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Abstract

Vocal tract length normalization is an important feature no
malization technique that can be used to perform speaker ada
tation when very little adaptation data is available. It whewn
earlier that VTLN can be applied to statistical speech ssith
and was shown to give additive improvements to CMLLR. This
paper presents an EM optimization for estimating more accu-
rate warping factors. The EM formulation helps to embed the
feature normalization in the HMM training. This helps in es-
timating the warping factors more efficiently and enables th
use of multiple (appropriate) warping factors for differstate
clusters of the same speaker.

Index Terms: Vocal tract length normalization, Expectation
Maximization Optimization, HMM Synthesis, Adaptation

1. Introduction

Hidden Markov model (HMM) is a popular technique used in
automatic speech recognition (ASR). Speaker indepen&t (
models are built by estimating the parameters of HMM using
data collected from a large number of speakers. Model adap-
tation techniques entail linear transformation of the nseamd
variances of an HMM to match the characteristics of the dpeec

25%. Although implementation details differ, VTLN is gener
ally characterized by a single parameter that warps therspec
towards that of an average vocal tract in much the same way tha
maximum likelihood linear regression (MLLR) transformsica
warp towards an average voice.

An efficient implementation of VTLN using expectation
maximization (EM) with Brent's search optimization for syn
thesis is presented in this paper. Optimal warping factors f
synthesis are analyzed, and techniques to estimate sivztar
ing factors from the model are examined. Problems with Ja-
cobian normalization for VTLN warping factor estimatiorear
briefly discussed along with a technique that achieves legst p
formance for synthesis. This paper also investigates tH&-mu
class EM-VTLN estimation in the context of statistical Sys
sis. The features used for statistical speech synthesesvey
high dimensionality (of the order of 25 or 39) when compared t
ASR features. There are some issues with VTLN estimation for
higher order features which were presented in earlier wafk [
and further investigated here.

2. VTLN

The main components involved in VTLN are: a warping func-

for a given speaker. The same techniques can be used to removetion, a warping factor and an optimization criterion. Thk al

the inter-speaker variability in the training data. Theuttsg
speaker adaptive (SAT) models have better performance than
the SI models in ASR. Feature adaptation, on the other hand,
transforms the feature vectors rather than the model parame
ters. The effects of model adaptation can be accomplished to
some extent using feature adaptation techniques (alsdywide
known as speaker normalization technigues). The main advan
tage of speaker normalization is that the number of parasete
to be estimated from the adaptation data is generally smalle
compared to the standard model based adaptation techniques
Hence, adaptation can be carried out with very little adagta
data.

Recently, HMMs have been shown to be capable of per-
forming TTS too, and with care can produce synthetic speech
of a quality comparable to unit selection. This in turn bsige
possibilities of adaptation to TTS [1]. A stored averageceoi
can be transformed to sound like a voice represented by the
transform for a given speaker. Such transforms are typitial
ear transforms similar to the ones used in ASR. Speaker torma
ization techniques can also be used in TTS to generate allapte
speech using very little adaptation data; of the order ofva fe
minutes.

Vocal tract length normalization (VTLN) is inspired from
the physical observation that the vocal tract length (VTarjes
across different speakers in the range of around 18 cm insmale
to around 13 cm in females. The formant frequency positions
are inversely proportional to VTL, and hence can vary around

pass transform approximates most commonly used transforma
tions in VTLN [3, 4]. The bilinear transform based warping
function has only a single variable as the warping factor
which is representative of the ratio of the VTL of the speaker
to the average VTL. The terms warping factor and refer to
the same parameter and are used interchangeably throughout
this paper. A brute force way of computing the warping factor
for each speaker is the maximum likelihood (ML) based grid
search technique. ML optimization is given by [5]:
& = argmaxp(xa, |, w,)p(a| ©) (1)
wherex represents the features warped with the warping fac-
tor «s, which is the warping factor for speaker © represents
the model andv, represents the transcription corresponding to
the data from which the features are extracted for speakier
represents the best warping factor for the same spepke|O)
is the prior probability ofx for a given model.

