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ABSTRACT

The advent of statistical speech synthesis has enablednifieation of the basic techniques used in speech synthesis a
recognition. Adaptation techniques that have been suittlysssed in recognition systems can now be applied to ®3sith
systems to improve the quality of the synthesized speecte apiplication of vocal tract length normalization (VTLN)rfo
synthesis is explored in this paper. VTLN based adaptagéguires estimation of a single warping factor, which can be
accurately estimated from very little adaptation data anesgadditive improvements over CMLLR adaptation. The lemagje

of estimating accurate warping factors using higher ordatures is solved by initializing warping factor estimatisith the
values calculated from lower order features.

Index Terms— Statistical Speech Synthesis, Vocal Tract Length Norratibn, Adaptation.

1. INTRODUCTION

Recent advances in the field of statistical speech syntHdidave considerably reduced the gap between basic teamiqu
used in automatic speech recognition (ASR) and text to $p@ekS). Feature types, feature dimensionality, duratimhgitch
modeling are a few of the key differences between the retiogrénd synthesis modelg][ To augment the ASR models,
speech synthesis also uses a duration model by way of theriskimi-Markov models (HSMM). The general aim of this
research is to combine the features used for ASR and for Bl $Jne particular focus is the use of ASR based adaptation to
control the characteristics of a synthesized voidg Yocal tract length normalization (VTLN) is one of the tedues which
can be used to remove speaker specific characteristicsén tar8uild improved average voice models. This paper inyatgs
the use of VTLN for adaptation in statistical speech syrithes

Speaker adaptation is a technique for transforming the inmateameters to match the speaker characteristics of attarge
speaker. Speaker adaptive training helps to build imprepedker independent models by transforming the model fieasn
and removing speaker characteristics for each speakee indiming data. The most common adaptation techniques at&RM
(Maximum Likelihood Linear Regression), CMLLR (ConstrathMLLR), SMAPLR (Structural Maximum A Posteriori Linear
Regression) and CSMAPLR (Constrained SMAPLR). Speakanatization, on the other hand, transforms the feature vecto
rather than the model parameters. Feature transformadiobe shown to be analogous to model transformaghnJsually,
speaker adaptation techniques perform affine transfoomatin the mean and variance of the probability density fonstof
the HMM states. This can be accomplished to some extent witimalization techniques like VTLN. The main advantage of
feature normalization is that the number of parameters teskimated from the adaptation data is generally smallepeoed
with the standard model based adaptation techniques. Hadaptation can be carried out with very little adaptatiatad

VTLN is inspired from the fact that the vocal tract lengthiearacross different speakers. This length varies fromrat a8
cm in males to around 13 cm in females. The formant frequensitipns are inversely proportional to the vocal tract kbng
This causes variation of around 25% in the formant centepuegacies among speakers. Hence, the feature vectorstexitrac
from the speech of different speakers can be normalizepresent an average vocal tract.

Mel-generalized cepstral coefficients (MGCEB) &re one of the best known features for statistical speecthegis. The
generalized cepstral analysis method can be viewed as adiajiproach to the cepstral and the linear prediction mettiod
which the model spectrum varies continuously from all-foleepstral according to the value of an analysis parameté@his
feature extraction technique involves optimization of pemameters (namely, and~). The warping parametet, determines
the frequency warping of the cepstra. The frequency tramsftion used in MGCEP extraction is the bilinear transfosmich
is an all-pass transform. This same all-pass transformrsnoonly employed in VTLN 7]. Hence, in this work, these two
transforms are combined, and VTLN is applied at the feataiimetion step. In the context of MGCEP features, VTLN can be
considered as finding the optimal warping factor for eaclakee



In this paper, the implementation of VTLN as a bilinear tfans for ASR is considered. Its relationship with MGCEP
features is reviewed, and solutions to some challengedvimgomaximum likelihood warping factor estimation for higr
dimensional features are presented. An equivalent syistegstem is described that uses a bilinear transform ba3é&dyV
Both objective and subjective evaluations are presentdldwied by some discussion and conclusions supporting $leeoii
VTLN.

