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SummaryThe sliding window approa
h is the most widely used te
hnique to dete
t an obje
t from an image. In thepast few years, 
lassi�ers have been improved in many ways to in
rease the s
anning speed. Apart fromthe 
lassi�er design (su
h as 
as
ade), the s
anning speed also depends on number of di�erent fa
tors (su
has grid spa
ing, and s
ale at whi
h the image is sear
hed). When the s
anning grid spa
ing is larger thanthe toleran
e of the trained 
lassi�er it su�ers from low dete
tions. In this paper we present a te
hniqueto redu
e the number of miss dete
tions while in
reasing the grid spa
ing when using the sliding windowapproa
h for obje
t dete
tion. This is a
hieved by using a small pat
h to predi
t the bounding box ofan obje
t within a lo
al sear
h area. To a
hieve speed it is ne
essary that the bounding box predi
tionis 
omparable or better than the time it takes in average for the obje
t 
lassi�er to reje
t a subwindow.We use simple features and a de
ision tree as it proved to be e�
ient for our appli
ation. We analyzethe e�e
t of pat
h size on bounding box estimation and also evaluate our approa
h on ben
hmark fa
edatabase. Sin
e perturbing the training data 
an have an a�e
t on the �nal performan
e, we evaluateour approa
h for 
lassi�ers trained with and without perturbations and also 
ompare with OpenCV.Experimental evaluation shows better dete
tion rate and speed with our proposed approa
h for largergrid spa
ing when 
ompared to standard s
anning te
hnique.
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1 Introdu
tionThe sliding window approa
h is the most 
ommon te
hnique used for obje
t dete
tion [3, 15, 17℄. A
lassi�er is evaluated at every lo
ation, and an obje
t is dete
ted when the 
lassi�er response is above apreset threshold. Many systems need fa
e pro
essing tasks (dete
tion, tra
king, re
ognition), and needingthem to run in real-time with out loosing mu
h of individual performan
e has be
ome a 
hallenging task.Cas
ades introdu
ed by Viola et al. [17℄ speed up the dete
tion by reje
ting the ba
kground qui
klyand spending more time on obje
t like regions. Although 
as
ades were introdu
ed, s
anning with�ne grid spa
ing is still 
omputationally expensive. To in
rease the s
anning speed one approa
h is totrain a 
lassi�er with perturbed training data to handle small shifts in the obje
t lo
ation. Anothersimple approa
h is to in
rease the grid spa
ing (de
reases the number of subwindows being evaluated).Unfortunately, as the grid spa
ing is in
reased the number of dete
tion de
reases rapidly.Re
ently e�
ient subwindow sear
h (ESS) proposed by Lampert et al. [8℄ for obje
t dete
tion �ndsbounding box using bran
h and bound method in sublinear time. This method requires histogram offeatures to estimate the upper and lower bound of a 
lassi�
ation fun
tion. Though the ESS providesoptimal solution in �nding the best bounding box, Lehmann et al. [9℄ pointed out that 
al
ulating integralhistogram for large number of bins requires large memory, whi
h 
an be a 
onstraint in running on 
ertainhardware.The other te
hnique whi
h has be
ome popular for obje
t dete
tion is the generalized Hough trans-form. One of the model proposed by Leibe et al. [10℄, Impli
it Shape model (ISM), 
onsists of 
lassspe
i�
 
odebook of lo
al appearan
e from the obje
t 
ategory and spatial probability distribution ofwhere the 
odebook entry may be found on obje
t. During re
ognition this information is used to per-form a generalized Hough transform in a probabilisti
 framework. However as pointed out by Jürgenet al. [6℄, 
odebook-based Hough transform 
omes at a signi�
ant 
omputational pri
e, and the authorshave suggested using random forest to dire
tly learn a mapping between the appearan
e of an imagepat
h and its Hough vote, more pre
isely a probabilisti
 vote about the position of an obje
t 
entroid.In this paper we fo
us on in
reasing the dete
tion rate and speed of the sliding window approa
h bybuilding a bounding box estimator with high performan
e (speed and a

