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ABSTRACT 

In this paper, we present the results of a study on excitation 

frequency impact on short-term recording synchronisation 

and confidence estimation for multisource audiovisual data, 

recorded by different personal capturing devices during so-

cial events. The core of the algorithm is based on perceptual 

time-quefrency analysis with a precision of 10 ms. Perform-

ance levels achieved to date on 14+ hours of hand-labelled 

dataset have shown positive impact of excitation frequency 

on temporal synchronisation (98.19% precision for 5 s re-

cordings) and confidence estimation (99.08% precision with 

100% recall for 5 s recordings). The results surpass the per-

formance of fast cross correlation while keeping lower sys-

tem requirements. 

1. INTRODUCTION 

The TA2 project (Together Anywhere, Together Anytime) 

[1] is concerned with investigation of how multimedia de-

vices can be introduced into a family scenario to break down 

technology and distance barriers. Technically, the TA2 pro-

ject tries to improve group-to-group communication by 

making it more natural and by giving the users the means to 

easily participate in shared activities. In this sense, we are 

interested in the use of consumer level multimedia devices 

in novel application scenarios. 

One generic scenario is the use of multiple capture de-

vices at the same event with subsequent navigation through 

captured data within a common timeline (see figure 1). In a 

professional scenario, one might expect to be able to use 

multiple capture devices, and for them all to be synchronised 

via a common clock or similar [2]. Consumer level devices, 

however, do not normally provide such capabilities and are 

turned on and off at the will of their users. This leaves us 

with the metadata and audiovisual signals to infer synchro-

nisation information. The available camera time and re-

cording time in the metadata are based on the personal cap-

turing devices and are most likely to be different across the 

devices. Another intuitive and simple approach would be to 

compare the corresponding audiovisual signals. However, 

recordings captured at the same time by different cameras 

may look and sound different because of camera locations 

(e.g. different lighting ambience, noisy surrounding), camera 

settings (e.g. white point balance, audio gain), quality of the 

camera components (e.g. sensor, lens, microphones). There-

fore, raw audiovisual signals are not suitable for synchroni-

sation purpose. 

 
Figure 1 – An example of automatic synchronisation of 187 test 

signals 5 s each within an event of 1 h 37 min. 
 

The solution would be to automatically synchronise the 

multisource recordings by detecting and matching audio 

and/or video features extracted from the content.  

Early studies on video-based synchronisation techniques 

[3, 4] relied on assumptions of static cameras and homo-

graphic images. In [5] a usage of tracking a line feature in 

multiple videos with limited camera motion is used, though 

the method implies identical frame rate on all cameras. In 

[6] moving features are computed that best relate with the 

pre-computed camera geometries, nevertheless the method 

depends on sufficient texture for tracking and other con-

straints. In [7] authors propose a synchronisation based on 

flash sequences, which is suitable only for particular type of 

events. Other state of the art video-based synchronisation 

techniques [8, 9, 10, 11] also impose controlled environ-

ments. Therefore, if the devices are hand-held and environ-

ments are unconstrained, we cannot rely in any predictable 

sense on the video signal. This leaves us with the audio sig-

nal from which to infer synchronisation information. 

One of audio-based solutions is the use of audio onsets 

[12], which are the perceived starting points in an auditory 

event. Many other solutions rely on audio fingerprinting 

techniques [13, 14, 15, 16], which result in fairly good but 

not perfect synchronisation of the recordings. 

In our previous study [17] we have shown that the auxil-

iary signals can be synchronised with the reference signal 

reliably based on audio features typical of ASR applications. 

The present investigation concerns further study in the direc-

tion of excitation frequency impact on short-term recording 

synchronisation and confidence estimation. 