2. STATISTICAL SPEECH SYNTHESIS

The HMM-based speech synthesis system (HTIEnodels spectrum, FO and duration simultaneously in thiadhiiramework
of HSMM. In the training stage, the output vector of the HSMbhsists of a spectrum part and an FO part. In the synthesis
stage, arbitrary text is converted to a context-dependda Isequence. A sentence HSMM is constructed by concatgnat
corresponding HSMM models. A state sequence that maxintieeprobability for the given sentence is determined. Then a
speech parameter vector sequence is generated for tlessegience by speech parameter generation algorithmdlyFna
speech waveform is generated from the speech parameter gecjuence. Adaptation techniques are used in the same way
in both TTS and ASR. Speaker adaptive models are built usiagdaptation techniques that remove the influence of speake
characteristic from the training data. During synthesisdels are adapted to a target speaker and thus, synthesgegh of
this speaker using the adaptation data.

It has been shown that the speaker adaptive models can pebfiter than speaker independent models. Techniques like
CMLLR have been used for building speaker adaptive modelET&. This technique requires many parameters to be estimat
in the transform and hence requires more adaptation datagdsynthesis. Techniques like VTLN have a single paranteter
be estimated and hence, requires less adaptation data. BNB]Lis a powerful model based adaptation technique that can
be shown to be equivalent to a feature transfosin Y TLN in combination with CMLLR has the potential to perfarbetter,
even when there is little adaptation data or when using laireensional features for synthesis. These qualities of N'Ean
be inherited by TTS, but the application of VTLN to TTS invetvadditional challenges like estimating warping factoosf
higher order features and using VTLN with the synthesiafiestlike MGCEP. These challenges are addressed in thevfiotjo
sections.

3. VTLN BASED ADAPTATION

VTLN tries to normalize the position of the formant peaks bgrping the spectrum to represent an average vocal tract. The
components involved in this technique are:

e A Warping function (linear, piecewise linear, non-lindailinear, etc.)
e A Warping factor ¢ for bilinear transform)
e An Optimization criteria (MAP, ML, MGE, etc.)

One of the main advantages of VTLN is that the warping fachorlze reliably estimated even with a single adaptation seate
for each test speaker. We also note an advantage of usingdniliransform based VTLN is that it can be embedded into the
frequency warping of the MGCEP features.

3.1. Bilinear Transforms
The bilinear transform of a simple first order all-pass filtdth unit gain can be represented as:

—1
’IZJQ(Z) = % = 6_'7ﬁa(w), |Oé| < 1 (1)
wherea« is the warping factor. The warping performed by this funeti® shown in Figurel. It can be observed that, for a
specific value oty = 0.42, this transform can approximate the mel-scale warping.
Bilinear transforms are established as a means of appréirgneommon VTLN transforms9], and also as a means of
performing common frequency warpd][ In the present study, these advantages are combinedlvatfatt that the bilinear
transform can be represented as a linear transform in tretrabdomain.
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Fig. 1: Bilinear Transform

3.2. VTLN with MGCEP

The feature normalization can be represented as a lineetidarthat transforms the model parameté&is A common repre-
sentation of this linear function is the matrix transforioat The cepstral features are warped using the matrix septation
as follows:

Ca - Socca (2)

where« is the warping parameter applied to the unwarped cepstia,order to yield warped cepstra,. S, is the matrix
transformation. It can be shown that the following matranisformation for MGCEP feature can be derived from the MGCEP

recursion g].

1 o a2 a]fol
0 1—a? 2a(1 — a?) MaM=1(1 - a?)
S,=10 —a(l —a?)

6 (—1)N71(1.— )Nt

It can also be shown that the elements of this matrix can bmatsd using the following recursive formula fer> 1 and
[>1

Se(ky1) = So(k — 1,1 = 1) + a[Sa(k,l — 1) = S (k — 1,1)]