ura
y). To rea
h that obje
tivewe propose a method to predi
t the bounding box of an obje
t, using a simple yet e�e
tive binary testand a de
ision tree. We show that this method redu
es the miss dete
tions while in
reasing the s
anninggrid spa
ing. In this work we don't intend to in
rease the performan
e of the main fa
e 
lassi�er, butrather try to improve the dete
tion rate for larger grid spa
ing whi
h also has an e�e
t on s
anning speed.This paper is organized as follows. In next Se
tion we des
ribe the related work, and in Se
tion 3, wedes
ribe our approa
h on how we in
rease the dete
tion rate and speed by using bounding box estimation.In Se
tion 4, we show our experiment results and �nally, 
on
lusion and future work are given in Se
tion5.2 Related workObje
t dete
tion has been approa
hed in many di�erent ways in the literature. Either parts of the obje
tor the whole obje
t have to be 
lassi�ed in some way. The main idea of dete
ting parts rather than wholeimage obje
t is to redu
e the variability in appearan
e of the obje
t. Bounding box estimation 
an alsobe posed as an obje
t part identi�
ation problem. This has been done using di�erent features but themost popular ones are s
ale-invariant feature transform (SIFT) [11℄ and Ferns [12℄.SIFT des
riptors have been popular as it has proved to be robust to illumination 
hanges, but the
omputation of SIFT des
riptors turns out to be 
ostly. Feature mat
hing is done with Nearest Neighborapproa
h, but to redu
e the 
omplexity, an approximate algorithm 
alled the Best Bin First (BBF)2



algorithm proposed by Beis et al. [1℄ is used. In [12℄ an alternative feature 
alled Ferns was introdu
edwhi
h showed 
omparable or better performan
e than SIFT features for pat
h identi�
ation. Ferns
onsists a set of binary features, and the binary feature is obtained by 
omparing the intensity valueof two pixels. A Semi-Naive Bayesian 
lassi�er is used to identify a pat
h, where the 
lass posteriorprobabilities are modeled with hundreds of binary features.In [13℄ the bounding box and pose are estimated before giving the hypothesized window to a posespe
i�
 Support Ve
tor Ma
hine (SVM) 
lassi�er. Histogram of SIFT like features, and a Naive Bayesianapproa
h is used to learn di�erent poses and bounding box. The bounding box estimation is 
arried outin two steps. First a �xed sized window is used to infer the aspe
t ratio, and then the area is estimated.This approa
h maximizes the overlap between the estimated lo
ation of the box and the ground truth.In [2℄, a 
omponent based fa
e dete
tor is des
ribed. Their system 
onsists of a two-level hierar
hyof SVM 
lassi�ers. On the �rst level, 
omponents of fa
e are independently dete
ted and the se
ondlevel, the geometri
al 
on�guration of the dete
ted 
omponents are 
he
ked with fa
e model. While theirte
hnique might perform better, but sin
e many 
omponent 
lassi�ers are evaluated the speed 
ould bean issue.Our work is inspired by [6℄ in the way that the obje
t 
enters are estimated by using Hough forest.Ea
h leaf node in the tree gives a probabilisti
 votes of the obje
t 
entroid. The hypothesis whi
h istested at ea
h node is a simple 
omparison of values (
an be intensity or gradient in x and y dire
tion) attwo lo
ations (in some sense similar to [12℄). In [6℄, a forest with 15 trees is used whi
h takes 
onsiderableamount of time if a dense s
an is performed. Therefore we de
ided to use only a single de
ision treefor estimating the o�set (bounding box) of the fa
e. The advantage of using a de
ision tree is that thenumber of tests that needs to be performed grows only logarithmi
ally thus saving 
omputational timeat runtime.3 Proposed approa
hIn this se
tion we �rst analyze the standard sliding window approa
h, and then des
ribe how to redu
ethe miss dete
tions with larger grid spa
ing by using a bounding box estimator. We then des
ribe howa de
ision tree is learnt for this task.3.1 Analysis of standard sliding window te
hniqueThe standard sliding window te
hnique with regular grid s
an is shown in Figure 1(a), where a 
lassi�er
Cobject is pla
ed on the s
anning grid and 
he
ks if it is an obje
t or not. We start by formulating the
han
e of hit Hc, as the 
han
es for the target obje
t to be within the 
lassi�er dete
tion range, withrespe
t to the s
anning grid interval (ws, hs), and to the translation toleran
e (wt, ht) of the 
lassi�er
Cobject, (see Figure 1(a)).

