map jointly defined on X × Y —see, e.g., [10]. The

1For simplicity we will not use the bias, it can be easily added by mod-

ifying slightly the feature map.

function φ maps the examples into a reproducing kernel

Hilbert space (of arbitrarily high dimensionality) whose

inner product is implemented by the associated kernel,

K
(
(x, y), (x′, y′)

)
= φ(x, y) · φ(x′, y′). With multi-

ple cues, we have F feature maps φ1, . . . , φF and F ker-

nels K1, . . . ,KF , where Ki
(
(x, y), (x′, y′)

)
= φi(x, y) ·

φi(x′, y′) for each i = 1, . . . , F . In our multiclass setup,

for each y = 1, . . . ,M we define

φj(x, y) =
(
0, . . . ,0, ψj(x)

︸ ︷︷ ︸

y

,0, . . . ,0
)

(2)

where ψj(·) is a label-independent feature map. Similarly,

w consists of M blocks,
(
w1, . . . ,wM

)
. Hence, by con-

struction, w · φj(x, y) = wy · ψj(x).

Loss Function. We introduce the following “bar” nota-

tion φ̄(x, y) =
(
φ1(x, y), . . . , φF (x, y)

)
and, similarly,

w̄ =
(
w

1,w2, . . . ,wF
)
, where each w

j is aM -block vec-

tor
(
w

j
1, . . . ,w

j
M

)
. Consider the following multiclass loss

function [10]

ℓ (w̄,x, y) = max
y′ 6=y

∣
∣1 − w̄ · (φ̄(x, y) − φ̄(x, y′))

∣
∣
+

(3)

where |t|+ = max{t, 0}. This loss function is convex and

upper bounds the multiclass misclassification loss.

p-norms. A generic norm of a vector w is indicated by

‖w‖, its dual norm is indicated by ‖w‖∗. For w ∈ R
d and

p ≥ 1, we denote by ‖w‖p the p-norm of w, where ‖w‖p =
(
∑d

i=1 |wi|p
)1/p

. The dual norm of ‖ · ‖p is ‖ · ‖q, where

p and q are dual coefficients; i.e., they satisfy 1/p+ 1/q =
1. In the following, p and q always denote a pair of dual

coefficients.

Group Norm. We can define the (2, p)-group norm

‖w̄‖2,p of w̄ as

‖w̄‖2,p :=
∥
∥
∥

(
‖w1‖2, ‖w2‖2, . . . , ‖wF ‖2

)
∥
∥
∥

p
. (4)

This is the p-norm of the vector whose elements are the 2-

norms of the vectors w
1, . . . ,wF . Note that the dual norm

of ‖ · ‖2,p is ‖ · ‖2,q [17].

Sub-gradients and Fenchel conjugate. Given a convex

function h : X → R, its sub-gradient ∂h(v) at v stat-

isfies: ∀u ∈ X, h(u) − h(v) ≥ (u − v) · ∂h(v). The

Fenchel conjugate of h, h∗ : S → R, is defined as

h∗(u) = sup
v∈S

(
v · u − h(v)

)
.

2.1. Multi Kernel Learning (MKL)

The MKL optimization problem was first proposed in [1]

and then extended to multiclass classification in [28]. Using



the group norm notation introduced above, we can define

the MKL [1] problem as

min
w̄

λ

2
‖w̄‖2

2,1 +

T∑

t=1

ℓ (w̄,xt, yt) (5)

where, as usual, w̄ =
(
w

1,w2, . . . ,wF
)
. The same for-

mulation is used in [25] —see also [21] for equivalent for-

mulations. The (2, 1) group norm induces sparsity in the

domain of the kernels. This means that the solution of (5)

tends to depend on a small subset of the F kernels.

Even if enforcing sparsity is desirable in many applica-

tions, in some cases it could lead to a decrease in perfor-

mance. For this reason, problem (5) has been recently gen-

eralized to p-norms in [19]. This allows to finely tune the

level of sparsity needed for the task at hand. In fact, the

authors show that in computational biology problems MKL

achieves higher accuracies using (2, p) group norms with

p > 1 [19]. In this paper we propose to consider the p-norm

problem in the following formulation

min
w̄

λ

2
‖w̄‖2

2,p +

T∑

t=1

ℓ (w̄,xt, yt) (6)

where 1 < p ≤ 2. This directly generalizes (5) and is differ-

ent from the one proposed in [19]. The advantage of (6) is

that the objective function is λ/q-strongly convex [17]. In-

tuitively, strong convexity measures the minimum curvature

of a function. If a problem has a strongly convex objective

function, then it is easier to optimize it. Therefore strong

convexity is a key property for the design of fast online and

batch algorithms [23, 17]. The added parameter p allow us

to decide the level of sparsity of the solution. It is known

that the 1-norm favors sparsity, and here the 1-norm favors

a solution in which only few hyperplanes have a norm dif-

ferent from zero. When p tends to 1, the solution of (6) gets

close to the sparse solution obtained by solving (5), but the

strong convexity vanishes. Setting p equals to 2 corresponds

to using the unweighted sum of the kernels.