Preliminary results using VTLN in statistical speech syn-
thesis are presented in [2]. The bilinear transform baseg-wa
ing function is used in an ML optimization framework using a
grid search technique. The all-pass transform based nizanal
tion is applied to the mel-generalized cepstral (MGCEP) fea
tures that are commonly used in statistical speech syisthisi
is shown that VTLN brings in some speaker characteristids an
provides additive improvements to CMLLR, especially when
there is a limited number of adaptation utterances. In 6§ i



argued persuasively that VTLN amounts to a linear transfarm
the cepstral domain. In fact, this is also evident from thé-me
generalized approach to feature extraction [7]. Hence, NTL
can also be implemented as an equivalent model transform.
Representation of VTLN as a model transformation enabkes th
use of techniques like EM for finding the optimal warping fac-
tors [8, 9]. The main advantage of using EM is that the resgiti
warping factor estimation is based on a gradient desceht tec
nigue which provides finer granularity of values. This im-
plementation is also efficient in time and space, since featu
need not be recomputed for every warping factor. EM can be
embedded into the HMM training utilizing the same sufficient
statistics as CMLLR. This also opens up the possibility of es
timating multiple warping factors for different phone das.
Since the ML optimization does not provide a closed form so-
lution to the EM auxiliary function, Brent’s search is used t
estimate the optimal warping factors.

The Jacobian determinant should be used in the likelihood
calculation to choose a warping parameterthis is attributed
to [10]. Representation of VTLN as a linear transform facili
tates a simple estimation of this factor. In fact, [10] onkeu
the Jacobian as part of a more involved derivation of an algo-
rithm to train the transformation. TTS uses higher ordetuies
compared to ASR which results in some challenges in warp-
ing factor estimation [2]. Jacobian normalization alsosesu
some problems in warping factor estimation. A detailed wtud
of techniques to overcome the problems with Jacobian nermal
ization is presented in [11] along with a Bayesian intefgtien
of VTLN. Jacobian normalization and higher order featuces t
gether reduce the spread @fvalues and limit them to a range
corresponding to negligible warping.

It was shown in [11] that techniques to improve the spread
of warping factors did not show significant improvements in
performance of ASR. Unlike ASR, itis not easy to decide which
warping factors can give better performance for TTS. Igeall
TTS should favour higher values a@fs since this brings in
strong gender characteristics. A few informal perceptypke
iments are conducted at the begining of this research wiich r
sulted in the following observations. It is observed thatenta
female characteristics could be perceived only when th@war
ing is beyond a certain limit. Also, it is hard to discrimiadhe
speakers with similar VTLs. Noticeable changes in the ahkara
teristics of the synthesized voice are observed only if tagow
ing factors have a higher interval. In TTS, VTLN alone can-
not bring in many speaker characteristics. There might &een
a correlation between pitch and warping factor estimatia t
needs to be explored. Towards this end, this paper firstpiese
the results of a subjective evaluation designed to asdisidimg
optimal warping factors for VTLN adaptation of HMM-based
TTS.

3. Analysis of VTLN for synthesis

VTL varies across speakers resulting in correspondinggdean

in the spectral peak positions. Alternatively, warping spec-

tral frequencies should bring in approximately the samévar
tion that is audible due to the differences in VTL. A prelimi-
nary experiment conducted on a speaker’s voice using dsalys
synthesis with different levels of warping provides evideifor

this fact. It was noticed that whenever the spectral fregigsn

are expanded, the speech sounded more “feminine” as if from a
shorter vocal tract. Also, whenever the spectral frequenare
compressed, the speech sounded more “masculine” as if from
a longer vocal tract. Both phenomena are observed in spite of

Table 1:Frequency of female speakers with different combinatidns o
vocal tract length and pitch

[ Pitchvs. Alphagroup [ 1 |2 [ 3[4 ][5] 6]
Cow (159-190) 1]5]4]1]0]0
Medium (191222) |0 |4 | 88| 1|1
High (223-255) 0[1][1]|4]|0][1

using the natural pitch of the speaker. These observatahtol
the design of a subjective evaluation to determine the @itim
warping factors for a set of speakers. The values obtairged fr
these evaluations are compared with the warping factongedkr
from the model.

