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Abstract

This correspondence describes a novel system for speaker diarization of meetings recordings based on the

combination of acoustic features (MFCC) and Time Delay of Arrivals (TDOA). The first part of the paper analyzes

differences between MFCC and TDOA features which possess completely different statistical properties. When

Gaussian Mixture Models are used, experiments reveal that the diarization system is sensitive to the different

recording scenarios (i.e. meeting rooms with varying number of microphones). In the second part, a new multistream

diarization system is proposed extending previous work on Information Theoretic diarization. Both speaker clustering

and speaker realignment steps are discussed; in contrary tocurrent systems, the proposed method avoids to perform the

feature combination averaging log-likelihood scores. Experiments on meetings data reveal that the proposed approach

outperforms the GMM based system when the recording is done with varying number of microphones.

Index Terms

Speaker Diarization, Information Bottleneck, Feature Combination, Meeting data

I. I NTRODUCTION

Speaker diarization is the task of determining “who spoke when” in an audio stream. It is an unsupervised learning

paradigm, where the system learns the number of speakers as well as identifies the speech segments corresponding

to each speaker.

Conventional speaker diarization systems use an ergodic Hidden Markov Model (HMM) where each speaker is

represented as an HMM state with a minimum duration [1]. The state emission probabilities are modeled with

Gaussian Mixture Models. The diarization follows multiplesteps of agglomerative clustering and realignment. The

system is initialized with an over determined number of speakers by means of uniform segmentation or by speaker

change detection methods. At each iteration the two most similar clusters (according to some distance measure) are

merged. After that, the time boundaries of segments are realigned using a Viterbi algorithm. This merging/realigning

proceeds iteratively until a stopping criterion is met. Common measures used as both distance measure as well as the

stopping criterion are the Bayesian Information Criterion[2] and modified versions [1], [3], [4], [5]. To determine
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the distance measure between two speaker clusters, those methods first estimate a single speaker model from the

data belonging to both clusters. The distance measure then depends on the ratio of individual cluster likelihoods to

the likelihood of the single model estimated with data from both clusters.

Typical acoustic features consist of short term spectral features such as Mel frequency cepstral coefficients

(MFCC). In the meeting scenario, data recordings are commonly carried out in a non-intrusive way with multiple

distant microphones. The spatial redundancy of the different signals can be used for speaker diarization. For instance,

whenever the geometry of the microphone array is known, the speaker locations can be estimated and used as

complementary features to conventional MFCC [6]. Otherwise if the array geometry is unknown, the estimated

time difference of arrival (TDOA) between different channels of a microphone array can be used as features.

Experiments have shown that as stand alone features [7], TDOA performs poorly respect to MFCC but significant

performance improvements are obtained when TDOA are used incombination with MFCC [8], [9].

MFCC and TDOA are modeled separately with different GMMs andthey are combined by linearly weighting the

individual log-likelihoods [8]. The log-likelihood combination is used to calculate the BIC distance measure and to

refine the speaker boundaries using the Viterbi realignment. The weights of the linear combination are estimated

from an independent development data set. This approach hasbeen proven very effective in several evaluations and

is implemented in large number of diarization systems [10],[11], [12].

Speaker diarization is applied to recordings performed with varying the number of microphones across different

meeting rooms (from 2 microphones to 16 for conference room meetings [13], [14] and up to 64 microphones in

case of lecture recordings). If the recording is done with anarray ofC microphones, the number of TDOA features

is equal toC − 1. As a consequence, the dimension of the TDOA feature vector will vary according to the number

of microphones resulting in different ranges of log-likelihoods.

This paper investigates the combination of MFCC and TDOA features for speaker diarization in case of recordings

acquired with arrays composed of different number of microphones. In section II this combination is studied in case

of HMM/GMM systems. The investigation studies the sensitivity of the system with respect to the feature weights.

Sections III and IV introduce a novel multistream diarization system that extends our previous related work on

Information Bottleneck (IB) based clustering [15]. The IB diarization [15] performs the diarization in a space

of relevance variables and realigns speaker boundaries with an HMM/GMM system. This paper introduces two

contributions to the original system:

• The clustering in the space of relevance variables is extended to handle multiple feature streams (Section IV).

In contrary to the HMM/GMM, it avoids the combination of log-likelihoods.