2. SHORT-TERM SYNCHRONISATION 

Consider a music performance. The duration of the corre-

sponding event can easily be of the order of a small number 

of hours. It is normal in such situations to decrease the 

search space, retaining only useful information for synchro-

nisation. In our previous study [17] we have shown that 

multiple recordings can be synchronised to an acceptable 

accuracy using audio features typical of ASR applications 

and corresponding confidence can be reliably estimated. For 

recordings longer than 15 s we were able to achieve 100% 

precision on 100 recording dataset for time-quefrency signa-

tures without excitation frequency versus 98% for fast cross 

correlation. For recordings shorter than 5 s the precision 

levels were lower due limited length of the signatures and 

the real world variability of the data (noise, reverberation, 

non-stationarity of cameras, etc). 

In our study we define the recordings not longer than 5 s 

as short-term recordings. In following chapter we present 

the experimental results of a study on excitation frequency 

impact achieved to date on 14+ hours of hand-labelled data-

set. This is achieved via redefinition of time-quefrency sig-

natures as described below. The re-estimated precision de-

pendency on the length of test signals in respect to enlarged 

dataset (997 test recordings) is shown in figure 2. 

We define time-quefrency signatures as time-quefrency 

matrices based on normalised truncated mel-cepstral vectors 

in steps of 10 ms. A 256 point Discrete Fourier Transform 

(DFT) is performed on overlapping audio frames of 16 ms 

in steps of 10 ms and squared to give the power spectrum. 

The resulting 129 unique bins are then decimated using a 

filter-bank of 23 overlapping triangular filters equally 

spaced on the mel-scale. The mel-scale corresponds roughly 

to the response of the human ear. A logarithm and DFT then 

yield the mel-cepstrum [18]. Lower 13 dimensions retain the 

energy and general spectral shape, while higher dimensions 

retain excitation frequency [19], which is normally trun-

cated. In this study we keep higher mel-cepstrum coeffi-

cients, related to excitation frequency, to estimate corre-

sponding impact on short-term recording synchronisation 

and confidence estimation. The energy is truncated for pro-

posed approach, though kept for a subset of other considered 

signatures. Next, Cepstral Mean Normalisation (CMN) is 

performed by subtracting from each cepstral vector the 

mean of the vectors of the preceding (approximately) half 

second. This has the effect of removing convolutional chan-

nel effects. Finally, if the norm of a vector of the mean nor-

malised cepstral coefficients is higher than 1, then the vector 

is normalised in Euclidean space. This gives us the reduced 

variance of the search distance space. 

Synchronisation, based on the above time-quefrency sig-

natures, is performed by searching for a best distance [17] in 

n-dimensional Euclidean space between the time-quefrency 

representations Hj
i
 and Gj of test and reference signals hj

i
 

and gj, the relative position within the signal gj is given by: 
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where d is Euclidean metric, α is the step within time-

quefrency representation in s. 

 
Figure 2 – Precision versus test signal length. 

 

In the case of fast cross correlation, the relative position 

within the signal gj is given by: 

   }{}{maxarg
1 *1

j

i

j

s

i

j gFhFF
f

t    

In the above formulation, the parameters are as before. F 

denotes the fast Fourier transform. fs is the sampling fre-

quency. An asterisk indicates the complex conjugate. Cross 

correlation is a measure of similarity of two waveforms as a 

function of a time-lag applied to one of them. It is well 

known technique and can be used to search a long duration 

signal for a shorter. 

The confidence of the above techniques can be estimated 

as a measure of relative variance of the search space via 

standard deviation. For time-quefrency signature based 

technique, the standard deviation can be replaced by the 

maximum distance [17]. Thus the confidence can be esti-

mated by searching for a confidence corresponding to a best 

distance in n-dimensional Euclidean space between time-

quefrency representation of test and reference signals: 

1

),(
),(),(

),(),(

2.0

)(max)(4

)(min)(






 ji
ji

G
G

ji

G

ji

G
G

ji

G
i

j l

dd

dd

C

j
j

j

j
j

j

 

In the above equation, Cj
i
 is the confidence measure of 

successful synchronisation of test and reference signals hj
i
 

and gj. E denotes the expectation. l(i,j) is the length of test 

signal hj
i
 in s. 

In the case of fast cross correlation, the confidence esti-

mation is given by [20]: 
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where σ is the standard deviation of the cross correlation. 