3.1. Experimental design

The HMM speech synthesis system (HTS) [12] is used to build
average voice models using'39rder cepstral features along
with A and A? values of MGCEP features. Experiments are
performed on the WSJCAMO (British English) database with 92
speakers in the training set. The details of the synthestesy
can be seenin [2].

A set of 20 speakers are selected from the 40 female speak-
ers present in training in such a way that they covered the dif
ferent possible combinations of pitch and VTLs. The gender
restriction helps to minimize the size of the evaluationdie T
distribution of the warping factors for male speakers issetpd
to be symmetric to that of the female speakers. The pitcherang
of all the female speakers in the training data is equallidei
into 3 sets: high, medium and low. Similarly, the rangexof
values derived using the SI model for these speakers is &lso d
vided into 6 equally spaced groups. The warping factors are
estimated using the EM approach described in the next sectio
Jacobian normalization is used for estimatingdhealues from
the average voice HMM models. The distribution of speakers
according to this grouping is shown in Table 1. 20 speakers
are selected using this table so that maximum possible combi
nations are covered. It can be observed that the frequency of
speakers with high pitch and low warping is small compared
to the combination of high pitch and high warping. This sug-
gests the idea that mostly high pitch voices are associaitid w
females who have shorter VTL compared to males.

Natural pitch contours are extracted from the recorded
speech of the selected speakers. Speech files are synthesize
using the average voice models and the original pitch cegstou
with 6 different warping factors in the range 0 to 0.1. Ligten
are asked to judge the speaker similarity in the originaéspe
file with that of the speech synthesized with different wagpi
factors and the natural pitch of the speaker. This is repeate
20 utterances each from a different speaker. It is interggt
note that combination of a single pitch with different votrakt
lengths can generate a wide variety of voices. A few expert
listeners could perceive that the speaker’s voice can bestlm
reproduced from the average voice with the natural pitch and
just a single parameter representing the VTL.

3.2. Results and Discussion

25 listeners participated in this evaluation. The resuftthe
subjective evaluations for 20 speakers are shown in Figare 1
Each box represents a speaker in the evaluation set. Listen-
ers prefer higher warping factors rather than lower warféag

tors. The extreme warping is also not preferred. Corratatio
between results from subjective evaluations arderived from

the HMM models are presented in Table 2. The table compares
the values of mean, mode and median of the warping factors



Table 2:Correlation between model deriveds (with and without Ja-
cobian) and results of subjective evaluation. Correlalietween warp-
ing factors from both schemes and pitch is also presented.

Pitch Mean Mode | Median

Jacobian -0.4875| 0.2238 | 0.0553 | 0.2154

No Jacobian | -0.3396 | 0.4362 | 0.1976 | 0.4821

Pitch - -0.1244 | -0.1120| -0.0400
observed in the subjective evaluafion. The resulis aretabss

tically significant as it shows there is no significant caatien
between any values. The best correlation is seen between the
means of the warping factors from subjective evaluation and
those derived from the model without using Jacobian normal-
ization. A more detailed study of how Jacobian normalizatio
affects the warping factor estimation is presented in ee@i2.
Pitch does not show much correlation to warping factors de-
rived using any scheme. The model derived warping factors
have closer correlation to pitch than the warping factors de
rived from the subjective evaluations. Further investayais
required on this subject before making any further conohussi
regarding the relation between pitch and VTL. Perception of
VTLN is a very difficult task to assess, but it is evident that
on average the perceived warping factors are higher thaetho
estimated with the model using ASR paradigm. This experi-
ment provides a good prior distribution of the warping fasto
for VTLN synthesis. The next section presents the detainof
efficient VTLN implementation for HMM synthesis using the
EM optimization.

4. EM based warping factor estimation

It has been shown that EM can be used to estimate VTLN warp-
ing factors for ASR [3, 8, 9]. Warping parameters are esttat
by maximizing the EM auxiliary function over the adaptation
data. The objective function obtained is similar to the ogsedu

in MLLR or CMLLR [13]. Even the same sufficient statistics as
used in CMLLR can be used for optimizing the VTLN auxiliary
function.

