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SummaryThe sliding window approah is the most widely used tehnique to detet an objet from an image. In thepast few years, lassi�ers have been improved in many ways to inrease the sanning speed. Apart fromthe lassi�er design (suh as asade), the sanning speed also depends on number of di�erent fators (suhas grid spaing, and sale at whih the image is searhed). When the sanning grid spaing is larger thanthe tolerane of the trained lassi�er it su�ers from low detetions. In this paper we present a tehniqueto redue the number of miss detetions while inreasing the grid spaing when using the sliding windowapproah for objet detetion. This is ahieved by using a small path to predit the bounding box ofan objet within a loal searh area. To ahieve speed it is neessary that the bounding box preditionis omparable or better than the time it takes in average for the objet lassi�er to rejet a subwindow.We use simple features and a deision tree as it proved to be e�ient for our appliation. We analyzethe e�et of path size on bounding box estimation and also evaluate our approah on benhmark faedatabase. Sine perturbing the training data an have an a�et on the �nal performane, we evaluateour approah for lassi�ers trained with and without perturbations and also ompare with OpenCV.Experimental evaluation shows better detetion rate and speed with our proposed approah for largergrid spaing when ompared to standard sanning tehnique.
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1 IntrodutionThe sliding window approah is the most ommon tehnique used for objet detetion [3, 15, 17℄. Alassi�er is evaluated at every loation, and an objet is deteted when the lassi�er response is above apreset threshold. Many systems need fae proessing tasks (detetion, traking, reognition), and needingthem to run in real-time with out loosing muh of individual performane has beome a hallenging task.Casades introdued by Viola et al. [17℄ speed up the detetion by rejeting the bakground quiklyand spending more time on objet like regions. Although asades were introdued, sanning with�ne grid spaing is still omputationally expensive. To inrease the sanning speed one approah is totrain a lassi�er with perturbed training data to handle small shifts in the objet loation. Anothersimple approah is to inrease the grid spaing (dereases the number of subwindows being evaluated).Unfortunately, as the grid spaing is inreased the number of detetion dereases rapidly.Reently e�ient subwindow searh (ESS) proposed by Lampert et al. [8℄ for objet detetion �ndsbounding box using branh and bound method in sublinear time. This method requires histogram offeatures to estimate the upper and lower bound of a lassi�ation funtion. Though the ESS providesoptimal solution in �nding the best bounding box, Lehmann et al. [9℄ pointed out that alulating integralhistogram for large number of bins requires large memory, whih an be a onstraint in running on ertainhardware.The other tehnique whih has beome popular for objet detetion is the generalized Hough trans-form. One of the model proposed by Leibe et al. [10℄, Impliit Shape model (ISM), onsists of lassspei� odebook of loal appearane from the objet ategory and spatial probability distribution ofwhere the odebook entry may be found on objet. During reognition this information is used to per-form a generalized Hough transform in a probabilisti framework. However as pointed out by Jürgenet al. [6℄, odebook-based Hough transform omes at a signi�ant omputational prie, and the authorshave suggested using random forest to diretly learn a mapping between the appearane of an imagepath and its Hough vote, more preisely a probabilisti vote about the position of an objet entroid.In this paper we fous on inreasing the detetion rate and speed of the sliding window approah bybuilding a bounding box estimator with high performane (speed and auray). To reah that objetivewe propose a method to predit the bounding box of an objet, using a simple yet e�etive binary testand a deision tree. We show that this method redues the miss detetions while inreasing the sanninggrid spaing. In this work we don't intend to inrease the performane of the main fae lassi�er, butrather try to improve the detetion rate for larger grid spaing whih also has an e�et on sanning speed.This paper is organized as follows. In next Setion we desribe the related work, and in Setion 3, wedesribe our approah on how we inrease the detetion rate and speed by using bounding box estimation.In Setion 4, we show our experiment results and �nally, onlusion and future work are given in Setion5.2 Related workObjet detetion has been approahed in many di�erent ways in the literature. Either parts of the objetor the whole objet have to be lassi�ed in some way. The main idea of deteting parts rather than wholeimage objet is to redue the variability in appearane of the objet. Bounding box estimation an alsobe posed as an objet part identi�ation problem. This has been done using di�erent features but themost popular ones are sale-invariant feature transform (SIFT) [11℄ and Ferns [12℄.SIFT desriptors have been popular as it has proved to be robust to illumination hanges, but theomputation of SIFT desriptors turns out to be ostly. Feature mathing is done with Nearest Neighborapproah, but to redue the omplexity, an approximate algorithm alled the Best Bin First (BBF)2



