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Abstract

This correspondence describes a novel system for speaideation of meetings recordings based on the
combination of acoustic features (MFCC) and Time Delay afivats (TDOA). The first part of the paper analyzes
differences between MFCC and TDOA features which possesmpletely different statistical properties. When
Gaussian Mixture Models are used, experiments reveal thatdiarization system is sensitive to the different
recording scenarios (i.e. meeting rooms with varying nunafenicrophones). In the second part, a new multistream
diarization system is proposed extending previous workndorination Theoretic diarization. Both speaker clusigrin
and speaker realignment steps are discussed; in contragyrent systems, the proposed method avoids to perform the
feature combination averaging log-likelihood scores. éipents on meetings data reveal that the proposed approach
outperforms the GMM based system when the recording is datrevarying number of microphones.

Index Terms

Speaker Diarization, Information Bottleneck, Feature Guoration, Meeting data

I. INTRODUCTION

Speaker diarization is the task of determining “who spokentfin an audio stream. It is an unsupervised learning
paradigm, where the system learns the number of speakerslhasndentifies the speech segments corresponding
to each speaker.

Conventional speaker diarization systems use an ergodiddadi Markov Model (HMM) where each speaker is
represented as an HMM state with a minimum duration [1]. Ttaéesemission probabilities are modeled with
Gaussian Mixture Models. The diarization follows multigieps of agglomerative clustering and realignment. The
system is initialized with an over determined number of gpesby means of uniform segmentation or by speaker
change detection methods. At each iteration the two mostasiciusters (according to some distance measure) are
merged. After that, the time boundaries of segments ar@real using a Viterbi algorithm. This merging/realigning
proceeds iteratively until a stopping criterion is met. @oom measures used as both distance measure as well as the

stopping criterion are the Bayesian Information Criterjfadhand modified versions [1], [3], [4], [5]. To determine
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the distance measure between two speaker clusters, thabedsdirst estimate a single speaker model from the
data belonging to both clusters. The distance measure tgends on the ratio of individual cluster likelihoods to
the likelihood of the single model estimated with data froathbclusters.

Typical acoustic features consist of short term spectratufes such as Mel frequency cepstral coefficients
(MFCC). In the meeting scenario, data recordings are confyraarried out in a non-intrusive way with multiple
distant microphones. The spatial redundancy of the diffesiginals can be used for speaker diarization. For instance
whenever the geometry of the microphone array is known, pealker locations can be estimated and used as
complementary features to conventional MFCC [6]. Otheewfsthe array geometry is unknown, the estimated
time difference of arrival (TDOA) between different chafmef a microphone array can be used as features.
Experiments have shown that as stand alone features [7] ATREdforms poorly respect to MFCC but significant
performance improvements are obtained when TDOA are usedntbination with MFCC [8], [9].

MFCC and TDOA are modeled separately with different GMMs #rey are combined by linearly weighting the
individual log-likelihoods [8]. The log-likelihood combation is used to calculate the BIC distance measure and to
refine the speaker boundaries using the Viterbi realignmiém weights of the linear combination are estimated
from an independent development data set. This approachdeasproven very effective in several evaluations and
is implemented in large number of diarization systems [{T], [12].

Speaker diarization is applied to recordings performedh wirying the number of microphones across different
meeting rooms (from 2 microphones to 16 for conference roaatings [13], [14] and up to 64 microphones in
case of lecture recordings). If the recording is done wittaaay of C microphones, the number of TDOA features
is equal toC — 1. As a consequence, the dimension of the TDOA feature vedtbvavy according to the number
of microphones resulting in different ranges of log-likelods.

This paper investigates the combination of MFCC and TDOAuiess for speaker diarization in case of recordings
acquired with arrays composed of different number of mibmes. In section Il this combination is studied in case
of HMM/GMM systems. The investigation studies the sengijtiof the system with respect to the feature weights.

Sections Il and IV introduce a novel multistream diaripatisystem that extends our previous related work on
Information Bottleneck (IB) based clustering [15]. The IBadization [15] performs the diarization in a space
of relevance variables and realigns speaker boundariégs amtHMM/GMM system. This paper introduces two
contributions to the original system:

o The clustering in the space of relevance variables is erdihal handle multiple feature streams (Section V).