Earlier research applying a grid search based bilineastran
form VTLN using ML criteria for statistical speech synthes
presented in [2]. There are many drawbacks in the grid search
approach for warping factor estimation, the first one behag t
warping factors are chosen from a set of available values and
cannot be estimated with greater precision. Another dralvba
is that the likelihood estimation for features with diffetevarp-
ing factors consumes a lot of processing time and requikees fe
tures to be extracted for each warping factor in the grid.sThi
increases the complexity of training process in time and re-
sources. This work presents an EM formulation for the waypin
factor estimation which performs a gradient descent ratieer
grid search. This enables more accurate estimation of warp-
ing factors and embeds this estimation in the HMM training.
The EM formulation exploits the representation of VTLN as a
model transform and does not involve calculation of feature
with different warping factors. Hence, the warping factcas
be estimated very efficiently and accurately.

4.1. VTLN as model transform

It was shown in [6] that VTLN can be represented as a linear
transform of the cepstral features. Warping the specteglfen-
cies can be represented equivalently as a feature transform

)

where x, are spectral featureswarped with the warping factor
o which can be represented as a matrix transform denoted by

Xo = Ag X X

A. Thisis equivalent to

Ax O 0 c
Coq = 0 Ay O Ac 3)
0 0 A, A?c

where,c, is the warped cepstral coefficientsis the static fea-
tures,Ac andAZc are dynamic part of the cepstra. Transforma-
tion can be directly applied to the dynamic part of the cepstr
as well. The unwarped cepstral features are multiplied thi¢h
linear transformation matrix to generate warped featufdsgs
results in significant computational savings since feataeed
not be individually recomputed for each warping factor. Ma-
trix representation of the MGCEP bilinear transform in ¢egls
domain was presented in [2].

Similar to the CMLLR adaptation, feature transform can be
analogously represented as a model transform [13]. The-maxi
mum likelihood optimization in feature domain is:

& = argmaxp(Aqx|p, Z)p(|O) (4)

The same equation can be represented as a model transform:
& = argmaXAqlp (A, (A TZAp(al)  (5)

pwandX correspond to the mean and variance of a gaussian com-
ponent in the model. The Jacobian normalization can be calcu
lated as the determinant of matri& {) representing the linear
transformation of the cepstral features.

4.2. Auxiliary function for EM

The EM formulation of warping factor estimation resultslie t
following auxiliary function. Taking the log of the functio
and considering the assumption of Gaussian components in th

model.
F M

> > v |10g(N(AeXlpm, Em))

& =arg max{
* f=1m=1

+ loglA,l] + logn(aie)}

where,A , is the transformation matrix for input feature vector
x, M is the total number of mixtured;, is the total number of
frames,y. is the posterior probability of mixturen, w,, and
X, are the parameters of the Gaussian mixture component,
Expanding and ignoring the terms independent of warping
factor «, estimation of a warping factor using this criteria can
be shown to be equivalent to maximizing the following awxii
function [3].

{_%(Acxx — ) T HAx — Hm):l

f=1m=1
F M
+ Blog|Ayl + logp(x®) where = Z Z Yim
f=1m=1

In the case of a single mixturg could reduce to F, the total
number of frames. Optimizing this function requires thecaal
lation of the matrix derivative. The form of the warping niatr
renders inappropriate the CMLLR solution of decompositbn
the determinant derivative using cofactors. A set of precom
putedo matrices can be multiplied with the sufficient statistics
to estimate the optimal warping factors [8]. This approash r
duces to a grid search rather than gradient descent esiimati
Higher order terms in the matrix can be ignored to give a dose



form solution [14, 15]. Optimization using lower order texm
in the matrix or using few lower order cepstral coefficientesl
not guarantee maximization of the auxiliary function fo #n-
tire feature length. This work presents Brent's search fatifig
the optimal value of the warping factor from this auxiliapnt-
tion. Assuming a diagonal covariance for the auxiliary fiorc
results in minimization of the following function.

F M N
(A(xixi — Hmy )2

Ym
2
Gmi

f=1m=1 i=1

— BloglA«| — logp(x©) (7)

where, N is the dimensionality of the features. Brent's [16]
search is used to find an optimal warping factor with this Buxi
iary function. For VTLN, the search is bounded using a bracke
of -0.1 and 0.1.

The auxiliary function represented by EM can use the statis-
tics as in CMLLR estimation [13]. It results in the following
auxiliary function.

