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Abstract

The divergence of the theory and practice of vocal tracttlengrmalization (VTLN) is addressed, with particular eraph

sis on the role of the Jacobian determinant. VTLN is placeal Bayesian setting, which brings in the concept of a prior
on the warping factor. The form of the prior, together witlbastic scaling and numerical conditioning are then disediss
and evaluated. It is concluded that the Jacobian determim@mportant in VTLN, especially for the high dimensional
features used in HMM based speech synthesis, and diffisultemally associated with the Jacobian determinant can be
attributed to prior and scaling.

Index Terms: Jacobian Normalization, Vocal Tract Length Normalizatiddaptation

1. Introduction

Automatic speech recognition (ASR) has long been based duehi Markov models (HMMs). HMMs for ASR are
generally combined with some kind of feature or model adaptaechniques. The effect of the adaptation is to move the
characteristics of the observed features (the speech tecogmised) closer to those of the model. Generally the model
is speaker independent. In an ideal case, under speakdivadagining (SAT), the model represents an average voice
(canonical model) and the adaptation represents a tranafmm from the average (characterless) voice to the vdiee o
given person. By contrast, speech synthesis (often refesras text to speech, or TTS) has tended to rely on unit $ethect
techniques. Such techniques involve joining together lsohainks of the speech of a given person to form an utterance.
Unit selection has no concept of speaker independence; ifiene speaker only.

Recently, HMMs have been shown to be capable of performing {6b, and with care can produce synthetic speech
of a quality comparable to unit selection. This in turn benige possibilities of adaptationto TTS. A stored averageevo
can be transformed to sound like a voice represented by a iaesform. Such transforms are typically linear transf®or
produced by maximum likelihood linear regression (MLLR)poe of its derivatives. The advantage of linear transforms
over other possibilities such as maximum a-posteriori (MA®del adaptation is that they require much less adaptation
data; of the order of a few minutes.

Vocal tract length normalization (VTLN) is another adajmattechnique. It is based on the physical observation that
vocal tract length varies across speakers from around 18amales to around 13cm in females. Formant frequencies
are inversely proportional to vocal tract length, and hetere vary by around 25%. Although implementation details
differ, VTLN is generally characterised by a single paranétat warps the spectrum towards that of an average vocal
tract in much the same way that MLLR transforms can warp td&an average voice. The parameter has been shown
experimentally to have a bimodal distribution with the m@depresenting male and female speech. Crucially for this
study, VTLN has been shown to be a linear transform in theufeafcepstral) domain [1, 2, 3]. VTLN, with just one
degree of freedom, hence represents a linear transformahatdapt with very few adaptation data; of the order of a few
seconds, or a single utterance.

Being a feature transformation, training VTLN in a statiatisense requires calculation of a Jacobian determinant.
Whilst this can be proved easily and is acknowledged in tieediure, many authors either cannot consider it due to the
nature of the transform, or choose not to consider it. Tylyicthe effect of the Jacobian determinant is either midima
or can be removed by cepstral mean and variance normalizgidVVN) [4, 5, 6]. When using ASR-like adaptation in
HMM based TTS, CMVN is generally not used because it reptssedistortion of the speech characteristics. Further,
the high feature dimensionality associated with TTS leadadre extreme values of the Jacobian determinant, meaning
in turn that it cannot be ignored.

In the following sections, VTLN is formulated in a Bayesianse. Some reasons for the divergence of theory and
practice in the literature are discussed, and possiblg¢isoiiconsidered. Results are presented as histogramspiiga



factors, with ASR results confirming a correlation with thstbgrams.

2. VTLN Formulation
VTLN is characterised by
e A warping function, e.g., linear, piecewise linear, nomefr, bilinear.
e A warping factor, typically denoted.
e An optimization criterion, e.g., MAP, ML.

One of the main advantages of VTLN is that the warping factar lse reliably estimated even with a single adaptation
sentence for each test speaker.
A brute force way of computing the warping factor for eachadqe is the ML based grid search technique [4]:

&s1 = argmaxp (Xq., | ©, wq1) 1)

wherex,,, represents the features warped with the warping fagter which is the warping factor for speaket. ®
represents the model amd,; represents the transcription corresponding to the datawhich the features are extracted
for speakesl. &1 represents the best warping factor for the same speaker.