It is worth mentioning that the use of standard cross cor-

relation instead of fast cross correlation is not feasible as it is 

computationally onerous (several days per test signal instead 

of few minutes on an Intel Core 2 CPU 6700 2.66GHz). 



3. EXPERIMENTAL RESULTS 

All results presented in this paper were achieved on a real 

life dataset of 1010 recordings: 

 13 reference signals (total length – 13 h 31 min), re-

corded with: 

o Canon XL-G1,  

o Sony HDR-520VE, 

o Benq-Siemens E71.  

 997 test signals of 5 s each (total length – 1 h 23 min), 

recorded with: 

o Nokia N95,  

o Canon FS100E mini, 

o Canon XM1 mini DV, 

o Sony DCR-PC3e,  

o Sanyo Xacti HD mini,  

o iPhone 3G S,  

o Canon Powershot S5IS,  

o Panasonic Lumix DMC-LX3,  

o Sony PDC-100E,  

o Panasonic Lumix DMC-FX500,  

o Sony PDC-10E,  

o Nikon D70,  

o Panasonic Lumix DMC-F57,  

o Fujifilm camera,  

o Sony DSC-V1,  

o Sony Ericsson G502,  

o etc. 

The recordings were captured by several social groups of 

people (with up to 12 socially connected people per group) 

during 13 different events in 3 different countries within 

Europe. The reference signal contents consist of musical 

concerts/rehearsals with multiple events/replays one after 

the other. All corresponding audio tracks were extracted and 

converted to 16 kHz mono PCM files with FFMPEG soft-

ware [21]. 

Experiments were conducted on a closed set (i.e. we did 

not consider test signals that did not correspond to the refer-

ence signal). Nevertheless according to our previous study 

on a rejection mechanism [20], the proposed approach can 

be successfully extended to an open set. 

To avoid possible inaccuracy associated with manual an-

notation (the ear is insensitive to delays below 160 ms) and 

limited speed of sound (each 10 m distance from the object 

results in 1 frame lag) the precision was calculated as the 

number of correctly (within ±5 frames) synchronised clips 

divided by the total number of test clips. This is a bit wider 

range than ITU-R recommendation [22], proposing the 

range between -125 ms and +45 ms as a requirement for 

editing multiple recordings without losing lip synchronisa-

tion. While theoretically it is feasible to reduce our experi-

mental range for scoring to fit ITU-R recommendation, it 

would require a lot of additional work to update annotations 

in respect to required ITU-R accuracy. 

In figure 3 we illustrate how the dimensionality of the 

feature vector including excitation frequency range influ-

ences precision of short-term recording synchronisation. 

 

 
Figure 3 – Precision versus number of coefficients. 

 

It is clearly visible that the precision improves with in-

creasing cepstral analysis order. Precision for lower 12 di-

mensions, corresponding to the general spectral shape, re-

sults in 97.69%, while additional 7-10 coefficients, corre-

sponding to excitation frequency range, allows to increase 

precision level of synchronisation up to 98.19%. I.e. we ob-

serve absolute improvement by 0.5% in the case of excita-

tion frequency use. This in turn corresponds to 21.6% rela-

tive improvement in respect to error rate achieved on de-

scribed dataset and based on the technique from our previ-

ous study [17] (from 2.31% to 1.81%). However, precision 

is lower when the energy is considered or normalisation in 

Euclidean space is excluded. We hypothesise this is due to 

the increased variance of the search distance space. 

In figure 4 we illustrate how the dimensionality of the 

feature vector including excitation frequency range influ-

ences confidence estimation distribution. Here we consider 

only the case when energy is excluded and normalisation in 

Euclidean space is applied. The graph contains in total 

21’934 confidence estimates for both positive (green dots) 

and negative (red dots) classes of synchronisation. The posi-

tive class is defined as set of test signals, properly synchro-

nised with the reference signal. The negative class is defined 

as set of test signals, misaligned with the reference signal. 