• The HMM/GMM realignment is replaced with a Kullback-Leibler based realignment as it arises from the IB

principle (Section V). The realignment scheme operates on the same relevance variable space and again avoids

the combination of log-likelihoods.

The rationale behind performing clustering and realignment using the IB framework rather than log-likelihood

combination is that the system should gain robustness to thestatistics of the different features (MFCC and TDOA).

The proposed approaches are validated in experiments usinga dataset with a number of microphones between 2
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and 16.

II. BASELINE SYSTEM

Let us consider a diarization system based on the HMM/GMM framework. Each speaker is modeled with an

HMM state with minimum duration of three seconds. The systemis initialized with an over determined number

of speakers by means of uniform segmentation or by speaker change detection methods. Multiple iterations of

clustering and realignment are then performed.

The clustering follows an agglomerative framework in whichat each step two most similar clusters are merged.

The similarity between two clusters is based on a modified BICcriterion [3]. The clustering stops when no BIC

value is greater than zero i.e. when none of the possible merges between cluster pairs satisfy the criterion.

The emission probability distributionbci
corresponding to speaker clusterci is modeled as a GMM:

log bci
(st) = log

∑

r

wr
ci
N (st, µ

r
ci

, Σr
ci

) (1)

wherest is the input feature,N (.) is the Gaussian pdf andwr
ci

, µr
ci

, Σr
ci

are the weights, means and covariance

matrices corresponding torth mixture Gaussian of clusterci.

Each cluster merge is followed by a Viterbi re-alignment that smooths the speaker boundaries and improves the

diarization performance. The entire meeting is then realigned with the estimated speaker models after the merge.

The optimal path (speaker sequence)c = (c1, . . . , cT ) is determined as the best sequence of states that maximizes

the data likelihood. This can be represented as the following optimization:

c
opt = arg min

c

∑

t

[− log bct
(st) − log(actct+1

)] (2)

wherect is the speaker cluster at timet. The termacicj
represents the transition probability from speaker state

ci to cj . The transition probabilities incorporate the minimum duration constraint.

A. Multiple Feature Streams

Whenever multiple feature streams are available, the HMM/GMM system uses a linear combination of log

likelihoods. This approach models the two feature streams with separate GMMs and the combination is then

performed by linearly weighting their log-likelihoods [8]. GMMs are estimated separately with observations

assigned to the same speaker cluster.

The weights are estimated minimizing the diarization erroron a independent development data set.

Let smfcc
t and stdoa

t represent the feature values at timet. GMM modelsbmfcc
ci

(.) and btdoa
ci

(.) are estimated

separately from MFCC and TDOA features assigned to the same cluster. A linear combination of the log likelihoods

is computed as:

Pmfcc log bmfcc
ci

(smfcc
t ) + Ptdoa log btdoa

ci
(stdoa

t ) (3)

Pmfcc andPtdoa denote the weights corresponding to MFCC and TDOA features respectively such thatPmfcc +

Ptdoa = 1. The diarization system then performs both agglomerative clustering and Viterbi realignment using the

combination of the log-likelihoods as in Equation (3).
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TABLE I

L IST OF MEETING USED FOR EVALUATION IN THE PAPER WITH ASSOCIATED NUMBER OF MICROPHONES

sl.no. meeting id #microphones

1 CMU 20050912-0900 2

2 CMU 20050914-0900 2

3 EDI 20050216-1051 16

4 EDI 20050218-0900 16

5 NIST 20051024-0930 7

6 NIST 20051102-1323 7

7 TNO 20041103-1130 9

8 VT 20050623-1400 4

9 VT 20051027-1400 3

B. Experiments and Baseline results

In this section the impact of variations in feature statistics in the baseline system is investigated. A dataset of

nine meetings recorded using Multiple Distance Microphones (MDM) across five different meeting rooms is used.

The set of meetings with associated number of microphones islisted in Table I.

A delay and sum beamforming [16] is performed on the MDM data to obtain a single enhanced channel. The

beamforming is performed with theBeamformIt[17] toolkit. A Bug-fixed version ofBeamformIt 2.2is used for

this purpose. The beamforming first selects a reference channel based on maximum average cross correlation with

other channels. Then the Time Delay of Arrival (TDOA) of eachchannel with respect to the reference channel is

computed. TDOA features are computed using a window of500ms shifted every10ms for each of the individual

signals. The delay value that yields the maximum correlation is estimated with a generalized cross correlation phase

transform (GCC-PHAT). Hence the number of delay features isalways one less than the number of microphones.