3.3. Estimating Warping Parameters

A bilinear transform based VTLN has been implemented in ti@Q&P feature extraction with a maximum likelihood (ML)
optimization criteria. MGCEP already has a bilinear wagpivith « = 0.42 approximating the mel-scale frequency warping.
Another stage of bilinear transform can be cascaded wittextisting one to accommodate the VTLN warping. It has been
shown [L{] that the combination of two bilinear transforms with wargifactors; andas is equivalent to a bilinear transform
with single warping factor given by:

a1 + Qo

a=—>= 3
1+ o109

3.3.1. Conventional ML based VTLN Estimation

The bilinear transform based warping function has only glsimariablex as the warping factor which is representative of the
ratio of the vocal tract length of the speaker to the averagahMract length. The brute force way of computing the wagpi



factor for each speaker is the ML based grid search techniagimum likelihood optimization is given by1f]:

Gg1 = argmax Pr (X, |M, Ws1) (4)
where X,,_, represents the features warped with the warping faeter which is the warping factor for speaker “s1’\M
represents the model aitl,; represents the transcription corresponding to the data ¥hich the features are extracted for

speaker “s1” A, represents the best warping factor for the same speaker.

4. EVALUATION OF VTLN FOR SYNTHESIS

The adaptation data is used to estimate the warping facteaith target speaker. This warping factor can be used tad ddap
synthesized speech for each speaker. Although VTLN caramitice the entire characteristics of the speaker with thping
factor, at least the gender characteristics can be acturef@esented. This enables the synthesized voice to sdoadr to
the voice of the target speaker. Hence, VTLN has the poldntianprove adaptation using little adaptation data aloritp w
other adaptation techniques like CMLLR.
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Fig. 2 Warping factors estimated fro@5*" order features. The 25-12 system initializes the featuittstive warping factors
estimated from 2" order features. Both graphs have same range for X-axis.

4.1. Experiments

An ML based grid search technique for VTLN is used in this palpethe training phase, warping factors are initially estted
using grid search and the average voice models are itdsatiaéned by re-estimating the warping factors until cogence
of the model likelihood on the training data. The same gratde technique is used to estimate the best warping factor fo
each test speaker using the available adaptation data frgotresponding speaker. The grid search for the warpaigriis
performed witho; = 0.42, and—0.1 < ay < 0.1 with a step size of 0.02. The two transforms are combinedyusguatior3.
Full context HSMM models are trained using the HTS 2.2] [scripts and are then converted to HMM models. The wall
street journal (WSJO SI-84) database is used to built thakgwendependent models. The HMM toolkit (HTK) is used to
align the warped feature vectors with the full context lateahd, hence, calculate the log likelihood scores. Thesesewe
compared to obtain the best warping factor for each speakérgitraining. The statistical models are re-trained g$e@atures
normalized using the estimated warping factor for eachlsgrda the training data. The warping factor estimation ésated
twice to build better average voice models.



4.2. Issues of dimensionality

HMM based speech synthesis systems require modeling oEhigtaer features when compared to the speech recognition
models. It was observed that the warping factor calculatias not successful with the high@s(" or 39t") order features,

but worked with lower {2t") order features. Similar observations can be seen in #alitre 1.3, 14]. The work of [L4] uses
VTLN along with the MCEP (mel-cepstral) features in a similay but restricting the estimation of the warping factamfr

only first few cepstral coefficients. The authors experiraliyfind that using only first 4 coefficients of cepstral faasigives
better average voice in synthesis. However, the appro&elmthy [14] is inaccurate due to the fact that the convergence of
likelihood values is not guaranteed by warping the entiegUfiee vector with the warping factors estimated from a fepst=l
coefficients.

The failure of warping factor estimation for higher ordeatigres can be attributed to the presence of excitation haoso
which could lead to a large likelihood mismatch even for alsmvarping. It follows that the use of higher order features
approaching5 or 39" order MGCEP should be avoided when estimating warping facténstead, the warping factor
estimated from th&2'" order features can be used as the seed values during thé@es@LN training for higher dimension
features. It is observed that once a good initializationveg, the second iteration of VTLN training is able to estiengood
warping factors even for higher order features. This phesranis illustrated in Figur2. It can be observed from the figure
that the distribution for warping factors estimated frora 25t order has large overlap for male and female speakers with no
proper separation of warping factors for female speakersiofe distinct bimodal distribution is observed when thepiray
factors are initialized with values estimated from 112¢" order features.