Hc ≈
wtht

wshs

(1)As an example, lets assume that the obje
t present in the image is of the same size as the 
lassi�er istrained with, if wt = ht = 3 and ws = hs = 6 then the 
han
e of getting a hit Hc is 0.25, whi
h isvery low. For Hc greater than 1, means that the 
lassi�er has more 
han
es to dete
t the obje
t. Aswe de
rease ws and hs (a �ner sear
h), Hc in
reases, while s
anning speed de
reases (slower). Our goalis to in
rease Hc without de
reasing too mu
h of the s
anning speed (thus making it faster), whi
h isdes
ribed below. 3
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ph(b) Our proposed s
anning frameworkFigure 1: Standard s
anning te
hnique vs our proposed s
anning framework. The dots represent thes
anning grid with interval (ws, hs), target obje
t size (wo, ho), translation toleran
e (wt, ht) of targetobje
t 
lassi�er Cobject, target pat
h size (wp, hp), and target pat
h 
lassi�er Cpatch. The 
lassi�er Cpatchpredi
ts the bounding box for Cobject in our approa
h.
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Figure 2: Estimated 
han
e of hit Hc with and without bounding box estimation with respe
t to s
anninggrid spa
ing.3.2 Chan
e of hit with our approa
hIn this subse
tion we explain how our method in
reases the probability of hit. Figure 1(b), showsthe proposed s
anning framework. The 
lassi�er Cpatch is evaluated on a regular grid, while the main
lassi�er Cobject is pla
ed on lo
ation predi
ted by Cpatch. Assuming that we have a 
lassi�er Cpatch thatpredi
ts the pat
h lo
ation 
orre
tly within the translation toleran
e (wt, ht) of the 
lassi�er Cobject, withpredi
tion rate dp, then the 
han
e of hit 
an be approximately given by:
Hc ≈ dpHp (2)

Hp =
(wo − wp + 1)(ho − hp + 1)

wshs

(3)where Hp is the 
han
e of hit for the pat
h, (wp, hp) is the pat
h width and height, and (wo, ho) is theobje
t width and height, with 
onstraints wp < wo and hp < ho (see Figure 1(b)). For example if,
wp = hp = 14, wo = ho = 19, ws = hs = 6, and dp = 0.8 (this value is taken from our experiment4



results), we get Hc = 0.8, whi
h is 55% greater than standard s
anning approa
h. The smaller the pat
hsize is, the more the spa
ing between the grid 
an be, for a in
rease in s
anning speed. Unfortunately atthe same time estimating the bounding box be
omes 
omplex as individual pat
h will 
ontain less andless information for distinguishing one from another. Figure 2 shows the 
han
e of hit with and withoutbounding box estimation. To generate the plot we have used the same values as given in the example.3.3 Bounding box estimationThe key idea for our algorithm lies in estimating the bounding box with high performan
e (speed anda

ura
y). We intend to use de
ision tree as it proved to be simple and e�
ient for our task. The de
isiontree is trained in a supervised manner. The training data, binary test and tree 
onstru
tion, and datastored in leaf node is des
ribed below.Training data. For an obje
t of size wo×ho, and pat
h size of wp×hp, we 
an have (wo−wp+1)(ho−hp+1)
2number of overlapping pat
hes (see Figure 3(a)). We represent a set of pat
hes by {Pi = (Ii, dddi)}, where