2.2. Online Learning

An online algorithm learns by observing the training

examples (x1, y1), (x2, y2), . . . , (xT , yT ) in a sequential

manner. At each round t = 1, 2, . . . , T , the algorithm re-

ceives the next instance xt and makes a prediction ŷt. Once

the algorithm has made its prediction, it observes the cor-

rect label yt. Based on the label information the algorithm

may update its current model, thus improving the chances of

making accurate predictions in the subsequent rounds. The

quality of the predictions is measured by a given loss func-

tion, and the algorithm’s goal is to minimize the cumulative

loss suffered along the sequence of observations.

Note that, contrary to the standard batch learning frame-

work, in online learning there are no stochastic assump-

tion on the data-generating process. In other words, the

algorithm’s performance is measured on each individual se-

quence of observations, rather than only on those sequences

that are typical with respect to some underlying probability

distribution. For this reason the performance of online al-

gorithms is usually compared to that of the fixed classifier

performing best on the entire observed data sequence.

An approach to solve the online learning problem is to

use the “Follow the Regularized Leader” framework [22,

17]. This corresponds to using at each step the solution of

the optimization problem

w̄t+1 = argmin
w̄

h(w̄) + w̄ · η
t∑

i=1

∂ℓ(w̄i,xi, yi) (7)

where h(w̄) is the regularizer and η > 0 is a parameter.

Intuitively, this amounts to solving at each step a problem

similar to (6), the difference being that the loss function

has been replaced by its subgradient. The linearization of

the loss function through the subgradient provides an ef-

ficient closed formula update and allows to prove regret

bounds [22, 17]. The solution of the above minimization

problem gives an update of the form

w̄t+1 = ∇h∗
(

−η
t∑

i=1

∂ℓ(w̄i,xi, yi)

)

(8)

where h∗ is the Fenchel conjugate of h.

Next, we propose a variant of “Follow the Regularized

Leader” in which the parameter η = ηt is changed at each

time step. We prove that the cumulative number of mistakes

made on any sequence of T observations is roughly equal

to the optimum value of the MKL problem (6).

3. Algorithm

In this Section we describe the OM-2 algorithm (pseu-

docode in Algorithm 1) and analyze its performance on

any arbitrary sequence of observations. It is important to

point out that even if we solve the problem in the primal,

we do use nonlinear kernels without computing the nonlin-

ear mapping φ̄(x, y) explicitly. In other words, OM-2 can

be used with any kernel function satisfying Mercers condi-

tions. We briefly outline the approach for implementing it

in Section 3.1.

The design and analysis of this algorithm is based on the

framework and machinery developed in [17]. It is similar

to the p-norm matrix Perceptron of [3], but it overcomes

the disadvantage of using the same kernel on each feature.

The regularizer of our online MKL problem is defined by

h(w̄) = q
2‖w̄‖2

2,p. It can be verified that

h∗(θ̄) =
1

2q
‖θ̄‖2

2,q

∇h∗(θj) =
1

q

(

‖θj‖2

‖θ̄‖2,q

)q−2

θ
j , ∀j = 1, . . . , F.



Similarly to [3], we prove a mistake bound for Algorithm 1.

We say that the algorithm makes a “mistake” each time the

prediction ỹ is different from the true class yt. Algorithm

OM-2 updates the weight w̄t not only at each mistake, but

also when the prediction is correct and the multiclass loss

ℓ(w̄t, xt, yt), is greater than 0. In the following, we show

that this aggressive update strategy improves the theoretical

performance of the algorithm.

We denote by I the set of rounds in which there is no

mistake but there is an update; that is,

I =
{
t : 0 < w̄t · z̄t < 1

}
.

Theorem 1. Let (x1, y1), . . . , (xT , yT ) be a sequence

of examples where xt ∈ X, y ∈ Y and such that
∥
∥φj(xt, yt)

∥
∥

2
≤ 1 for j = 1, . . . , F and t = 1, . . . , T .