While we observe positive impact of excitation frequency on 

reducing negative class, we have to state that corresponding 

negative class is becoming wider and sparser. Also an opti-

mal separation of positive and negative classes for short-term 

recordings is much trickier than if we would have the re-

cordings of 30+ s. One of generic solution for this two class 

classification problem would be the use of machine learning 

approach, e.g. the support vector machine [23]. Nevertheless, 

depending on subsequent application, the weights for corre-

sponding classes can be different. This is why, it is important 

to know not only confidence estimates distribution, but the 

dependency between precision and recall values. 



 
Figure 4 – Confidence distribution versus number of coefficients. 

 

Dependency between precision and recall values can be 

estimated experimentally via application different confi-

dence threshold values. In Figure 5 this dependency is illus-

trated for 9 selected cases. Precision is defined as the num-

ber of true positive test signals (test signals correctly de-

tected as belonging to the positive class) divided by the total 

number of test signals detected as belonging to the positive 

class (the sum of true positive and false positive test seg-

ments). Recall is defined as the number of true positives test 

signals divided by the total number of test signals that actu-

ally belongs to the positive class (the sum of true positive 

and false negative test signals). Prefix “standard” means no 

normalisation in Euclidean space is performed. Prefix “nor-

malized” denotes normalisation in Euclidean space is per-

formed. Signatures with lower 12 dimensions, correspond-

ing to the general spectral shape, are marked as “cepstra”. 

Signatures with lower 22 dimensions, corresponding to the 

general spectral shape and excitation frequency, are marked 

as “cepstra + excitation”. Signatures with lower 12 dimen-

sions and energy are marked as “cepstra + energy”. Signa-

tures with lower 22 dimensions and energy are marked as 

“cepstra + energy + excitation”. To allow better positioning 

with other techniques we present the results for well-known 

fast cross correlation method as well. 

It is clearly visible, that 4 out of 8 time-quefrency signa-

ture based techniques for confidence estimation perform bet-

ter than confidence estimation based on fast cross correlation. 

The best result belongs to the case when the general spectral 

shape is combined with excitation frequency and normalised 

in Euclidian space (double square dot green line). We were 

able to achieve 99.08% precision (versus 97.79% for the 

general spectral shape without excitation frequency) in the 

case of 100% recall and 76.00% recall (versus 75.46% for 

the general spectral shape without excitation frequency) in 

the case of 100% precision for confidence estimation. It is 

worth mentioning not perfect smoothness of the graphs. We 

suppose this is due to the limited amount of the test signals 

and better smoothness might be obtained by enlargement of 

test dataset by factor of 10. 

 

 
Figure 5 – Precision versus recall for confidence estimation. 

 

Processing time (on an Intel Core 2 CPU 6700 2.66GHz) 

for the proposed algorithm without multi-core optimisation 

was 25 seconds for automatic synchronisation of a 5 second 

test signal over the 51 min reference signal using the general 

spectral shape and excitation frequency, 14 seconds for the 

same test signal using the general spectral shape only, and 

70 seconds for the same test signal using fast cross correla-

tion technique. It is directly proportional to the length of the 

test signal, to the length of the reference signal and to the 

feature vector dimensionality. Thus we can conclude that 

computational efficiency of proposed approach is even bet-

ter than fast cross correlation and memory requirement is 

about 28% of the size of reference signal (28 MB versus 3 

GB for fast cross-correlation). There is clearly a trade-off 

between desirable precision/recall levels and execution time 

/ memory requirements. By lowering the cepstral order we 

can surely reduce execution time, memory requirements, 

and precision/recall levels. 



4. CONCLUSION 

We have shown the positive impact of excitation frequency 

on short-term recording synchronisation and confidence 

estimation. We have confirmed generalization of the results 

on 14+ hours of hand-labelled dataset. We have estimated 

that the energy of the signal is not good for synchronisation 

even when excitation frequency is considered. We have es-

timated dependencies between precision and recall levels for 

confidence estimation. We have shown that results surpass 

the precision and recall levels of fast cross correlation, while 

keeping lower system requirements. 
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