1¢ T T
Qla) =75 ;(WiGiwi —2wik; ) — Blog|A«| —logp(«IO)

(8)
where,
M l F M 1 F
G; = — mXeXs And ki = —— U, Xy

andw; represents thé™ row of the transformation matrig ..
Time complexity for ‘E-step’ of the VTLN EM optimization
is same as CMLLR transform estimation (n®)). But, the ‘M-
step’ using Brent's search is only of the ord®flog (n)M(n)),
compared t® (n*) for CMLLR.

4.3. Multiclass VTLN

VTLN is generally implemented using a single warping factor
for an entire utterance or most often all the utterances iofgies
speaker representing a global spectral warping. All ph@sem
do not exhibit the same spectral variation due to physickdgi
differences [17]. It should be more effective to use differe
warping factors for different phone classes. Multiple viagp
factors have yielded improvements in recognition perforoea
Data can be divided into acoustic classes using data-dagen
proach or using phonetic knowledge as shown in [17]. Phoneme
dependent warping can be implemented after obtaining phone
labels from a first pass recognition [18]. Frame specific warp
ing factors can also be estimated by expanding the HMM state
space with some constraints [19].

Different phone classes can be synthesized with different
warping factors for a single speaker. Multiple transforms a
usually applied using a regression class tree. Such régness
classes can also be employed in multi-class VTLN. The regres
sion class tree structure is derived from the decision thes c
tering as in HTS [12]. Each regression class can have differe
warping factors. This can result in different warping foffeli-
ent classes resulting in appropriate warping for each sasnd
anticipated on factors like place of articulation. Thiseash
investigates the multi-class EM-VTLN estimation in the €on
text of statistical synthesis. The issues with VTLN estiorat
for higher order features are investigated in the nextgecti

5. Challenges in Warping factor estimation

Problems with warping factor estimation using Jacobiar nor
malization are discussed in [11]. These problems are furthe

exacerbated by the higher order features. The following sec
tions present warping factor estimation problems in these t
scenarios. ldeal warping factors for synthesis using stilge
evaluations are used to define the optimal technique foringrp
factor estimation from HMM.

5.1. Higher Order features

Higher order cepstral features will also capture aspectpet-
tral fine structure and are not limited to the spectral empelo
This causes problems when estimating the values. oft can

be observed from the Figure 1c that the warping factors eonce
trate on the middle of the range of the warping factors, which
results in very little warping (or no warping) for many speak
ers. This effect is not seen in lower order features, whicte lza
bimodal distribution for male and female speakers with gdar
range of warping factors as shown in the Figure 1b.

EM formulation of bilinear transform warping is used to es-
timate the VTLN parameters shown in the figure. Experiments
were also performed to confirm that this phenomena is not due
to the local minima problem of the EM optimization. The warp-
ing factors for male and female speakers were initializetth wi
the extreme values of 0.1 and -0.1 respectively. Even with th
initialization, the warping factors converged to similatues as
shown in the figure after few iterations of VTLN. In [2], the
authors proposed initialization with warping factors estied
from lower order features as a work around for this problem.

It was also noted that there can be numerical instabilities
while calculating the inverse of the transformation mafox
higher order features. This problem is addressed by gengrat
the matrix using the inverse of thevalue. At = A, 1 This
is an additional advantage of using bilinear transform.

5.2. Jacobian Normalization

Estimation of warping factors using Jacobian normalizatie-
duces the spread of distribution and restricts the warping fac-
tor values to a small range ofs. Even though omitting the use
of Jacobian normalization can estimate more distributeghwa
ing factors, it is observed that Jacobian normalizatiomisdr-
tant especially for higher order features. It can be seem fro
Figure 1d that the warping factors tend towards the bouadari
when not using Jacobian normalization, thus resulting inran
stable estimation. Likelihood scaling or using prior proiba
ity are two techniques to improve the spread of warping facto
values [11]. Increasing the spread @fdistribution does not
necessarily lead to better recognition performance in AR [

5.3. Optimal warping factors for synthesis

The main motivation of the perceptual experiments presknte
section 3 is to find the optimum distribution affor TTS. One
of the objectives of this paper is to find techniques that i@V
similar distributions from EM-based warping factor esttioa.
The resulting methods may not agree with the approaches pre-
viously proposed for ASR. It could be hypothesized that ML is
not the right criterion for VTLN in TTS. Techniques like min-
imum generation error (MGE)[21] that have shown better re-
sults with HMM synthesis may perform better, but this paper
focusses only on the ML criterion. The hypothesis from earli
results with grid search presented in [2] is that synthesis d
mands higher warping factors. Similar inference is madmfro
preliminary experiments and the detailed subjective atalns.