Ii is the appearan
e of the pat
h and dddi is the o�set of the pat
h. The o�set ve
tor dddi is a 2D ve
torrepresenting (x, y) shifts from the obje
t 
enter or from a �xed point in the obje
t.Binary test. In a de
ision tree T , a test has to be performed at a node. We �rst 
onsider a simplebinary test introdu
ed in [6, 12℄, whi
h is given by:
tf (I) =

{

1 if I(x, y) ≤ I(x′, y′)
0 otherwise (4)where (x, y) and (x′, y′) are two lo
ations in the pat
h I. We also propose a new test whi
h is given by:

tµf (I) =

{

1 if I(x, y) ≤ avg(I)
0 otherwise (5)where avg(I) is the average of the pixel values in the pat
h I. Our test requires only half the number ofpixel a

ess 
ompared to the previous test, but requires an integral image to qui
kly 
al
ulate the averagevalue.Tree 
onstru
tion During training, ea
h non-leaf node pi
ks the binary test that splits the trainingsamples in an optimal way. We use the o�set un
ertainty as in [6℄ whi
h is de�ned as:

U(A) =
∑

i∈A

(dddi − dddA)2 (6)where dA is the mean o�set ve
tor over all obje
t pat
hes in the set A = {Pi = (Ii, dddi)}. A binary test
t⋆ is 
hosen to minimizes the following expression:

t⋆ = arg min
t=1,...,T

(U(AL) + U(AR)) (7)where T is the number of possible binary tests, and AL and AR are the subset of training samplesrea
hing the left node and the right node respe
tively. Ea
h leaf node l in the 
onstru
ted tree stores a5
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19x19 face image(a) (b)Figure 3: (a)Examples of some overlapping fa
e pat
hes, All pat
hes lie within the fa
e region. (b) Inthis �gure ea
h 
olumn 
orresponds to a leaf node. The �rst row shows the average of the test imagesthat arrives at a leaf node. The pixel lo
ations that are evaluated (tµf ) at the nodes of a tree are alsoindi
ated. The se
ond row provides the estimated o�set value of the pat
hes rea
hing a leaf node. Thethird row shows the average image of all the test pat
hes having the o�set value 
orresponding to theleaf node. The pat
h size of 14x14 is shown here.single o�set ve
tor (xl, yl). If Al is the subset of training examples that arrives at the leaf node l, then
(xl, yl) is given by:

xl =
1

|Al|

∑

k∈Al

xk yl =
1

|Al|

∑

k∈Al

yk (8)Similarly to [6℄, we use two stopping 
riteria for the 
onstru
tion of the tree: the maximum depth of thetree and the minimum number of samples at a node. If a node has this minimum number of samples, weadd an additional 
onstraint whi
h 
he
ks the varian
e of the o�set ve
tors with a spe
i�ed threshold.This way we have a better estimate of the o�set at the leaf nodes. At runtime, a pat
h is given to the treeand the estimated o�set value at the leaf node is used to pla
e the main obje
t 
lassi�er for subsequentdete
tion. For illustration, we show in Figure 3(b) the pixel lo
ations (x, y) asso
iated to the tests tµfat ea
h node in the tree from the root to di�erent leafs. In these examples, we basi
ally observe that thetree learns the shifts near the eye lo
ation.4 ExperimentsWe �rst evaluate the performan
e of bounding box estimation for di�erent pat
h size. We then 
ompareour proposed s
anning framework with standard s
anning te
hnique with respe
t to dete
tion rate, falsealarm rate and s
anning speed on ben
hmark fa
e database.4.1 Evaluation of bounding box (bbx) estimationWe evaluate the performan
e of bounding box estimation for di�erent pat
h sizes (wp, hp) and for twodi�erent types of binary test tf and tµf . We �rst des
ribe the training and testing fa
e dataset andparameters set for training the de
ision tree. We obtain approximately 35,000 
ropped fa
e images6