In the work of Pitz and colleagues [2, 3], it is argued pergdg that VTLN amounts to a linear transform in
the cepstral domain. In fact, thislinear transformbased warping function is also evident from the mel-geisgdl
approach to feature extraction [7], that is useful in spemgithesis. It has also been studied by Uebel and Woodland
[6] and by McDonough [8]. The matrix formulation for the Ipigar function can be derived from the recursions of the
Mel-Generalized Cepstral features and is of the form:

1 [0 8 0(2 (le

0 1—«? 20(l— o) -+ MoMi(1— «?)
A—|O —x(1— &?)

0 (—D)Nt(1—?)axNe

whereM; =M —1andN; =M — 1.
The matrix formulation enables the calculation of Jacolmiarmalization as the determinant of the transformation
matrix.

2.1. Probabilistic formulation
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Figure 1: Generative model for vocal tract “warping”

Assume a model®, generates a sample, The sample is then distorted by a linear transfoAm?, a function ofx,
to give an observatiog = A~ x. Here, we follow convention wher is a feature transform so the generative transform
is A~L. The goal is to find an optimal valu&, of . Bayes’s theorem gives the maximanposterioriestimator:

& =argmax («|y,®) xp(yl o, ®)p (x| O). 2

To evaluate the first term on the RHS of equation 2, notice tthimimodel generatesrather thany, so it needs a
change of variablg — x. The Jacobian determinant for the change of variable is,

J=1Al, ©))
where the notation is taken to mean the determinant of thexn&b,

PYUla«,®) =Alp(Ay | «, O). 4)



The second term on the RHS of equation 2 is a prioxoNotice thatx is actually independent of the mod@®,, so
it could be written unconditional. Howevet,is posterior to the training dat®, that was used to trai®. So, equation
2 can be evaluated as

& =argmaxA[p (Ay | «, ®)p (x| D). (5)
Notice that the “prior” is not normally considered. It wilkldiscussed later.

2.2. Issues with Jacobian Normalization

Jacobian normalization usually tends to degrade the waifpictor estimation and thus has adverse effects on therperfo
mance of VTLN. It can be seen in the literature that most VThipliementations either ignore the Jacobian normalization
or replace it with cepstral mean/variance normalizatig[®]. One recent study [10] on mismatched train and test con
ditions addressed this issue by compensating with a vagiadaptation on top of VTLN. This approach was a conclusion
of the fact that the VTLN transformation on both mean andarazé does not fully match the data when there is a mis-
match in speaker conditions which resulted in the degradatiperformance when using Jacobian normalization. &imil
problems are observed when applying VTLN on higher ordeufea (of the order of 25 or 39) which are used for sta-
tistical speech synthesis [11]. The effect is less notikeesdy lower order features (of the order of 12 or 15), which ar
usually used in ASR. The effect of Jacobian normalizatiordffferent feature orders can be visualized in Figure 2a& Th
Jacobian is used as Ipf/. It can be seen that the values have a flatter distributiolofeer order features and variations
become more prominent for higher order features. The effiendt using Jacobian normalization for'39rder features

is shown in Figure 2b. As opposed to Figure 3a, the warpinfad¢end to spread towards boundary.

When using grid search based warping factor estimatiotfesiwith different warping factors are aligned with the
transcription for estimating the likelihood scores. Usyal standard speech toolkit like HTK is used to generate the
alignments. This results in changes in alignment bounddoiedifferent warping factors. It was noted that there was
change of about 1 frame in most of the boundaries, where &éhnesfishift was 5ms. In experiments to estimate the warping
factors with a fixed alignment, it was found that the alignineranges do not have a significant impact on the warping
factor estimation. The alignment problem does not existnwharping factor estimation is embedded in the EM training
algorithm because it performs calculations on the statiggenerated from a fixed alignment.
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(a) Jacobian value (b) No Jacobian normalization

Figure 2: Jacobian value calculated as|lgfor various feature dimensions. Distributions over wagpfactor value
without Jacobian normalization. The abscissa,ithe warping factor.