In contrary to the HMM/GMM, it avoids the combination of Idigelihoods.

« The HMM/GMM realignment is replaced with a Kullback-Leibleased realignment as it arises from the 1B
principle (Section V). The realignment scheme operatehersame relevance variable space and again avoids
the combination of log-likelihoods.

The rationale behind performing clustering and realignimesing the IB framework rather than log-likelihood
combination is that the system should gain robustness tst#tistics of the different features (MFCC and TDOA).

The proposed approaches are validated in experiments asitadaset with a number of microphones between 2
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and 16.

Il. BASELINE SYSTEM

Let us consider a diarization system based on the HMM/GMNn&waork. Each speaker is modeled with an
HMM state with minimum duration of three seconds. The sysignmitialized with an over determined number
of speakers by means of uniform segmentation or by spealargehdetection methods. Multiple iterations of
clustering and realignment are then performed.

The clustering follows an agglomerative framework in whatheach step two most similar clusters are merged.
The similarity between two clusters is based on a modified 8&ii@rion [3]. The clustering stops when no BIC
value is greater than zero i.e. when none of the possible esdrgtween cluster pairs satisfy the criterion.

The emission probability distributiohy., corresponding to speaker clustgris modeled as a GMM:
logbe, (s:) = log ) wi N (se, g, 5,) 1)

wheres, is the input feature)'(.) is the Gaussian pdf and , 4, X7 are the weights, means and covariance
matrices corresponding td" mixture Gaussian of clustes;.

Each cluster merge is followed by a Viterbi re-alignment tsraooths the speaker boundaries and improves the
diarization performance. The entire meeting is then realigwith the estimated speaker models after the merge.
The optimal path (speaker sequence} (c1,...,cr) is determined as the best sequence of states that maximizes

the data likelihood. This can be represented as the follpwistimization:
Copt = arg min Z[_ log th (St) - log(actct+1 )] (2)
t

wherec; is the speaker cluster at tinte The terma,,., represents the transition probability from speaker state

¢; to ¢;. The transition probabilities incorporate the minimumation constraint.

A. Multiple Feature Streams

Whenever multiple feature streams are available, the HMMWNGsystem uses a linear combination of log
likelihoods. This approach models the two feature strearits separate GMMs and the combination is then
performed by linearly weighting their log-likelihoods [8GMMs are estimated separately with observations
assigned to the same speaker cluster.

The weights are estimated minimizing the diarization emora independent development data set.

Let s;*/°“ and s{? represent the feature values at timeGMM modelsb?*/<(.) and b4°*(.) are estimated
separately from MFCC and TDOA features assigned to the samtec A linear combination of the log likelihoods
is computed as:

P ec 10g b7 <(577°) + Prgoa log b1" (s} 3)

Py, ec and Piq, denote the weights corresponding to MFCC and TDOA featusspeactively such thal,, ¢.. +
Piy0a = 1. The diarization system then performs both agglomerativstering and Viterbi realignment using the

combination of the log-likelihoods as in Equation (3).
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TABLE |
LIST OF MEETING USED FOR EVALUATION IN THE PAPER WITH ASSOCIAED NUMBER OF MICROPHONES

sl.no. meeting id #microphones
1 CMU_20050912-0900 2
2 CMU_20050914-0900 2
3 EDI_20050216-1051 16
4 EDI_20050218-0900 16
5 NIST_20051024-0930 7
6 NIST_20051102-1323 7
7 TNO_20041103-1130 9
8 VT_20050623-1400 4
9 VT_20051027-1400 3

B. Experiments and Baseline results

In this section the impact of variations in feature statsstin the baseline system is investigated. A dataset of
nine meetings recorded using Multiple Distance MicroplsofdDM) across five different meeting rooms is used.

The set of meetings with associated number of microphonkstésl in Table I.