(19x19) (fa
es are s
aled and 
ropped with respe
t to eye lo
ation) from standard fa
e database (BANCA,BIOID, Purdue, and XM2VTS). A subset of 15,000 fa
e images are used for training, 10,000 are used forvalidation and the rest 10,000 are used for testing. The dataset whi
h we used for this evaluation havewell de�ned eye lo
ations and 
an assume that the pat
hes have good groundtruth o�set values.To build a de
ision tree we set the maximum depth, minimum number of samples and varian
ethreshold. The depth of the tree is varied from 12 to 15 depending on the pat
h size, but kept the samefor two types of test. Large pat
h size have fewer o�set values to be estimated, therefore we use smallerdepth size, while smaller pat
h size have many o�set values whi
h 
reates more training samples andrequires larger depth for better estimation. The varian
e threshold is set to 0.1 and minimum number ofsamples to 10 for all our experiments. A smaller varian
e will for
e the training samples to split if theo�set values are too di�erent. The total number of possible binary tests for tf is (wp×hp)(wp×hp−1)
2 , whi
his large. Hen
e a �xed number of tests are evaluated (200 in our 
ase) at every node, and for ea
h test thepixel pairs are pi
ked randomly. The total number of possible binary tests in the 
ase of tµf is wp × hp,as it 
ompares a pixel value to the average value of the pat
h. Sin
e the number of test evaluation issmall, ea
h node evaluates all the test and sele
ts the best one based on (7).Training of a de
ision tree pro
eeds by giving all the samples at the root node and re
ursively splittingthe training samples using (7) until it rea
hes the maximum depth or the varian
e of the samples at anode rea
hes below a spe
i�ed threshold value. At test time, a pat
h is passed through the tree, and theleaf node gives an o�set estimate (x̂, ŷ). Sin
e we want to measure how 
lose the estimated o�set is tothe true o�set we use squared L2 norm to evaluate the estimation error:

λ = (x̂ − x)2 + (ŷ − y)2 (9)where (x, y) is the true o�set value of the pat
h.To inspe
t the distribution of error λ, we de�ne g(λ) as the number of test pat
hes that have estimation
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Figure 4: Cumulative distribution of estimation error λ for pat
h sizes of 10x10, 14x4, and 17x17. The�gure shows only the 
umulative distribution for �rst few λ's.error of λ, and the 
umulative distribution of estimation error as c(λ) =
∑λ