3. Experimental

The following experiments used the WSJCAMO British Engliead speech database.8®rder acoustic models for
TTS were trained using hidden semi-Markov models (HSMMhvahly a single Gaussian PDF per state. The bilinear
transform based VTLN was applied on the mel-cepstral (MCigR{ures with a warping factor within the range of -0.1
to 0.1. In all cases, VTLN warping was estimated using the plraach similar to [5].
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Figure 3: Warping factors estimated from‘8®rder features with different Jacobian normalizationse @hscissa in all
cases is, the warping factor, although note that the ranges vary.oftimate depends on the plot; see the text for details.

As the theory suggests, Jacobian normalization shoulddxfos warping factor estimation. When the feature stream
contains dynamic components, the transformation can breessed as follows.

A 0 O c
=l o A o Ac |, (6)
0 0 A AZc

whereA is the transformation on the static features and can bettjirgaplied to the dynamic part of the cepstra as well.
It can be shown experimentally that the warping factorsvestiéd from the static features are more accurate. Estignatin
warping factors as a transformation on the cepstrum shalie into account the fact that the feature stream usually
contains dynamic features which can disrupt the warpintpfagstimation. Table 1 shows the warping factors estimated
using static and dynamic feature vectors separately forla aral female speaker. This problem should not be observed

Gender | Static A A?
Male 0.0195 | 0.0100 | -0.0145
Female | -0.0260| -0.0142| 0.0134

Table 1: Warping factors for components of feature vectors

in VTLN techniques embedded into the feature extractiop dlike warping the filter banks of MFCC features) which
estimate dynamic features from the warped static features.
3.1. Probable causes of degradation

In the following sections, some issues regarding appbticadind calculation of Jacobian determinant are discussed.

3.1.1. Erroneous use of flat prior

The prior on the warping factor in equation 5 has previouslgrbignored. Ignoring a prior normally corresponds to
assuming a flat prior. Where many data are available, thités @ reasonable approach. Conversely, where few data are
available, priors can be important. It is simple to argugesttively that the prior on the warping factor should not tae: fl

e It should tend to zero at the extreme valdek.
e It should be bimodal, representing male and female speech.

Obijectively, the prior can be measured via a histogram opimgrfactors calculated over a large number of speakers, for
each of whom a large amount of data exists. Such histogragnshamn in Figure 3a, and moments can be measured to
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Figure 4: Beta mixture prior on. Distributions over warping factor value with beta priohélabscissa in all casesos
the warping factor, although note that the ranges vary. Tmate depends on the plot; see the text for detalils.
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Figure 5: Warping factors estimated from‘8%rder features with a scale factor of 2 for the likelihoodse Bbscissa is
«, the warping factor.

infer a parametric distribution. Here, we use a two-compbbeta mixture, transformed to span the raade

plalD)oc 3 (14l Hl-a)tot, )
ge{m,f}

where{p, qm | and{ps, q+} are the pairs of beta parameters for male and female spesméctevely, as in Figure 4a.

Notice thatnot using a Jacobian determinant has the effect of using a pitbravPDF proportional to the inverse
of the Jacobian (c.f. Figure 2a). This is, in some sense, adatdistribution. Certainly it biases away from zero,
enhancing the relative separation of the male and femaleemod

It can be seen from Figure 4b that the prior does not have mmphdt on warping factor estimation for the training
data. The changes are expected to be seen only in the waggitoyd for the test data. This in turn could explain why
it has been observed by earlier researchers that not usiodpida normalization improves performance especially in
testing. During testing, the data is insufficient to gereeatneaningful likelihood.
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Figure 6: Warping factors estimated for test data frorffi@&der features with and without Jacobian normalization and
prior. The abscissa is, the warping factor.