Following the TDOA estimation, a weighted delay and sum combination of all channels results in a single enhanced

channel.19 MFCC coefficients are estimated from this enhanced output using a30ms window shifted every10ms.

Both MFCC and TDOA values have the same frame rate.

In order to consider the different statistical properties of the features, MFCC are initially modeled with a five

component GMM while TDOA are modeled with a single Gaussian [8]. Fig.1 plots the average negative log

likelihood values of two independent GMMs trained on MFCC and TDOA features for the 9 meetings used in this

work. It can be seen that their dynamic ranges are quite different. TDOA likelihoods depend on the feature vector

dimensions and thus on the number of microphones. Larger feature dimension leads to larger likelihood values. For

example meeting3 and4 have largest feature dimension (16) among the meetings and posses highest negative log

likelihood values. Furthermore TDOA and MFCC statistics are considerably different.

Also there is a two order magnitude difference between the minimum and the maximum values of TDOA log

likelihoods across different meetings in Fig.1. Possible reasons of such variations include variable dimension of
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Fig. 1. Average negative log likelihood values of MFCC and TDOA features at the beginning of clustering for a set of nine meetings. The

markers denote maximum and minimum values of feature streams.

features, differences in the recording environments etc.

Let us now consider the effect of this in a diarization system. Speaker diarization systems are evaluated using the

Diarization Error Rate (DER) measure. DER is the sum of speech/non-speech error and speaker mismatch error.

The speech/non-speech error contains missed speech and false alarm errors. Since we use same speech non-speech

segmentation (same speech/non-speech error) across all experiments we report speaker error for the purpose of

comparison.

The baseline HMM/GMM system is initialized with16 clusters obtained with uniform linear segmentation and

the clustering is performed using modified BIC as the distance measure [11]. At first, the performance of the system

is analyzed with a set of optimal weights for each meeting. The optimal weights represent the set of weights that

produce the smallest speaker error in each meeting. To determine this, MFCC feature weightPmfcc is varied from

zero to one for each meeting while keeping the sum of feature weights as unity. i.e.,Ptdoa is fixed as1 − Pmfcc.

The weights corresponding to the minimum speaker error are chosen as the optimal weights for that meeting. The

corresponding speaker error is compared against the performance of the feature weights estimated from development

data (Ptdoa = 0.1 and Pmfcc = 0.9 as reported by [8]). The final speaker error as well as the performance just

before the last realignment step are reported.

Table II reports the speaker error for the meeting-wise optimal weights, as well as for the estimated weight from

development dataset. It can be observed that there is a performance reduction of6.6% absolute in the latter case,

the actual speaker error being almost double of the speaker error with optimal weights.

The individual meeting performances are depicted in Fig.2 and the corresponding optimal weights for the TDOA

feature stream are illustrated in Fig.3. It can be seen that:

1 the magnitudes of the weights span a considerably large range (note that the plot is in logarithmic scale). This

could happen due to the difference in statistical properties of individual feature streams as discussed before.
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Fig. 2. Meeting-wise speaker error for MFCC+TDOA fea-

ture combination of HMM/GMM system: optimal weights for

each meeting and the estimate from separate development data

(Ptdoa = 0.1). Pmfcc = 1 − Ptdoa

Fig. 3. Variation of optimal weight in the HMM/GMM system

for TDOA feature across different meetingsPmfcc = 1−Ptdoa

TABLE II

OVERALL SPEAKER ERROR FORMFCC+TDOACOMBINATION OF THE HMM/GMM SYSTEM: OPTIMAL WEIGHTS FOR EACH MEETING,

AND THE ESTIMATED WEIGHT FROM SEPARATE DEVELOPMENT DATA(Ptdoa = 0.1). Pmfcc = 1 − Ptdoa. THE TABLE ALSO REPORTS THE

SPEAKER ERROR WITH AND WITHOUT RE-ALIGNMENT AFTER THE LAST CLUSTERING STEP.

optimal wt. Ptdoa = 0.1

no realign 7.9 14.8

with realign 7.0 13.6

2 whenever the estimated weights are notably different fromthe optimal values (meetings 3,4 and 7), the drop

from the optimum performances is large.