A delay and sum beamforming [16] is performed on the MDM databtain a single enhanced channel. The
beamforming is performed with thBeamformlt[17] toolkit. A Bug-fixed version ofBeamformit 2.2s used for
this purpose. The beamforming first selects a referencenghdrased on maximum average cross correlation with
other channels. Then the Time Delay of Arrival (TDOA) of eattannel with respect to the reference channel is
computed. TDOA features are computed using a window(0fns shifted everylOms for each of the individual
signals. The delay value that yields the maximum corrafacestimated with a generalized cross correlation phase
transform (GCC-PHAT). Hence the number of delay featureshisys one less than the number of microphones.
Following the TDOA estimation, a weighted delay and sum ciovation of all channels results in a single enhanced
channel.19 MFCC coefficients are estimated from this enhanced outgoguwes30ms window shifted everylOms.
Both MFCC and TDOA values have the same frame rate.

In order to consider the different statistical propertiéshe features, MFCC are initially modeled with a five
component GMM while TDOA are modeled with a single Gaussi@h Fig.1 plots the average negative log
likelihood values of two independent GMMs trained on MFC@ 8 OA features for the 9 meetings used in this
work. It can be seen that their dynamic ranges are quiterdiite TDOA likelihoods depend on the feature vector
dimensions and thus on the number of microphones. Largarrfedimension leads to larger likelihood values. For
example meeting and4 have largest feature dimensiol6] among the meetings and posses highest negative log
likelihood values. Furthermore TDOA and MFCC statistics aonsiderably different.

Also there is a two order magnitude difference between th@mim and the maximum values of TDOA log

likelihoods across different meetings in Fig.1. Possildasons of such variations include variable dimension of
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Fig. 1. Average negative log likelihood values of MFCC andOmfeatures at the beginning of clustering for a set of ninestings. The
markers denote maximum and minimum values of feature sgeam

features, differences in the recording environments etc.

Let us now consider the effect of this in a diarization syst8&mpeaker diarization systems are evaluated using the
Diarization Error Rate (DER) measure. DER is the sum of dp@en-speech error and speaker mismatch error.
The speech/non-speech error contains missed speech aadafatm errors. Since we use same speech non-speech
segmentation (same speech/non-speech error) acrosspeltiraents we report speaker error for the purpose of
comparison.

The baseline HMM/GMM system is initialized with6 clusters obtained with uniform linear segmentation and
the clustering is performed using modified BIC as the distaneasure [11]. At first, the performance of the system
is analyzed with a set of optimal weights for each meetinge dptimal weights represent the set of weights that
produce the smallest speaker error in each meeting. Tordigieithis, MFCC feature weigh,, ¢. is varied from
zero to one for each meeting while keeping the sum of featw@ighvts as unity. i.e.P,q., i fixed asl — Py, sc..

The weights corresponding to the minimum speaker error laosen as the optimal weights for that meeting. The
corresponding speaker error is compared against the peafare of the feature weights estimated from development
data (P;4oo = 0.1 and P, ¢.c = 0.9 as reported by [8]). The final speaker error as well as theopednce just
before the last realignment step are reported.

Table Il reports the speaker error for the meeting-wisenogitiweights, as well as for the estimated weight from
development dataset. It can be observed that there is arpenfice reduction 06.6% absolute in the latter case,
the actual speaker error being almost double of the speakarwith optimal weights.

The individual meeting performances are depicted in Fig@ the corresponding optimal weights for the TDOA

feature stream are illustrated in Fig.3. It can be seen that:

1 the magnitudes of the weights span a considerably largger@rote that the plot is in logarithmic scale). This

could happen due to the difference in statistical propgmieindividual feature streams as discussed before.
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Fig. 2.  Meeting-wise speaker error for MFCC+TDOA fea-

ture combination of HMM/GMM system: optimal weights for Fig. 3. Variation of optimal weight in the HMM/GMM system
each meeting and the estimate from separate developmemt dat for TDOA feature across different meeting$, fec = 1 — Pigoa
(Pidoa = 0.1). Ppifee = 1 — Pigoa

TABLE I
OVERALL SPEAKER ERROR FORMFCC+TDOACOMBINATION OF THEHMM/GMM SYSTEM: OPTIMAL WEIGHTS FOR EACH MEETING
AND THE ESTIMATED WEIGHT FROM SEPARATE DEVELOPMENT DATA(P;q0q = 0.1). Ppyfec = 1 — Pigoq. THE TABLE ALSO REPORTS THE
SPEAKER ERROR WITH AND WITHOUT REALIGNMENT AFTER THE LAST CLUSTERING STEP

optimal wt. | Pigoq = 0.1

no realign 7.9 14.8
with realign 7.0 13.6

2 whenever the estimated weights are notably different fieenoptimal values (meetings 3,4 and 7), the drop
from the optimum performances is large.
In the following an alternative diarization system is invgated for the purpose of reducing the effect of the

different statistics between type of features.