3.1.2. Underestimation of acoustic likelihood

In Large Vocabulary ASR, it is common to use a language modatimfactor that in fact compensates for the acoustic
likelihoods being too small. This in turn is because sudeesacoustic frames have much more correlation than the
HMM can model. Applied more correctly to the acoustic ceadtioln, we might expect that the correction should apply to
the likelihoods but not to the Jacobian. In fact, this wa®stigated by Pitz [1], who applied the factor to the Jacobian

analogous to the language model scale. This suggests aratstiof the form
& = argmax{Z(LL) x sf + F x log|Al|, (8)

where,LL represents the log-likelihood scors, represents the scale factor for boosting likelihoddsepresents the
total number of framesA represents the transformation matrix andepresents the warping factor. The effect of the
scale factor value ‘2’ is shown in Figure 5a. There is no staddormula for calculating the scale factor; it is estingate

empirically.

3.1.3. Numerical conditioning

The matrix formulated for expressing VTLN as a linear transfation of the cepstrum can be “large”, especially when
using higher order cepstral features. As the order of thetcapnd the value of the warping factor increases, the lealcu
tion of the determinant becomes numerically unstable. dheof the determinant can be calculated as accurately as the

sum of the logs of the eigen values of the matrix thus:
1 N
log|A = 5 ; log (e; x e}) 9)

where,e; represents an eigen value of the ma#kirande; represents the conjugate of the complex nuneber

Alternatively, it can be observed that the matrix is diadlyndominant. Hence, a diagonal covariance assumption
could be used, discarding the non-diagonal elements. Thdtireg determinant can be estimated as the product of the
diagonal elements of the matrix. Instead of ignoring ncegdnal elements, terms with higher order powers of warping
factor could also be ignored [12, 13]. These work arounds gilosed form solution to the auxiliary function when
VTLN is formulated as an EM optimization. This reduces tmadicomplexity of the warping factor estimation. Both
these cases increase the effect of the Jacobian and giveng/éaptor values a push in the wrong direction. This can be
observed from Figure 3b, where the warping factors of madfamale speakers are pushed towards a region of minimum
warping. It also results in no proper distinction betweenwharping factors of the two genders.



3.2. Recognition performance

Speech recognition experiments are presented here shtwdhdacobian normalization should be used in VTLN. The
hidden Markov models were built with 13 dimensional cepdiatures withA and A? for the (US English) WSJO
database. The models were built using single mixture PDHetoonstrate the maximum impact of VTLN, and because
only single mixture models can be used in synthesis. In@ddi, this was to avoid the situation where multi-mixture
models either over-fitted, or modeled the speaker vartadsilthat could be attributed to VTLN. The performance diffe
ences are not statistically significant, but support thetfeat Jacobian normalization should not degrade the pegoce.
These results are similar to ones shown in [1], where exmarisare performed using a scale factor for the Jacobian
analogous to inverse scaling of the likelihood.

Moments of symmetric beta prior distributions were estaddtom the warping factors for the conversational speech
database presented in [9]. The warping factors for the pestlers are shown in Figure 6a, which shows that using a prior
distribution can estimate similar warping factors to thtiss might result from not using Jacobian normalizatione Th
recognition performance is not significantly affected by separation of the warping factors. However, the separatio
is important in statistical speech synthesis, which dersatistinct warping factors for each speaker to bring as many
characteristics of the speaker as possible in the syn#itesjzeech. A scaling factor may be needed in TTS where the
prior is insignificant when combined with the large likeldgtbscores produced by the higher order features.

SI-model VTLN
No Jacobian | Jacobian | Jacobian+Prior
22.16 19.43 19.33 19.49

Table 2: WER for 18" order features on the Nov93 Eval

4. Conclusions

VTLN is a powerful speaker normalization technique that gewe performance improvements in both statistical speech
recognition and synthesis. This paper emphasizes thetattlacobian normalization is an important component of
VTLN and should not be ignored, especially for higher oramtiires. Different possible causes for the degradation of
warping factor estimation when using Jacobian normabtiratiere investigated. It was shown that not using the Janobia
has a similar effect to using a strong prior for the warpingides. Thus, not using a prior creates more problems in
testing where the amount of data is insufficient to compjetehsk the effect of the prior. The right usage of Jacobian
normalization combined with including a proper prior caveggimilar warping factor distributions as not using a Jéob
Though the results are shown with bilinear transforms, #imesshould hold for other warping functions as well.
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