In the following an alternative diarization system is investigated for the purpose of reducing the effect of the

different statistics between type of features.

III. S INGLE STREAM IB SPEAKER DIARIZATION

In [15], we have proposed a speaker diarization system basedon Information Bottleneck (IB) principle. The

system is based on clustering and realignment steps. The clustering depends on distribution of a set of relevance

variables. The realignment is based on conventional HMM/GMM systems. For completeness of the paper and

definition of notation, the IB principle and details of the diarization system are briefly presented. All details can be

found in [15].
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A. Information Bottleneck Principle

The Information Bottleneck (IB) is a distributional clustering framework based on information theoretic prin-

ciples [18][19]. The IB principle depends on availability of a set of relevance variablesY that carry important

information with respect to the problem. For example, the set of words are used as relevance variables for the

document retrieval. The method tries to form a clustering representation that preserves maximum mutual information

with respect to the relevance variables. IB clustering thusattempts to preserve meaningful information with respect

to a given problem.

Consider a set of input elementsX = {x1, . . . , xT } to be clustered into a set of clustersC = {c1, . . . , cK}.

Let Y be the set of relevance variables that carry useful information pertaining to the problem. According to IB

principle the best clustering representationC should be a compact representation of input variablesX (minimize

mutual information betweenX andC) and should preserve as much information as possible about the relevance

variablesY (maximize mutual information betweenC andY ). This corresponds to the maximization of:

F = I(Y, C) −
1

β
I(C, X) (4)

whereβ (Notation consistent with [19] ) is a Lagrange multiplier. The IB objective function in Equation 4 is

optimized with respect to the stochastic mappingp(C|X) that maps each element from input elementX to the new

cluster representationC. The clustering depends only on the conditional distribution of the relevance variables with

respect to the input featuresp(y|x). Different methods to construct the solution of IB objective function include

agglomerative and sequential information bottleneck, iterative optimization, deterministic annealing etc. (See [18]

for a detailed review). Here in this work we focus only on agglomerative information Bottleneck that is briefly

discussed below.

B. Agglomerative IB

Agglomerative Information Bottleneck (aIB) is a greedy approach towards optimization of the IB objective

function [20]. The algorithm is initialized with|X | clusters, i.e., each input element of the setX is considered as

a separate cluster. At each step, the algorithm merges two clusters that results in minimum loss in the IB objective

function (4). This process is continued until the required number of clusters is reached. It can be shown that this

loss could be represented as sum of two Jensen-Shannon divergences. This distance measure arises as the result of

maximization of the IB functional and depends only on the distribution p(y|x) (refer [20] for details).

C. IB based Speaker Diarization

Let us define now the input elementsX and the relevance variablesY that represent the meaningful information

about the diarization problem.

A set of speech segments obtained by uniform linear segmentation of input features is used as the input variables

(SetX).
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Fig. 4. Meeting-wise speaker error for MFCC+TDOA of IB

based feature combination: optimal weights for each meeting

and the estimate from separate development data (Ptdoa = 0.3).

Pmfcc = 1 − Ptdoa

Fig. 5. Variation of optimal weight in the IB system for TDOA

features across different meetingsPmfcc = 1 − Ptdoa

Motivated by the success of GMMs on speaker recognition/verification applications, the set of relevance variables

Y is defined as the components of a background GMM estimated from the entire input audio recording. Let us

consider a GMM trained on the entire recordingf(s) =
∑

j wjN (s, µj , Σj). The conditional probability of Gaussian

componentj (relevance variable) with respect to input featurest can be calculated from Bayes’ rule:

p(yj|st) =
wjN (st, µj, Σj)

∑

r wrN (st, µr, Σr)
(5)

For each segmentxi that consists of a set of frames, the distributions are averaged across all frames to determine

the relevance variable distribution.