The challenge is that use of Jacobian normalization reduces
the amount of warping. Ideally, not using Jacobian giveféig
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Figure 1: Distributions over warping factor value. The assz in cases (b-f) ig, although note that the ranges vary.

values ofx and gives a good spread to the distribution as ex-
pected in TTS. But, not using Jacobian is theoretically iiresct
especially for higher order features. A few techniques weee
sented in [11] to increase the spreadeofialues. Scaling the
log-likelihood score or using an appropriate prior digitibn
can show some improvements. The combination of these two
techniques is expected to give bettevalues. Subjective eval-
uations present a good prior for the warping factor distrdsu

for synthesis. The prior based on a mixture beta distrilbutio
estimated from the statistics obtained from the percepxal
periments is shown in Figure le.

Using a prior distribution derived from the perceptual ex-
periments cannot have any effect without a scale factor. The
non-use of Jacobian has a similar effect to the right prigh wi
the right scale factor. These values can only be estimatgitem
ically. Hence, it is pragmatically helpful to estimate theming
factors in the desired range without using Jacobian nomaali
tion. This is not true for regression class based VTLN estima
tion where each class has a separate warping factor. If iacob
normalization is not used for multiple class VTLN, the warp-
ing factors go out of bounds for some classes. For theseeslass
the EM auxiliary function is no longer convex and the Brent's
search fails to find a minimum. The best available technique
that could be used for multiple transform case is the combina
tion of scaled likelihood and scaled prior with Jacobiarmmalr
ization.

6. Evaluations with VTLN

The distribution of warping factors for the adaptation dista
presented in Figure 1f. One utterance for each speaker from a
subset of WSJCAMO evaluation set is used as the adaptation
data. It can be observed that the warping factor distributi®
ing Jacobian normalization on the adaptation data doesivet g
« values as expected for synthesis. The prior distribution ob
tained from the perceptual evaluations is closer to thatinbt
without using Jacobian normalization. The best method 4o in
crease the amount of warping is observed to be the combimatio
of scaled likelihood and scaled prior. None of these schemes
could achieve the spread that is obtained from not using-Jaco
bian normalization. The warping factors for different dpera
are very close and is not helpful in differentiating betwéeam.
Even though single parameter cannot capture too many
characteristics of the speaker, some preliminary results a
shown with single and multi-class VTLN. The experimental

setup presented in [2] is used for these experiments. VTLN is
implemented as EM optimization embedded in the HMM train-
ing. VTLN is not comparable with other techniques like CM-
LLR since there are not enough parameters to represent most
of the speaker characteristics. Ideally, as shown in [2]LNT
should give additive improvements to CMLLR. The current im-
plementation does not combine the two techniques. Future re
search will be focussed on this task.

6.1. HMM Speech Synthesis

An average voice model built using WSJCAMO is used to es-
timate the warping factors for the target speaker. Expertme
are performed with single and multi-class transforms. Aylgin
utterance is used as adaptation data for all the technidpiés.
ferent techniques for estimating warping factors are atelli
using the objective measure based on mel-cepstral ditorti
(MCD). MCD is the Euclidean distance of synthesized cepstra
with that of the values derived from the natural speech.