IIl. SINGLE STREAM IB SPEAKER DIARIZATION

In [15], we have proposed a speaker diarization system baselhformation Bottleneck (IB) principle. The
system is based on clustering and realignment steps. Tl&edhg depends on distribution of a set of relevance
variables. The realignment is based on conventional HMMKGKlystems. For completeness of the paper and
definition of notation, the IB principle and details of theudzation system are briefly presented. All details can be

found in [15].
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A. Information Bottleneck Principle

The Information Bottleneck (IB) is a distributional clustegy framework based on information theoretic prin-
ciples [18][19]. The IB principle depends on availability @ set ofrelevance variabley” that carry important
information with respect to the problem. For example, theafewords are used as relevance variables for the
document retrieval. The method tries to form a clusterimyesentation that preserves maximum mutual information
with respect to the relevance variables. IB clustering ttsmpts to preserve meaningful information with respect
to a given problem.

Consider a set of input elemend§ = {z1,...,2r} to be clustered into a set of clusteats= {c1,...,cx}.

Let Y be the set of relevance variables that carry useful infaongtertaining to the problem. According to 1B
principle the best clustering representatidrshould be a compact representation of input variaBle@minimize
mutual information betweeX and C) and should preserve as much information as possible aheutelevance

variablesY (maximize mutual information betweeti andY’). This corresponds to the maximization of:
F=1(v.0) = 5I(C.X) @)

where 8 (Notation consistent with [19] ) is a Lagrange multipliehel IB objective function in Equation 4 is
optimized with respect to the stochastic mappiig'|X ) that maps each element from input elem&nto the new
cluster representatiofi. The clustering depends only on the conditional distridoutf the relevance variables with
respect to the input featuregy|xz). Different methods to construct the solution of IB objeetifunction include
agglomerative and sequential information bottleneckattee optimization, deterministic annealing etc. (Se@][1
for a detailed review). Here in this work we focus only on agérative information Bottleneck that is briefly

discussed below.

B. Agglomerative IB

Agglomerative Information Bottleneck (alB) is a greedy eggrh towards optimization of the IB objective
function [20]. The algorithm is initialized withX | clusters, i.e., each input element of the &eis considered as
a separate cluster. At each step, the algorithm merges wsbect that results in minimum loss in the IB objective
function (4). This process is continued until the requirednber of clusters is reached. It can be shown that this
loss could be represented as sum of two Jensen-Shannogeatices. This distance measure arises as the result of

maximization of the IB functional and depends only on therifiation p(y|z) (refer [20] for details).

C. IB based Speaker Diarization

Let us define now the input elememsand the relevance variabl&ésthat represent the meaningful information
about the diarization problem.

A set of speech segments obtained by uniform linear segti@miaf input features is used as the input variables
(Set X).
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Fig. 4. Meeting-wise speaker error for MFCC+TDOA of IB
based feature combination: optimal weights for each megetin Fig. 5. Variation of optimal weight in the IB system for TDOA
and the estimate from separate development dgia,{ = 0.3). features across different meeting$, f.c = 1 — Pigoq

P’ancc =1- Pigoa

Motivated by the success of GMMs on speaker recognitioffigation applications, the set of relevance variables
Y is defined as the components of a background GMM estimated fh@ entire input audio recording. Let us
consider a GMM trained on the entire recordifig) = > ; w;N (s, 115, ¥;). The conditional probability of Gaussian
component;j (relevance variable) with respect to input featuyecan be calculated from Bayes’ rule:

. B wj./\/'(Stvﬂjij)
p(yj|5t) o Z,,‘ wTN(ShMTa ET) (5)

For each segment; that consists of a set of frames, the distributions are gestacross all frames to determine

the relevance variable distribution.