The clustering of speech segments (i.e. variables X) is performed following an agglomerative framework according

to their distance in the space of relevance variables Y. The clustering stops based on a Normalized Mutual Information

(NMI) criterion defined as:

NMI =
I(Y, C)

I(Y, X)
(6)

NMI denotes the fraction of original mutual informationI(Y, X) preserved by the clustering representation. This

quantity decreases monotonically with cluster merge, and athreshold is used to select the optimal number of

clusters. The threshold is determined using a development dataset composed of ten meetings used in previous

NIST evaluations. The meetings were around10 minutes long (all the details can be found in [15]). The complete

algorithm is as follows:

1 Acoustic feature extraction from the beamformed audio.

2 Speech/non-speech segmentation and rejection of non-speech frames.

3 Uniform segmentation of speech in chunks of fixed size 2.5s i.e., setX .
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4 Estimation of a Gaussian component with shared diagonal covariance matrix for each segment i.e., setY .

5 Estimation of conditional distributionp(y|x).

6 Agglomerative clustering until the stopping criterion ismet.

D. Realignment

The initial uniform segmentation of the audio file into segmentsX is then refined in order to smooth the speaker

boundaries. The realignment is performed using a conventional HMM/GMM system. A separate GMM is estimated

for each of the speakers estimated using the IB clustering. The segment boundaries are then re-estimated using a

Viterbi realignment with a minimum state duration HMM(as inthe baseline system). Multiple iterations of GMM

estimation and realignment are performed. Details of the method can be found in [15].

This single feature stream diarization is now extended in order to handle multiple features by adding two

contributions:

• the relevance variable distribution are estimated from different feature streams (e.g. MFCC and TDOA; section

IV)

• the re-alignment is performed directly in the space of relevance variablesY based on Kullback-Leibler

divergence (section V)

IV. EXTENSION TO MULTIPLE FEATURES

Let us now consider the case in which MFCC and TDOA features from the same meeting are available. The

proposed method can be extended using separate aligned background GMMs for MFCC and TDOA. The background

models have the same number of components proportional to the length of the meeting as described in [15], i.e.,

the number of components is equal toN = S/250 whereS is the total number of speech frames.

Initially a GMM model is estimated using MFCC featuressmfcc
t . Each observationsmfcc

t is then assigned to one

of the GMM components. The parameters of the TDOA GMM are estimated using the same mapping between the

feature time indices and the GMM components. In other words,suppose therth component parameters of MFCC

GMM were estimated from a set of MFCC features{smfcc
t′ }. The rth component parameters of the TDOA GMM

will then be estimated from the set of TDOA features{stdoa
t′ } that have the same time indices{t′}.

While in the baseline system [8] MFCC and TDOA GMM for each cluster are estimated separately with

observations (MFCC and TDOA) assigned to the same cluster, in the proposed system separate background models

are estimated with observations assigned to the same components (from the MFCC background model). Thus the

two GMMs have the same number of components and have a strict one-to-one mapping between the components.

The set of these corresponding aligned mixture components represent the relevance variables. The relevance

variable distributionsp(y|smfcc
t ) and p(y|stdoa

t ) are estimated as before using Bayes’ rule. The estimation of

p(y|smfcc
t , stdoa

t ) is obtained as a weighted average of individual distributions as:
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Fig. 6. Speaker error as a function ofPtdoa (Pmfcc = 1 − Ptdoa) for a meeting with estimated weight farthest from optimal.The selected

weight from development data tuning isPtdoa = 0.3 for the IB system andPtdoa = 0.1 for the baseline

p(y|smfcc
t , stdoa

t ) = p(y|smfcc
t )Pmfcc + p(y|stdoa

t )Ptdoa (7)

wherePmfcc and Ptdoa represent the weights such thatPmfcc + Ptdoa = 1. In contrary to GMM log-likelihood

combination , here the individual distributionsp(y|smfcc
t ) and p(y|stdoa

t ) are normalized and have the same

dynamic range regardless of the dimension of the feature vector. Thus the linear combination does not suffer

from dimensionality/statistics problems as in the case of GMM log-likelihoods.

A. Experiments and Results

In order to investigate the effectiveness of the proposed approach, experiments are conducted to study the

combination of MFCC and TDOA features on the same set of meetings as described in Section II. The effect

of the realignment algorithm will be discussed in the next section.

The feature weights are determined using the same development data set described in [15]. The estimated values

of weights are(Pmfcc, Ptdoa) = (0.7, 0.3). It is interesting to notice that those values are differentfrom those

obtained when the tuning is done using log-likelihood combination i.e.,(0.9, 0.1).