Then, for any ū, the number of mistakes M of Algorithm

OM-2 satisfies

M ≤ C + L+
√
LC −

∑

t∈I

ηt

where C = 2qF 2/q‖ū‖2
2,p and L =

∑T
t=1 ℓ(ū,xt, yt).

Proof. Proofs are deferred to Appendix A.

Apart from the negative term −∑t∈I ηt, the bound has

the standard form of mistake bounds for online learning

multiclass algorithms that only update on mistakes [10].

The presence of this negative term theoretically motivates

the use of updates in margin error rounds. Note also that

when the problem is linearly separable, the algorithm con-

verges to a solution that has training error equal to zero.

Moreover, when p goes to 1, the term C in the bound has a

strongly sublinear dependence on the number of kernels, but

unfortunately q goes to infinity. Similarly to [12], we trade-

off these two terms to obtain a logarithmic dependence on

the number kernels. In particular, we obtain the following

corollary.

Corollary 1. Under the hypotheses of Theorem 1, if p =
2 ln(F )

2 ln(F )−1 then for any ū, the number of mistakes M of Al-

gorithm OM-2 is less than

C + L+
√
CL−

∑

t∈I

ηt

where C = 4e ln(F )‖ū‖2
2,1 and L =

∑T
t=1 ℓ(ū,xt, yt).

Suppose that only one kernel is useful for the classifica-

tion task at hand while the others F − 1 are irrelevant. With

the optimal tuning of p the price we pay in the bound for not

knowing which kernel is the right one is just logarithmic in

their number F .

Algorithm 1 OM-2

1: Input: q

2: Initialize: θ̄1 = 0, w̄1 = 0

3: for t = 1, 2, . . . , T do

4: Receive new instance xt

5: Predict ŷt = argmax
y=1,...,M

w̄t · φ̄(xt, y)

6: Receive label yt

7: z̄t = φ̄(xt, yt) − φ̄(xt, ŷt)

8: if ℓ(w̄t, xt, yt) > 0 then ηt = min



1 −
2w̄t·z̄t

‖z̄t‖
2
2,q

, 1

ff

9: else ηt = 0
10: θ̄t+1 = θ̄t + ηtz̄t

11: w
j
t+1 = 1

q

„

‖θ
j
t+1

‖2

‖θ̄t+1‖2,q

«q−2

θ
j
t+1, ∀j = 1, · · · , F

12: end for

3.1. Implementation

Following [24, Section 4], it is possible to use Mercer

kernels without introducing explicitly the dual formulation

of the optimization problem. As θ̄1 is initialized to the

zero vector, θ̄t+1 can be written as θ̄t+1 =
∑

t ηtz̄t =
∑

t ηt(φ̄(xt, yt)− φ̄(xt, ŷt)). Therefore, the algorithm can

easily store ηt, yt, ŷt, and xt instead of storing θ̄t. Observ-

ing line 11 in the algorithm, we have that at each round,

w
j
t+1 is proportional to θ

j
t+1, that is w

j
t+1 = αj

tθ
j
t+1.

Hence w̄t+1 can also be represented using αj
tηt, yt, ŷt

and xt. During prediction, the dot product between w̄t+1

and φ̄(xt+1, yt+1) can be expressed as a sum of terms

w̄
j
t+1 · φj(xt+1, yt+1), that can be calculated as

w
j
t+1·φ

j(xt+1, yt+1)

= αj
t+1

∑

t

ηt( φ
j(xt, yt) · φj(xt+1, yt+1 )

− φj(xt, ŷt) · φj(xt+1, yt+1) )

= αj
t+1

∑

t

ηt

(

Kj
(
(xt, yt), (xt+1, yt+1)

)

−Kj
(
(xt, ŷt), (xt+1, yt+1)

))

.

Note that the time spent by the OM-2 algorithm in each step

is dominated by the prediction (line 5). The time required

to execute line 5 is O(StFM), where St is the number of

updates made before the t-th iteration.

4. Experiments

In this section we present an experimental evaluation of

our approach in two different scenarios, corresponding to

two publicly available databases. The first scenario is about

learning new object categories, and the experiments were

conducted on the Caltech-101 dataset [9]. The second sce-

nario is about place recognition for a mobile robot, using

the IDOL2 dataset [16].