algorithm proposed by Beis et al. [1℄ is used. In [12℄ an alternative feature alled Ferns was introduedwhih showed omparable or better performane than SIFT features for path identi�ation. Fernsonsists a set of binary features, and the binary feature is obtained by omparing the intensity valueof two pixels. A Semi-Naive Bayesian lassi�er is used to identify a path, where the lass posteriorprobabilities are modeled with hundreds of binary features.In [13℄ the bounding box and pose are estimated before giving the hypothesized window to a posespei� Support Vetor Mahine (SVM) lassi�er. Histogram of SIFT like features, and a Naive Bayesianapproah is used to learn di�erent poses and bounding box. The bounding box estimation is arried outin two steps. First a �xed sized window is used to infer the aspet ratio, and then the area is estimated.This approah maximizes the overlap between the estimated loation of the box and the ground truth.In [2℄, a omponent based fae detetor is desribed. Their system onsists of a two-level hierarhyof SVM lassi�ers. On the �rst level, omponents of fae are independently deteted and the seondlevel, the geometrial on�guration of the deteted omponents are heked with fae model. While theirtehnique might perform better, but sine many omponent lassi�ers are evaluated the speed ould bean issue.Our work is inspired by [6℄ in the way that the objet enters are estimated by using Hough forest.Eah leaf node in the tree gives a probabilisti votes of the objet entroid. The hypothesis whih istested at eah node is a simple omparison of values (an be intensity or gradient in x and y diretion) attwo loations (in some sense similar to [12℄). In [6℄, a forest with 15 trees is used whih takes onsiderableamount of time if a dense san is performed. Therefore we deided to use only a single deision treefor estimating the o�set (bounding box) of the fae. The advantage of using a deision tree is that thenumber of tests that needs to be performed grows only logarithmially thus saving omputational timeat runtime.3 Proposed approahIn this setion we �rst analyze the standard sliding window approah, and then desribe how to reduethe miss detetions with larger grid spaing by using a bounding box estimator. We then desribe howa deision tree is learnt for this task.3.1 Analysis of standard sliding window tehniqueThe standard sliding window tehnique with regular grid san is shown in Figure 1(a), where a lassi�er
Cobject is plaed on the sanning grid and heks if it is an objet or not. We start by formulating thehane of hit Hc, as the hanes for the target objet to be within the lassi�er detetion range, withrespet to the sanning grid interval (ws, hs), and to the translation tolerane (wt, ht) of the lassi�er
Cobject, (see Figure 1(a)).

Hc ≈
wtht

wshs

(1)As an example, lets assume that the objet present in the image is of the same size as the lassi�er istrained with, if wt = ht = 3 and ws = hs = 6 then the hane of getting a hit Hc is 0.25, whih isvery low. For Hc greater than 1, means that the lassi�er has more hanes to detet the objet. Aswe derease ws and hs (a �ner searh), Hc inreases, while sanning speed dereases (slower). Our goalis to inrease Hc without dereasing too muh of the sanning speed (thus making it faster), whih isdesribed below. 3
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Figure 2: Estimated hane of hit Hc with and without bounding box estimation with respet to sanninggrid spaing.3.2 Chane of hit with our approahIn this subsetion we explain how our method inreases the probability of hit. Figure 1(b), showsthe proposed sanning framework. The lassi�er Cpatch is evaluated on a regular grid, while the mainlassi�er Cobject is plaed on loation predited by Cpatch. Assuming that we have a lassi�er Cpatch thatpredits the path loation orretly within the translation tolerane (wt, ht) of the lassi�er Cobject, withpredition rate dp, then the hane of hit an be approximately given by:
Hc ≈ dpHp (2)

Hp =
(wo − wp + 1)(ho − hp + 1)

wshs

(3)where Hp is the hane of hit for the path, (wp, hp) is the path width and height, and (wo, ho) is theobjet width and height, with onstraints wp < wo and hp < ho (see Figure 1(b)). For example if,
wp = hp = 14, wo = ho = 19, ws = hs = 6, and dp = 0.8 (this value is taken from our experiment4



results), we get Hc = 0.8, whih is 55% greater than standard sanning approah. The smaller the pathsize is, the more the spaing between the grid an be, for a inrease in sanning speed. Unfortunately atthe same time estimating the bounding box beomes omplex as individual path will ontain less andless information for distinguishing one from another. Figure 2 shows the hane of hit with and withoutbounding box estimation. To generate the plot we have used the same values as given in the example.3.3 Bounding box estimationThe key idea for our algorithm lies in estimating the bounding box with high performane (speed andauray). We intend to use deision tree as it proved to be simple and e�ient for our task. The deisiontree is trained in a supervised manner. The training data, binary test and tree onstrution, and datastored in leaf node is desribed below.Training data. For an objet of size wo×ho, and path size of wp×hp, we an have (wo−wp+1)(ho−hp+1)
2number of overlapping pathes (see Figure 3(a)). We represent a set of pathes by {Pi = (Ii, dddi)}, where