The evaluation is done on the meeting recordings described in Table I. As before we report the performance of

the systems with optimal and estimated weights. The optimalweights correspond to lowest speaker error for each

meeting. Table III presents the corresponding speaker error.

Performance with the estimated weights data is only2.9% worse compared to the optimal weights. The speaker

error with aIB clustering is2% absolute better than the baseline result even before performing the realignment step.

The meeting-wise speaker errors in Fig.4 show that the system performance with the estimated weights are close

to the best performance determined by the optimal weights except in case of two meetings 7 and 8.
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The optimal weights for each meeting in case of IB system are represented in Fig.5 and as opposed to the

HMM/GMM system (Fig.3), they span a smaller range. Fig.6 depicts the variation of speaker error with the variation

of Ptdoa for the meeting with highest difference between optimal andestimated weight values. The IB system

performance with estimated weights is closer to the performance with optimal weights as compared to the baseline

system.

In summary, whenever the combination happens at the level ofthe relevance variables instead of log-likelihoods,

the diarization error is less sensitive to the dimension of the TDOA features.

B. Automatic Weighting of Feature Streams

In [4], an automatic weighting schemes based on entropy is proposed to determine the combination weights

without development data. Originally the method was proposed in context of ASR in [21] and was later applied to

speaker diarization [4]. This section investigates inverse entropy combination for both the baseline system and the

proposed system.

Let c1, . . . , cL be theL clusters at any stage of the agglomerative procedure with associated GMM speaker models

(Emission probability distribution of HMM states)bci
(.). A discrete distribution of speakers is first estimated for

each feature vectorst as:

P (ci|st) =
bci

(st)
∑L

j=1
bcj

(st)
, i = 1 . . . L (8)

The entropy of the speaker distribution is then computed :

Ht = −
L

∑

i=1

P (ci|st) log P (ci|st) (9)

The algorithm estimates entropy values for MFCC and TDOA feature streams (Hmfcc
t and Htdoa

t ) using the

respective GMM speaker models. The log-likelihood combination as in Eqn(3) is then performed with weights

proportional to inverse entropy values. The MFCC and TDOA weights are given by:

Pmfcc =
1/Hmfcc

t

1/Hmfcc
t +1/Htdoa

t

(10)

Ptdoa =
1/Htdoa

t

1/Hmfcc
t +1/Htdoa

t

(11)

The combination operates at frame level i.e. weights are calculated for each frame. In case of IB system the

distribution of relevance variables are used instead of speaker distributions.

TABLE III

OVERALL SPEAKER ERROR FORMFCC+TDOACOMBINATION OF THE IB SYSTEM: OPTIMAL WEIGHTS FOR EACH MEETING AND THE

ESTIMATED WEIGHT FROM SEPARATE DEVELOPMENT DATA(Ptdoa = 0.3). Pmfcc = 1 − Ptdoa

Optimal weight Ptdoa = 0.3

8.7 11.6
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TABLE IV

OVERALL SPEAKER ERROR FORMFCC+TDOACOMBINATION : AUTOMATICALLY ESTIMATED WEIGHTS

baseline IB system

20.8 17.5

Table IV reports the results. Both schemes perform approximatively 6 − 7% absolute worse compared to the

baseline. The proposed system still outperforms the baseline. These results are consistent with findings reported

in [4](Section 6.5), i.e., inverse entropy weighting does not outperforms the fixed weighting based on development

data. In fact, this scheme assigns higher weights to the TDOAfeature stream while the optimal weights is higher

for MFCC features.

V. KL BASED REALIGNMENT

The second contribution of this paper consists of introducing a speaker realignment that operates directly in the

space of the relevance variables estimated by Equation (5).The rationale behind this is that performing realignment

in the space of normalized distributionsp(Y |S) would increase the robustness of the system as compared to the

log-likelihood domain.