We compared the performance of our algorithm to the

OMCL algorithm [15], to the Passive-Aggressive algorithm

(PA-I) [7] using the average kernel and the single best fea-

ture, and to a batch MKL algorithm [25]2. We determined

all of our online learning parameters via cross-validation.

The features and kernel parameters were obtained directly

from the authors who made this information publicly avail-

able [15, 11].

In both experiments we reported the average online train-

ing error. This is the number of prediction mistakes the al-

gorithm makes on a given input sequence normalized by

the length of the sequence, which is a standard performance

measure for online learning algorithms. We also tested the

generalization performance of our algorithms on a separate

test set, which is similar to the classic batch learning setup.

However, it is known that the generalization performance

of an online algorithm trained with only one pass (epoch)

is typically inferior to batch algorithms, especially when

the number of training instances is small. Hence we cy-

cled through the training samples several times (epochs),

and we reported the performance on a separate test set as

a function of the number of epochs. This is similar to a

stochastic gradient descent optimization [2]. Experiments

show that OM-2 achieves better performance than the other

online learning methods, and comparable performance as

the batch MKL method at much lower computational cost.

The MATLAB implementation of our algorithm is available

within the DOGMA library [20], which we also used for

implementation of the baseline online algorithms.

4.1. Object Categorization: Caltech101

The Caltech-101 [9] dataset is a standard benchmark

dataset for object categorization. In our experiments we

used the pre-computed features as well as the train/test splits

of [11], which the authors made available on their website3.

There are eight different image descriptors. Using different

setup of parameters and different pyramid scales we end up

with a total of 48 kernel matrices. For brevity, we omit

the details of the features and kernels. These can be found

in [11] and its project website.

We report results using all 102 classes and 30 training

images per category over five different splits. For each split,

the experiments were performed over 10 different permuta-

tions of the training images. Figure 1 (Left) shows the aver-

age online training error rate using different online learning

algorithms as a function of the number of training exam-

ples. Figure 1 (Right) reports the classification performance

obtained using different online learning algorithms and the

batch MKL algorithm. It can be observed from the plots that

2To the best of our knowledge, SILP [25] is the most efficient MKL im-

plementation publicly available. Although SimpleMKL [21] is found to be

more efficient, a good implementation for large problems is not available.
3www.vision.ee.ethz.ch/˜pgehler/projects/iccv09/

the OM-2 algorithm achieves better performance on both

training and test phase compared to the other online learn-

ing algorithms. The best results were obtained when p is

small (1.01 in our setup). This is probably because among

these 48 kernels (computed from eight different image de-

scriptors) many of them were redundant. Thus a sparse so-

lution is favored. After about 80 epochs, the OM-2 achieve

comparable results as the batch MKL algorithm at a relative

low computational time. Although our MATLAB imple-

mentation is not optimized for speed, training on Caltech-

101 dataset using 30 examples per class and 48 kernels takes

about 45 mins4 (150 epochs, 3060× 150 iterations). While

for MKL the training time using the SILP implementation

is more than 2 hours. The performance advantage of OM-2

over SILP is due the fact that OM-2 is based on a native

multiclass formulation (see Section 2), while SILP solves

the multiclass problem by decomposing it into multiple in-

dependent binary classification tasks. Thanks to the online

learning framework, we could solve the new MKL formu-

lation using the multi-class loss function efficiently. This is

in line with similar observations in [11].

4.2. Place Recognition: IDOL2

We also performed a series of experiments on the IDOL2

database [16], which contains 24 image sequences acquired

using a perspective camera mounted on two mobile robot

platforms. These sequences were captured with the two

robots moving in an indoor laboratory environment consist-

ing of five different rooms under various weather and illu-

mination conditions (sunny, cloudy, and night) and across a

time span of six months. This dataset is ideal for testing on-

line learning algorithm: the algorithm has to incrementally

update the model, so to adapt to the variations captured in

the dataset. For experiments, we used the same setup de-

scribed in [16, 15]. We considered the 12 sequences ac-

quired by robot Dumbo, and divided them into training and

test sets, where each training sequence has a corresponding

one in the test sets captured under roughly similar condi-

tions. In total, we considered twelve different permutations

of training and test sets. The images were described using

three visual descriptors and a geometric feature from the

Laser Scan sensor, as in [15].