The clustering of speech segments (i.e. variables X) isopaed following an agglomerative framework according
to their distance in the space of relevance variables Y. Tustaring stops based on a Normalized Mutual Information
(NMI) criterion defined as:

1(Y,C)

NMI = I®9) (6)

N M1 denotes the fraction of original mutual informatié(l, X) preserved by the clustering representation. This
guantity decreases monotonically with cluster merge, antireshold is used to select the optimal number of
clusters. The threshold is determined using a developmatatsdt composed of ten meetings used in previous
NIST evaluations. The meetings were aroufidminutes long (all the details can be found in [15]). The cosiwpl
algorithm is as follows:

1 Acoustic feature extraction from the beamformed audio.

2 Speech/non-speech segmentation and rejection of n@tispeames.

3 Uniform segmentation of speech in chunks of fixed size 2éssetX.
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4 Estimation of a Gaussian component with shared diagonarizmce matrix for each segment i.e., $et
5 Estimation of conditional distributiop(y|z).

6 Agglomerative clustering until the stopping criterionniet.

D. Realignment

The initial uniform segmentation of the audio file into segrseX is then refined in order to smooth the speaker
boundaries. The realignment is performed using a convealttdMM/GMM system. A separate GMM is estimated
for each of the speakers estimated using the IB clusterihg. Segment boundaries are then re-estimated using a
Viterbi realignment with a minimum state duration HMM(asthe baseline system). Multiple iterations of GMM

estimation and realignment are performed. Details of théhatecan be found in [15].

This single feature stream diarization is now extended ideorto handle multiple features by adding two
contributions:
« the relevance variable distribution are estimated frorfediht feature streams (e.g. MFCC and TDOA; section
V)
« the re-alignment is performed directly in the space of rahee variables” based on Kullback-Leibler

divergence (section V)

IV. EXTENSION TOMULTIPLE FEATURES

Let us now consider the case in which MFCC and TDOA features) fthe same meeting are available. The
proposed method can be extended using separate alignegrbankl GMMs for MFCC and TDOA. The background
models have the same number of components proportionakttetigth of the meeting as described in [15], i.e.,
the number of components is equal %= S/250 where S is the total number of speech frames.

mfcc

Initially a GMM model is estimated using MFCC featurﬁ%fcc. Each observatios, is then assigned to one
of the GMM components. The parameters of the TDOA GMM arenested using the same mapping between the
feature time indices and the GMM components. In other wosdppose the'" component parameters of MFCC
GMM were estimated from a set of MFCC featur{eﬁ?f“}. Ther'* component parameters of the TDOA GMM
will then be estimated from the set of TDOA featuresi°*} that have the same time indicés}.

While in the baseline system [8] MFCC and TDOA GMM for eachstén are estimated separately with
observations (MFCC and TDOA) assigned to the same clusténei proposed system separate background models
are estimated with observations assigned to the same canfsoffrom the MFCC background model). Thus the
two GMMs have the same number of components and have a steetosone mapping between the components.

The set of these corresponding aligned mixture compon@quesent the relevance variables. The relevance
variable distributionsp(y|s/"°) and p(y|si?®) are estimated as before using Bayes’ rule. The estimation of

p(y|sy7e, stdoa) is obtained as a weighted average of individual distrimstias:
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Fig. 6. Speaker error as a function Bfgoq (Prnfec = 1 — Pidoq) fOr a meeting with estimated weight farthest from optinithe selected
weight from development data tuning 1% 4., = 0.3 for the IB system and?,, = 0.1 for the baseline

mfce tdoa

p(ylsy e, 51%%) = p(ylsi™ ) Ponsee + p(y]5i%*) Pidoa (@)

where Py, s and P,q,, represent the weights such th@t, s + P40 = 1. In contrary to GMM log-likelihood
combination , here the individual distributiongy|s"/““) and p(y|si?**) are normalized and have the same
dynamic range regardless of the dimension of the featurédovethus the linear combination does not suffer

from dimensionality/statistics problems as in the case B\VGlog-likelihoods.

A. Experiments and Results

In order to investigate the effectiveness of the proposguragzh, experiments are conducted to study the
combination of MFCC and TDOA features on the same set of mgetas described in Section Il. The effect
of the realignment algorithm will be discussed in the nextise.

The feature weights are determined using the same devetdptata set described in [15]. The estimated values
of weights are(P,, fcc, Piaoa) = (0.7,0.3). It is interesting to notice that those values are differieamn those
obtained when the tuning is done using log-likelihood camtion i.e.,(0.9,0.1).