Now let us rewrite the IB objective function according to thefollowing proposition:

Proposition 1: The IB maximization of Equation (4) is equivalent to the following minimization:

min[I(X, C) + β E(d(X, C))] (12)

d(X, C) = KL(p(Y |X)||p(Y |C)) (13)

whered(X, C), is the KL divergence between distributions given by the cluster and the input [22]. (See Appendix A

for a proof)

The re-alignment is performed after the agglomerative clustering to smooth the initial arbitrary boundaries

obtained by uniform segmentation. The aIB clustering described in section IV provides an initial partition of

features(s1, . . . , sT ) (input variables of realignment) into a set of speakers{c1, . . . , cK}. This corresponds to an

hard clustering partition wherep(c|s) ∈ {0, 1}. Hard clustering is obtained by taking the limitβ → ∞ in the IB

optimization criterion (4). Thus the IB criterion reduces to the maximization ofI(C, Y ) alone [18]. From the above

proposition, this is equivalent to minimizingd(S, C). Developing the expression ford(S, C), it is possible to write:

E(d(S, C)) = E[KL(p(Y |S)||p(Y |C))]

=
∑

t

p(st)
∑

i

p(ci|st)KL(p(Y |st)||p(Y |ci))

=
∑

t

p(st)KL(p(Y |st)||p(Y |ct)) (14)
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Wherect is such thatp(ct|st) = 1, for other values ofC, p(ci|st) = 0. Assuming equal priors forst, minimization

of E(d(S, C)) is equivalent to:

min E(d(S, C)) = min
∑

t

KL(p(Y |st)||p(Y |ct)) (15)

The termp(Y |ct) denotes the distribution of relevance variables for each speaker. This can be seen as the “speaker

model” estimated usingp(Y |st). While the GMM realignment selects the speaker that maximizes the log-likelihood

sum, the proposed approach selects the speaker that minimize the KL divergence betweenp(Y |st) and p(Y |ct).

The problem of minimizing the KL divergence between a feature stream represented as distributions and a set of

learned models has been explored previously in the context of automatic speech recognition [23]. The estimation

formula for ”speaker models”p(y|c) is given by:

p(y|ci) =
1

p(ci)

∑

st:st∈ci

p(y|st)p(st) (16)

In case of equal priorsp(st), the estimation formula becomes the arithmetic mean of the distributionsp(y|st). Thus

the speaker model for a clusterct is the average of distributionsp(y|st) assigned to it.

Then, the objective function can be extended to include the minimum duration constraint as in the baseline

system:

c
opt = arg min

c

∑

t

[KL(p(Y |st)||p(Y |ct)) − log(actct+1
)] (17)

A parallel can be seen between Equations (2) and (17) reported below:

c
opt = arg min

c

∑

t

[− log bct
(st) − log(actct+1

)]

The termp(Y |ct) represents the speaker model in the relevant variable spaceand during the Viterbi. The negative

log-likelihood (− log bct
(st)) is replaced by the KL divergenceKL(p(Y |st)||p(Y |ct)) which serves as the distance

measure between the speaker model and the input featuresp(Y |st). The realignment depends only on the distribution

p(y|st) which is normalized. When MFCC and TDOA feature streams are used, this distribution is computed as

p(y|smfcc
t , stdoa

t ) = p(y|smfcc
t )Pmfcc +p(y|stdoa

t )Ptdoa. Performing KL based realignment usingp(y|smfcc
t , stdoa

t )

eliminates the combination of log-likelihood scores.

A. Experiments and Results

This section compares the KL based realignment with the HMM/GMM based realignment. Both systems use a

minimum duration constraint equal to 2.5 second i.e. 250 frames.

The comparison is done on the same setup of section II-B afteraIB clustering. Table V compares the speaker

error in case of optimal and estimated weights. Fig. 7 illustrates the meeting-wise speaker error before and after

realignment.

Both realignment schemes reduce the overall speaker error in case of optimal weights as well as in case of

weights estimated from development data. However the KL realignment outperforms the HMM/GMM realignment
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TABLE V

OVERALL SPEAKER ERROR FORMFCC+TDOACOMBINATION OF THE IB SYSTEM WITH KL REALIGNMENT: USING OPTIMAL WEIGHTS

FOR EACH MEETING, AND ESTIMATE FROM DEVELOPMENT DATA (Ptdoa = 0.3). Pmfcc = 1 − Ptdoa

Realignment Optimal wt. Ptdoa = 0.3

HMM/GMM 7.9 10.7

HMM/KL 7.0 9.9

Fig. 7. Speaker error with and without realignment for feature combination with estimated weights

by close to1% absolute. Fig. 7 shows that the HMM/GMM system improves the diarization output in six out of

nine meetings whereas the KL realignment is improving consistently across all meetings of the data set.