j=0 g(j). Figure 4 shows the
umulative distribution of estimation error for square pat
h sizes of 10, 14 and 17. We see that there isonly a slight performan
e di�eren
e between the two types of test.4.2 Evaluation on ben
hmark fa
e databaseWe now 
ompare the dete
tion rate and speed of s
anning with and without bbx estimation on CMU+MIT [16℄and Fleuret [4℄ frontal fa
e databases. These databases have a total of 375 images and 1085 fa
es of var-7
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ingFigure 5: A dot shows the top left 
orner of the subwindow given to the 
lassi�er. (a) estimated lo
ationswith our approa
h, (b) for regular grid spa
ing.ious size. A pyramid based s
anning approa
h [15℄ is used to dete
t fa
es at di�erent s
ales. Multipledete
tions are merged by averaging the dete
tion within a 
ertain radius whi
h is a fun
tion of s
ale.The estimated eye 
oordinate of merged dete
tion are 
ompared with ground truth eye 
oordinates usingJesorsky measure [7℄, whi
h is set to 0.6 for all our experiments. We des
ribe �rst the di�erent fa
e
lassi�ers used for our experiments, then show how the lo
ation on the grid gets modi�ed with boundingbox predi
tion. We then show how our approa
h is better than standard s
anning te
hnique irrespe
tiveof the 
lassi�er used.Main 
lassi�er. Many di�erent 
lassi�ers and features are available for fa
e dete
tion task. We 
hooseModi�ed Census Transform (MCT) features as it has been shown to be robust to lighting variationsand does not require any prepro
essing [5℄. Boosting is used to train the 
lassi�ers and the 
as
adear
hite
ture is used for speeding up dete
tion pro
ess. Two di�erent 
lassi�ers are trained with di�erentsets of fa
e training data. One 
lassi�er is trained without perturbing the fa
e training data (Cmct−np)and the other with perturbed fa
e training data (Cmct−p). The perturbation 
onsists of shifting the fa
eby one pixel in x and y dire
tions. We also use the OpenCV fa
e 
lassi�er (Copencv) [14℄ to 
omparethe performan
e (dete
tion rate and false alarms) with our approa
h for di�erent grid spa
ing. Figure 5shows the lo
ations at whi
h the main 
lassi�er is pla
ed with and without bbx predi
tion.Dete
tion rate vs grid spa
ing. Figure 6 shows the performan
e of dete
tion rate with respe
t to gridspa
ing. We 
an see that 
lassi�er Cmct−p performs similar to Copencv. Training without perturbationhas lower dete
tion rate as the grid spa
ing is in
reased whi
h is obvious. In the �gure m
t-p-bbx andm
t-np-bbx, represents the performan
e with bbx predi
tion. It 
an seen 
learly that our approa
h hashigher dete
tion rate for both the MCT based 
lassi�ers. It 
an also be seen that there is an equal amountof drift when di�erent 
lassi�ers are used with and without bbx predi
tion. This might be due to that ourapproa
h is independent of the 
lassi�er used. Figure 7 shows the dete
tion rate for di�erent pat
h sizeswhen the grid spa
ing is varied. It 
an be seen that smaller pat
hes are able to perform better 
omparedto larger pat
hes when the grid spa
ing is larger whi
h goes along with our hypothesis (Se
tion 3.2).8
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(b) S
aling fa
tor 1.5Figure 8: Time in se
onds to s
an 375 images vs dete
tion rate with and without bbx predi
tion.Dete
tion rate vs time In Figure 8, we 
an see that we 
an a
hieve better dete
tion rate for a �xedtime, or better time (in
rease in speed) for a �xed dete
tion rate. We also see that Cmct−p has moredete
tion rate than Cmct−np, but our approa
h performs better when using the same 
lassi�er.Dete
tion rate vs false alarm rate. In Figure 9 it 
an be seen that the false alarm rate for Copencvand Cmct−p are similar, while Cmct−np has lower false alarm rate. This indi
ates that training withoutperturbation has lower false alarm at the pri
e of dete
tion rate. We 
an also see that the false alarm islower when using bbx predi
tion for a �xed dete
tion rate.5 Con
lusion and future workWe have presented a method to improve the dete
tion rate and speed while in
reasing the grid spa
ingin a sliding window based s
anning te
hnique. The key idea is to predi
t the bounding box of the obje
twith high performan
e (both in speed and a

ura
y) whi
h is a
hieved by using a de
ision tree withsimple binary test at ea
h node. We have used ben
hmark fa
e databases to validate our approa
h anddemonstrated that there 
an be an improvement in speed for a �xed dete
tion rate, or better dete
tionrate for a �xed time. We also see that the false alarm rate for a given dete
tion rate is lower with ourapproa
h. We plan to further extend the idea of using de
ision tree to estimate other parameters likes
ale and pose of an obje
t.6 A
knowledgmentThe authors would like to thank the Swiss National S
ien
e Foundation (proje
ts 200020-122062 and51NF40-111401) and the FP7 European MOBIO proje
t (IST-214324) for their �nan
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tor 1.5Figure 9: Dete
tion rate vs false alarm rate with and without bbx predi
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