The evaluation is done on the meeting recordings describdable I. As before we report the performance of
the systems with optimal and estimated weights. The optimeédhts correspond to lowest speaker error for each
meeting. Table Il presents the corresponding speaker.erro

Performance with the estimated weights data is @, worse compared to the optimal weights. The speaker
error with alB clustering i2% absolute better than the baseline result even before parfgrthe realignment step.

The meeting-wise speaker errors in Fig.4 show that the syprformance with the estimated weights are close

to the best performance determined by the optimal weightepxin case of two meetings 7 and 8.
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The optimal weights for each meeting in case of IB system apesented in Fig.5 and as opposed to the
HMM/GMM system (Fig.3), they span a smaller range. Fig.6ictspghe variation of speaker error with the variation
of P,4., for the meeting with highest difference between optimal astimated weight values. The IB system
performance with estimated weights is closer to the perémre with optimal weights as compared to the baseline
system.

In summary, whenever the combination happens at the levibleofelevance variables instead of log-likelihoods,

the diarization error is less sensitive to the dimensiorhef TDOA features.

B. Automatic Weighting of Feature Streams

In [4], an automatic weighting schemes based on entropy apqsed to determine the combination weights
without development data. Originally the method was pregds context of ASR in [21] and was later applied to
speaker diarization [4]. This section investigates inge¥stropy combination for both the baseline system and the
proposed system.

Letey,...,cr be theL clusters at any stage of the agglomerative procedure wéthczted GMM speaker models
(Emission probability distribution of HMM state$).,(.). A discrete distribution of speakers is first estimated for
each feature vectosr; as:

P(ci|st):fci¢,i:1...L (8)
Zj:l be, (st)
The entropy of the speaker distribution is then computed :

L

H, =- ZP(Ci|st)log P(ci|st) 9)
i=1
The algorithm estimates entropy values for MFCC and TDOAtuUiea streams ;" and H!°%) using the
respective GMM speaker models. The log-likelihood comtigmaas in Eqn(3) is then performed with weights

proportional to inverse entropy values. The MFCC and TDOAgWes are given by:

P = 1/H e 10

mfcc = W ( )
1/ Hdoa

P, =t 11

tdoa l/HtmeC-Q—l/Hfdoa ( )

The combination operates at frame level i.e. weights areutated for each frame. In case of IB system the

distribution of relevance variables are used instead oflggredistributions.

TABLE Il
OVERALL SPEAKER ERROR FORVMFCC+TDOACOMBINATION OF THE IB SYSTEM: OPTIMAL WEIGHTS FOR EACH MEETING AND THE

ESTIMATED WEIGHT FROM SEPARATE DEVELOPMENT DATA Pr4oq = 0.3). Prfec = 1 — Pidoa

Optimal weight | P40, = 0.3
8.7 11.6
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TABLE IV
OVERALL SPEAKER ERROR FORMMFCC+TDOACOMBINATION: AUTOMATICALLY ESTIMATED WEIGHTS

baseline | IB system
20.8 175

Table IV reports the results. Both schemes perform appratwvmly 6 — 7% absolute worse compared to the
baseline. The proposed system still outperforms the baselihese results are consistent with findings reported
in [4](Section 6.5), i.e., inverse entropy weighting does autperforms the fixed weighting based on development
data. In fact, this scheme assigns higher weights to the THga#ure stream while the optimal weights is higher

for MFCC features.

V. KL BASED REALIGNMENT

The second contribution of this paper consists of introdg@ speaker realignment that operates directly in the
space of the relevance variables estimated by Equatiof &) rationale behind this is that performing realignment
in the space of normalized distributiopg§Y|S) would increase the robustness of the system as comparee to th
log-likelihood domain.