All results of the paper are summarized in Table VI. It can be seen that the optimal weights yield the same

performance for the baseline system (Row 2) and the IB systemwith KL realignment (Row 5). However, with

the estimated weights, performance of the baseline system degrades considerably (6.6% abosolute worse). The IB

system is more robust to weights, and the performance of the system is closer (2.9% absolute worse) to performance

of the optimal weights.

VI. SUMMARY AND CONCLUSIONS

This paper discusses the combination of MFCC and TDOA features for speaker diarization introducing two new

contributions that extends previous work on information theoretic diarization [15]:

• Combination Scheme: State-of-the-art multiple stream diarization uses a linear combination of GMM log-

likelihoods trained on MFCC and TDOA features. TDOA features have different statistics compared to MFCC.

Furthermore their dimensionality varies according to the number of channels used for recordings. Setting linear
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TABLE VI

COMPARISON OF SPEAKER ERRORS OF THEIB SYSTEM WITH THE BASELINE. THE BASELINE RESULTS ARE REPORTED WITH AND WITHOUT

THE LAST REALIGNMENT STEP. THE TABLE PRESENTS RESULTS THAT CORRESPONDS TO OPTIMAL WEIGHTS AS WELL AS WEIGHTS

ESTIMATED FROM DEVELOPMENT DATA.

weights

system devdata

optimal wts. tuning

baseline no realign 7.9 14.8

realigned 7.0 13.6

no realign 8.7 11.6

IB HMM/GMM 7.9 10.7

KL based 7.0 9.9

combination weights according to log-likelihoods presentrobustness problems across different meeting rooms.

A combination scheme performed in a normalized space of relevance variables is proposed and investigated.

• KL based Realignment: Instead of re-aligning boundaries with an HMM/GMM system,a KL based realignment

scheme is proposed. This method uses only the frame level relevance variable distributions.

The experiments are performed on a dataset with number of TDOA features of variable dimension from2 to

16. Both optimal weights as well as weights estimated from tuning on a development data set are investigated.

The proposed combination performs2% absolute better compared to the baseline even before realignment. Both

realignments (HMM/GMM and KL) reduce the speaker error, theKL outperforming the HMM/GMM by1%

absolute.

The performance of the overall system (IB clustering + KL realignment) is4% absolute (28% relative) better

than the baseline system. It is important to notice that the two systems hold the same optimal performance meaning

that when meeting-wise optimal weights are selected, the speaker error is similar. On the other hand, whenever

weights are fixed, the IB system is more robust to variations across data. The individual weights variations is much

larger when the combination happens at the log-likelihood level.

Although the feature combination of only two features (MFCCand TDOA) is investigated in this work, the

algorithms proposed are general and could be extended to other features (acoustic or visual). The framework only

uses the distributionp(y|st) that is normalized and is hence more robust to features with diverse statistics compared

to the conventional HMM/GMM system. Experiments with more than two feature sets would be addressed in future

works.
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APPENDIX A

PROOF OFPROPOSITION1

Proof: ConsiderI(X, Y ) − I(C, Y )

=
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
−

∑

y,c

p(y, c) log
p(y, c)

p(y)p(c)

=
∑

x,y,c

p(x, y, c) log
p(x, y)p(c)

p(y, c)p(x)

=
∑

x,y,c

p(y|x, c)p(c|x)p(x) log
p(x, y)p(c)

p(y, c)p(x)

=
∑

x,y,c

p(y|x)p(c|x)p(x) log
p(y|x)

p(y|c)

=
∑

x

p(x)
∑

c

p(c|x)
∑

y

p(y|x) log
p(y|x)

p(y|c)

=
∑

x

p(x)
∑

c

p(c|x)KL (p(Y |x)||p(Y |c))

=
∑

x,c

p(x, c)KL (p(Y |x)||p(Y |c)) (18)

Consider the IB criterion in Equation (4); i.e, the maximization of I(C, Y ) − 1

β I(X, C). This can be rewrit-

ten as a minimization in the following form:min[I(X, C) − βI(C, Y )] which is equivalent tomin[I(X, C) +

β. (I(X, Y ) − I(C, Y ))] since I(X, Y ) is a constant for the minimization. Using the result of Equation 18 the

optimization becomesmin
[

I(X, C) + β
∑

x,c p(x, c)KL (p(Y |x)||p(Y |c))
]
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