Figure 2 reports the average online training and recogni-

tion error rate on the test set. In contrast to the previous ex-

periments, here the best performance is obtained at p = 2,

which means that there are no redundant features and all

of them are discriminative for the given task. OM-2 and

PA-I using average kernel achieve better performance com-

4Notice that this time is measured using precomputed kernel matrix as

inputs. In practice, if not all the data points are available from the begin-

ning, the kernel value could be computed “on the fly” and the total compu-

tation time of several epochs could be reduced using methods like kernel

caching.
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Figure 1. Performance of different online learning algorithms on Caltech-101 dataset as a function of the number of training examples:

(left) average online training error rate; (right) classification rate on the test set.
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Figure 2. Performance of different online learning algorithms on IDOL2 dataset as a function of the number of training examples: (left)

average online training error rate; (right) classification rate on the test set.

pared to the other online learning algorithms. Surprisingly,

the performance of batch MKL is worse than all the other

online feature combination method, including the perfor-

mance of the single best feature. Hence, in agreement with

recent findings [6], promoting sparsity hurts performance

when the problem is not sparse at all.

5. Conclusion

This paper presents a theoretically motivated online

learning algorithm for solving the multiclass MKL prob-

lem. The algorithm is based on a new p-norm formulation

of the MKL problem that allows us to tune the level of spar-

sity in order to obtain always nearly optimal performance.

The time to update the model of OM-2 is linear in the num-

ber of features, classes and training examples. Therefore,

our algorithm scales well to large problems. Experiments

show that our algorithm achieves better performance com-

pared to common baselines. Using enough epochs of train-

ing, our approach achieves the same generalization perfor-

mance, or even better, than batch MKL, with a considerably

lower training time.
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A. Appendix

Proof of Theorem 1. The proof is based on an adaptation of

a result from [17] for the “Follow the Regularized Leader”

algorithm. We start by introducing a few basic notions of

convex analysis. A differentiable function f : S → R is

said to be λ-smooth with respect to a norm ‖ · ‖ iff for any

u,v ∈ S, f(u+v) ≤ f(u)+∇f(u)·v+ λ
2 ‖v‖2

. Note that

f is λ-smooth w.r.t. a norm iff f is (1/λ)-strongly convex

w.r.t. the corresponding dual norm [17].

We now proceed by bounding the quantity θ̄T+1 ·ū from

below and from above. From [17, Corollary 19], we know

that h(w̄) is 1-smooth w.r.t. ‖ · ‖2,q. Moreover, line 11 in

the algorithm’s pseudo-code implies that w̄t = ∇h∗(θ̄t) =

∇h∗
(∑t−1

i=1 ηiz̄i

)
. Hence, we obtain

‖θ̄T+1‖2
2,q ≤ ‖θ̄T ‖2

2,q + 2qηT w̄T · z̄T + qη2
T ‖z̄T ‖2

2,q

≤ q

T∑

t=1

(
2ηtw̄t · z̄t + η2

t ‖z̄t‖2
2,q

)
.

Let Rt = 2ηtw̄t · z̄t + η2
t ‖z̄t‖2

2,q. Using the convex in-

equality for norms we then get

θ̄T+1 · ū ≤ ‖θ̄T+1‖2,q ‖ū‖2,p ≤ ‖ū‖2,p

√
√
√
√q

T∑

i=1

Rt .

We can further bound the last term by considering sepa-

rately the steps t when w̄t · z̄t ≤ 0 (a mistake occurs), and

the steps when 0 ≤ w̄t · z̄t ≤ 1 (a margin error occurs).

Using that ‖z̄t‖2
2,q ≤ 2F 2/q given

∥
∥φj(xt, yt)

∥
∥

2
≤ 1, we

have that ηt = 1 at mistakes, and we can further upper

bound θ̄T+1 · ū as follows

θ̄T+1 · ū ≤ ‖ū‖2,p

√

2qF 2/qM + q
∑

t∈I

Rt . (9)

For the lower bound we have that

θ̄T+1 · ū =

T∑

t=1

ηtū · z̄t

=

T∑

t=1

ηtū ·
(
φ̄(xt, yt) − φ̄(xt, ŷt)

)

≥
T∑

t=1

ηt

(
1 − ℓ(ū,xt, yt)

)

≥M +
∑

t∈I

ηt − L .

Combining this last inequality with (9), solving the inequal-

ity for M , and using the definition of C, we obtain

M ≤ C

2
+ L−

∑

t∈I

ηt +
C

2

√

1 +
4

C
(A+ L)

where

A =
∑

t∈I

Rt − 2ηtF
2/q

2F 2/q
.

Now, observing that ηt has been chosen so that A ≤ 0 and

overapproximating we obtain the stated bound.