Ii is the appearane of the path and dddi is the o�set of the path. The o�set vetor dddi is a 2D vetorrepresenting (x, y) shifts from the objet enter or from a �xed point in the objet.Binary test. In a deision tree T , a test has to be performed at a node. We �rst onsider a simplebinary test introdued in [6, 12℄, whih is given by:
tf (I) =

{

1 if I(x, y) ≤ I(x′, y′)
0 otherwise (4)where (x, y) and (x′, y′) are two loations in the path I. We also propose a new test whih is given by:

tµf (I) =

{

1 if I(x, y) ≤ avg(I)
0 otherwise (5)where avg(I) is the average of the pixel values in the path I. Our test requires only half the number ofpixel aess ompared to the previous test, but requires an integral image to quikly alulate the averagevalue.Tree onstrution During training, eah non-leaf node piks the binary test that splits the trainingsamples in an optimal way. We use the o�set unertainty as in [6℄ whih is de�ned as:

U(A) =
∑

i∈A

(dddi − dddA)2 (6)where dA is the mean o�set vetor over all objet pathes in the set A = {Pi = (Ii, dddi)}. A binary test
t⋆ is hosen to minimizes the following expression:

t⋆ = arg min
t=1,...,T

(U(AL) + U(AR)) (7)where T is the number of possible binary tests, and AL and AR are the subset of training samplesreahing the left node and the right node respetively. Eah leaf node l in the onstruted tree stores a5



ho

wo

wp

hp

face patch
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(xl, yl) is given by:

xl =
1

|Al|

∑

k∈Al

xk yl =
1

|Al|

∑

k∈Al

yk (8)Similarly to [6℄, we use two stopping riteria for the onstrution of the tree: the maximum depth of thetree and the minimum number of samples at a node. If a node has this minimum number of samples, weadd an additional onstraint whih heks the variane of the o�set vetors with a spei�ed threshold.This way we have a better estimate of the o�set at the leaf nodes. At runtime, a path is given to the treeand the estimated o�set value at the leaf node is used to plae the main objet lassi�er for subsequentdetetion. For illustration, we show in Figure 3(b) the pixel loations (x, y) assoiated to the tests tµfat eah node in the tree from the root to di�erent leafs. In these examples, we basially observe that thetree learns the shifts near the eye loation.4 ExperimentsWe �rst evaluate the performane of bounding box estimation for di�erent path size. We then ompareour proposed sanning framework with standard sanning tehnique with respet to detetion rate, falsealarm rate and sanning speed on benhmark fae database.4.1 Evaluation of bounding box (bbx) estimationWe evaluate the performane of bounding box estimation for di�erent path sizes (wp, hp) and for twodi�erent types of binary test tf and tµf . We �rst desribe the training and testing fae dataset andparameters set for training the deision tree. We obtain approximately 35,000 ropped fae images6



(19x19) (faes are saled and ropped with respet to eye loation) from standard fae database (BANCA,BIOID, Purdue, and XM2VTS). A subset of 15,000 fae images are used for training, 10,000 are used forvalidation and the rest 10,000 are used for testing. The dataset whih we used for this evaluation havewell de�ned eye loations and an assume that the pathes have good groundtruth o�set values.To build a deision tree we set the maximum depth, minimum number of samples and varianethreshold. The depth of the tree is varied from 12 to 15 depending on the path size, but kept the samefor two types of test. Large path size have fewer o�set values to be estimated, therefore we use smallerdepth size, while smaller path size have many o�set values whih reates more training samples andrequires larger depth for better estimation. The variane threshold is set to 0.1 and minimum number ofsamples to 10 for all our experiments. A smaller variane will fore the training samples to split if theo�set values are too di�erent. The total number of possible binary tests for tf is (wp×hp)(wp×hp−1)
2 , whihis large. Hene a �xed number of tests are evaluated (200 in our ase) at every node, and for eah test thepixel pairs are piked randomly. The total number of possible binary tests in the ase of tµf is wp × hp,as it ompares a pixel value to the average value of the path. Sine the number of test evaluation issmall, eah node evaluates all the test and selets the best one based on (7).Training of a deision tree proeeds by giving all the samples at the root node and reursively splittingthe training samples using (7) until it reahes the maximum depth or the variane of the samples at anode reahes below a spei�ed threshold value. At test time, a path is passed through the tree, and theleaf node gives an o�set estimate (x̂, ŷ). Sine we want to measure how lose the estimated o�set is tothe true o�set we use squared L2 norm to evaluate the estimation error:

λ = (x̂ − x)2 + (ŷ − y)2 (9)where (x, y) is the true o�set value of the path.To inspet the distribution of error λ, we de�ne g(λ) as the number of test pathes that have estimation
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