The results in Table 3 support the fact TTS demands a
higher range of warping factors which can be achieved throug
not using Jacobian normalization or using a prior with likel
hood scaling. The best method observed is the combination of
Jacobian normalization with scaled prior and scaled lilasd
(denoted as ‘Modified’). It was observed that inter-spe&ker
ability for « values is better when not using Jacobian normal-
ization. Hence, the subjective evaluations are performidu o
values estimated without using Jacobian for single classN/T
and using the combination of Jacobian with scaled prior and
scaled likelihood for multi-class VTLN. It is observed cugi
training that the log likelihood score of the training data i
proved consistently while using single and multi-class WI'L
This is also evident from the MCD scores shown in the table,
which are higher for the SAT trained models than the Sl av-
erage voice models. Sl models are trained without any adap-
tation and SAT models are trained with multiple iteratiofis o
VTLN transformation and HMM parameter estimation. The
multi-class SAT trained VTLN has maximum MCD and should
represent the best average voice. Even with very little @dap
tion data, multi-class VTLN gives better MCD scores.

The distribution ofx for different phoneme classes for a
male speaker is shown in the Figure 1g. It is observed that si-
lence has very noisy warping factors and ideally should be ig
nored in adaptation. Multi-class VTLN can facilitate thisk
by ignoring the classes representing silence. ‘C’ reptssen-



Table 3:MCD (in dB) for VTLN synthesis. Label "VTLN" represents
the single parameter and "Multi-VTLN” is the regressionssldbased
multiple transform VTLN. MCD for Average Voice (S| model) thibut
using VTLNis 1.118

VTLN | Multi-VTLN
Average Voice (SAT) 1.153 1.197
No Jacobian 1.014 -
Jacobian 1.080 1.062
Jacobian+ScaledPrior 1.035 1.019
Jacobian+ScaledLL 1.001 0.972
Modified 0.984 0.948

sonants in general with warping factors tending to lowenesl
The VWoiced ("VC’) and Unvoiced (‘UC’) category of consonant

show somewhat opposite trends to each other. The values are
derived from the Modified method of using Jacobian normal-

ization with scaled likelihood and prior. The warping fasto
are slightly biased towards the prior for all classes which e
plains the high warping factors for some consonant clasies.
clearer difference is observed in the case where no pricrad.u

Speaker similarity and Naturalness are the subjective mea-
sures evaluated. Evaluations are performed on 60 sentences
Systems evaluated are vocoded

from 3 different systems.
speech, single parameter global VTLN transforms and nialtip

transforms based VTLN using regression classes. The parame

ters are estimated using a single adaptation utterancebidac
normalization is not used in single transform case and Jaaob
with scaled likelihood and prior is used in multi-VTLN case.

Listeners were asked to rate the sentences on a 5 point scale,

5 being “completely natural” or “sounds exactly like spadke
and 1 being “completely unnatural” or “sounds like a totalfy
ferent speaker”. 20 listeners participated in the evabmasind

results are presented in Figure 1h. There is not much differ-

ence in speaker characteristics perceived using singleuti-m
ple transform VTLN, but the naturalness is a little bettertfee
multiple transform case. This is a contradiction to the obse
vations with CMLLR, which sounds less natural to VTLN [2].

The reason for this phenomenon could be that multiple trans-
forms in effect is just a better implementation of VTLN and

performs appropriate warping on different sounds. Theediff

ence could also be due to different techniques used in single
and multi-class VTLN. Further investigation needs to be per
formed on this result. Even though the MCD values are not
very far apart, (not as much as the values which are usuadly po

tulated as the perceivable change in speech), the differenc
easily perceived in subjective evaluations. Demos auailab
www. i di ap. ch/ paper/ssw7_vtln/deno. htni .

7. Conclusions

This work presents an efficient and accurate implementation

VTLN based on EM. Appropriate warping factors for TTS are
analyzed and techniques are suggested to estimate simiar v

ues from the model. Regression class based multiple tnansfo

VTLN is also presented which performs appropriate warping
on different sounds. VTLN has a limited number of parameters

(single warping factor in case of bilinear transform) to ké-e

mated. On one hand, this enables estimation of warpingr&acto

and adaptation using very little adaptation data. On theroth
hand, there is only limited characteristics that this patem

can capture. VTLN is not comparable to model based transfor-
mations like CMLLR especially when there is large amount of
adaptation data. Hence, in order to get improvements in-adap
tation when more adaptation data is available, VTLN shoeld b

combined with CMLLR. In order to combine VLTN with CM-
LLR, the current research focusses on implementing VTLN as
a prior to CMLLR transform as in constrained structural raxi
mum a posteriori linear regression (CSMAPLR).
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