Now let us rewrite the IB objective function according to flelowing proposition:

Proposition 1: The IB maximization of Equation (4) is equivalent to the deling minimization:
min[/(X,C) + S E(d(X,C))] (12)
d(X,C) = KL(p(Y|X)|[p(Y]C)) (13)

whered(X, C), is the KL divergence between distributions given by thes@uand the input [22]. (See Appendix A
for a proof)

The re-alignment is performed after the agglomerativetetirsg to smooth the initial arbitrary boundaries
obtained by uniform segmentation. The alB clustering dbedrin section IV provides an initial partition of
features(sy, ..., sr) (input variables of realignment) into a set of speakgrs . .., cx }. This corresponds to an
hard clustering partition wherg(c|s) € {0,1}. Hard clustering is obtained by taking the linfit— oo in the IB
optimization criterion (4). Thus the IB criterion reducestlie maximization of (C,Y") alone [18]. From the above

proposition, this is equivalent to minimizing S, C'). Developing the expression fd(S, C'), it is possible to write:
Ed(S,C)) = E[KLpYI]9)|p(Y]C))]

= ZP(St)ZP(CiISt)KL(p(YISt)IIp(YICi))

t

S p(s)KL(p(Y]s0)|[p(Y]er) (14)
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Wherec; is such thap(c,|s;) = 1, for other values of”, p(c;|s;) = 0. Assuming equal priors fog;, minimization

of E(d(S,(C)) is equivalent to:
min B(d(S, C)) = min Y | KL(p(Y|s0)l[p(Y]er) (15)

The termp(Y'|c;) denotes the distribution of relevance variables for eaelalsgr. This can be seen as the “speaker
model” estimated using(Y|s;). While the GMM realignment selects the speaker that maxamithe log-likelihood
sum, the proposed approach selects the speaker that menthezKL divergence between(Y'|s;) and p(Y|c;).

The problem of minimizing the KL divergence between a featstream represented as distributions and a set of
learned models has been explored previously in the confeatitomatic speech recognition [23]. The estimation

formula for "speaker modelsp(y|c) is given by:

> pylsop(s:) (16)

1
p(ylei) = ) 2
In case of equal priorg(s;), the estimation formula becomes the arithmetic mean of isteilslitionsp(y|s:). Thus
the speaker model for a clusteris the average of distributiongy|s;) assigned to it.
Then, the objective function can be extended to include ti@mmoum duration constraint as in the baseline

system:

e = argmin ) _[KL(p(Y |s0)||p(Y]er)) —1og(ac,c, )] 17)
t
A parallel can be seen between Equations (2) and (17) repbekow:
coPt — arg min Z[— log b, (st) — log(actcH] )]
t

The termp(Y|c;) represents the speaker model in the relevant variable spateuring the Viterbi. The negative

log-likelihood (- log b, (s¢)) is replaced by the KL divergend€ L(p(Y|s:)||p(Y|c:)) which serves as the distance

measure between the speaker model and the input feaiilfés ). The realignment depends only on the distribution

p(y|st) which is normalized. When MFCC and TDOA feature streams aexluthis distribution is computed as
mfec

ply|s7 e, stdoay = p(y|sTI ) P, pee +p(y]519°%) Pyoq. Performing KL based realignment usipgy|s)"/“, sidoe)

eliminates the combination of log-likelihood scores.

A. Experiments and Results

This section compares the KL based realignment with the HBIMM based realignment. Both systems use a
minimum duration constraint equal to 2.5 second i.e. 25Mé&wn

The comparison is done on the same setup of section II-B afferclustering. Table V compares the speaker
error in case of optimal and estimated weights. Fig. 7 itatss the meeting-wise speaker error before and after
realignment.

Both realignment schemes reduce the overall speaker erroase of optimal weights as well as in case of

weights estimated from development data. However the Kligmaent outperforms the HMM/GMM realignment
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TABLE V
OVERALL SPEAKER ERROR FORVIFCC+TDOACOMBINATION OF THE IB SYSTEM WITHKL REALIGNMENT: USING OPTIMAL WEIGHTS
FOR EACH MEETING, AND ESTIMATE FROM DEVELOPMENT DATA (P; 4o = 0.3). Ppfec = 1 — Pigoa

Realignment| Optimal wt. | P;goq = 0.3

HMM/GMM 7.9 10.7
HMM/KL 7.0 9.9
35 T T T
[ o realign
[ hmmigmm
300 _Jhmmk

— spkr err —
o
=]

T
1
L

o
T
L

— meeting —

Fig. 7. Speaker error with and without realignment for featcombination with estimated weights

by close to1% absolute. Fig. 7 shows that the HMM/GMM system improves tlagizhtion output in six out of

nine meetings whereas the KL realignment is improving ciasily across all meetings of the data set.