4.3. Evaluation Metrics

Objective evaluation of the synthesized speech is perfdrusing a mel-cepstral distortion (MCD) measure, which & th
average Euclidean distance between reference and syretiasiel-cepstral feature vectors. This can be considerde to
equivalent to log-spectral distortion according to Paatstheorem. The convergence of log-likelihood scoresndutraining

is presented as a cue for the improvement in the average nwidel. A standard adaptation technique (CMLLR) is used to
compare the results of VTLN. VTLN together with CMLLR is alspnthesized to enable possible additive improvements.
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Fig. 3: Log-likelihood scores during training.

Subjective evaluation of the synthesized speech was coedit@ determine mean opinion scores (MOS) for naturalness
and speaker similarity. The naturalness was scored on adivi gcale ranging from 1 to 5, where 1 represents completely
unnatural speech and 5 completely natural speech. Speaakrgy was also rated on a five point scale from 1 to 5, where
denotes speech from a totally different speaker and 5 deisptech from exactly same speaker. Subjective evaluatierss
conducted on 60 randomly picked sentences from 10 diffesgstems. 19 listeners were presented with the 60 sentences,
randomly sorted to avoid any bias due to listening order. T4i& order system for VTLN, CMLLR and CMLLR combined



with VTLN were tested with different amounts of adaptatiatal These systems were also compared with their respective
25-12 counterparts, where the warping factors were iisgalfrom 12t order and re-estimated usigg*” order features.

4.4. Results and Discussion

The experiments are performed on the MGCEP features witlartlhéy/sis parametes, equal to zero and with two different
feature orders, 12 and 25. Evaluations are performed omthernental speaker adaptive (S4-C3) data set of the WSJINov9
test specifications. The results of objective evaluatisapiotted as graphs. The log-likelihood scores increasie mvultiple
iterations of each adaptation technique as shown in Figufée MCD results for VTLN based feature adaptation are gimen
Figure4. The feature order 25-12 represents2h& order features initialized with a warping factor estimafteain 12¢" order
features. It can be seen that CMLLR leads to additive impr@ms in performance in combination with VTLN. It can be seen
that the average voice model trained with CMLLR and VTLN hatdr convergence during training and higher MCD during
synthesis indicating that it should be a better averageevmiodel. It can be observed 85" order features that VTLN and
CMLLR combined with VTLN have lower MCD than CMLLR when onlysingle adaptation sentence is available. Also, the
adapted speech with VTLN in combination with CMLLR gives EwWMCD for any amount of adaptation data, suggesting that
VTLN can contribute to improvement of the synthesized sheec
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Fig. 4. Mel-Cepstral Distortion for synthesized speech.

Results for subjective evaluations are shown in Figyreshich shows MOS for naturalness and speaker similarityp- Su
jective tests were conducted on 10 different systems. Tinetiede VTLN, CMLLR and CMLLR+VTLN for25*" order and
25-12 systems with adaptation using 1 and 40 sentencesolbsisrved that VTLN systems are preferred over other systems
for the naturalness cue. Also, VTLN combined with CMLLR iefarred as having better similarity to the voice of the avdi
speaker. The subjective evaluations as such only havelimtatistical significance since it is observed that the CRIystem
was not preferred at all for naturalness or speaker sirtyilaBut, these scores support the results from objectiveuatians
emphasizing the fact that VTLN can lead to additive improeats when combined with CMLLR.

5. CONCLUSIONS

This research has successfully implemented VTLN basedaii@pfor statistical speech synthesis and incorpordtedvarp-
ing at the feature extraction stage of MGCEP features. Itataerved that the VTLN parameters can be accurately estimat
from much less adaptation data, as little as a single seet&ALN adaptation can estimate the correct gender charsiits

of the speech with a single adaptation sentence, and hea@d#pted sentence sounds more similar to the original speak
The warping factor estimation for higher order featureslmaimproved by initializing with values estimated from laveeder
features. It was also observed that VTLN gives additive mmpments when combined with CMLLR adaptation.
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Fig. 5. MOS for naturalness and speaker similarity of synthesgpegbch. 1 and 40 represents number of adaptation sentences.
MULTI represents the combination of VTLN and CMLLR adaptatiechniques.
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