All results of the paper are summarized in Table VI. It can bensthat the optimal weights yield the same
performance for the baseline system (Row 2) and the IB syst@m KL realignment (Row 5). However, with
the estimated weights, performance of the baseline sysegrades considerably.6% abosolute worse). The IB
system is more robust to weights, and the performance ofytsters is closerd.9% absolute worse) to performance

of the optimal weights.

VI. SUMMARY AND CONCLUSIONS
This paper discusses the combination of MFCC and TDOA feattor speaker diarization introducing two new
contributions that extends previous work on informatioeatetic diarization [15]:

« Combination SchemeState-of-the-art multiple stream diarization uses adineombination of GMM log-
likelihoods trained on MFCC and TDOA features. TDOA featunave different statistics compared to MFCC.

Furthermore their dimensionality varies according to thenher of channels used for recordings. Setting linear
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TABLE VI
COMPARISON OF SPEAKER ERRORS OF THEB SYSTEM WITH THE BASELINE THE BASELINE RESULTS ARE REPORTED WITH AND WITHOUT
THE LAST REALIGNMENT STER THE TABLE PRESENTS RESULTS THAT CORRESPONDS TO OPTIMAL WEIGH AS WELL AS WEIGHTS
ESTIMATED FROM DEVELOPMENT DATA

weights
system devdata

optimal wts. | tuning

baseline| no realign 7.9 14.8
realigned 7.0 13.6

no realign 8.7 11.6

1B HMM/GMM 7.9 10.7
KL based 7.0 9.9

combination weights according to log-likelihoods presafiustness problems across different meeting rooms.
A combination scheme performed in a normalized space ofarke variables is proposed and investigated.

« KL based Realignmeninstead of re-aligning boundaries with an HMM/GMM systeanK L based realignment

scheme is proposed. This method uses only the frame leweslamte variable distributions.

The experiments are performed on a dataset with number of A'Batures of variable dimension frof to
16. Both optimal weights as well as weights estimated fromrignon a development data set are investigated.
The proposed combination perfor@%; absolute better compared to the baseline even before meadigt. Both
realignments (HMM/GMM and KL) reduce the speaker error, Kle outperforming the HMM/GMM by 1%
absolute.

The performance of the overall system (IB clustering + KLligrament) is4% absolute 28% relative) better
than the baseline system. It is important to notice thatwtedystems hold the same optimal performance meaning
that when meeting-wise optimal weights are selected, tleakgr error is similar. On the other hand, whenever
weights are fixed, the IB system is more robust to variatiamess data. The individual weights variations is much
larger when the combination happens at the log-likelihcaebll

Although the feature combination of only two features (MF@@d TDOA) is investigated in this work, the
algorithms proposed are general and could be extended év fathtures (acoustic or visual). The framework only
uses the distributiop(y|s;) that is normalized and is hence more robust to features widrgk statistics compared
to the conventional HMM/GMM system. Experiments with mdnarn two feature sets would be addressed in future

works.
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APPENDIXA

PROOF OFPROPOSITION1

Proof: Consider/(X,Y) — I(C,Y)
= ZP z,Y log Z 1og%

N < >p<>
= 2wl

_ e 1o P YPLE)
= 2 vl plela)ola) o LTS

= X C|\T X ) 10, p(y|x)
= gcp(yl )p(clz)p(x)1 8 ol

= > pl= Zp clz) Zp ylz)log (( || ;
= ) pla ZP clz) KL (p(Ylz)||p(Y]c))

z,y,c

= > ple, )KL (p(Y|z)l[p(Y]e)) (18)

Consider the IB criterion in Equation (4); i.e, the maxintiaa of I(C|Y) — %I(X, C). This can be rewrit-
ten as a minimization in the following formnin[I(X,C) — BI(C,Y)] which is equivalent tamin[I(X, C) +
B.(I(X,Y)—I(C,Y))] sinceI(X,Y) is a constant for the minimization. Using the result of E¢quatl8 the
optimization becomesin |I(X,C) + 3",  p(z,c)KL (p(Y|:C)||p(Y|c))} [
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