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Abstract. In this paper, we describe a low delay real-time multimodal cue 

detection engine for a living room environment. The system is designed to be 

used in open, unconstrained environments to allow multiple people to enter, 

interact and leave the observable world with no constraints. It comprises 

detection and tracking of up to 4 faces, estimation of head poses and visual 

focus of attention, detection and localisation of verbal and paralinguistic events, 

their association and fusion. The system is designed as a flexible component to 

be used in conjunction with an orchestrated video conferencing system to 

improve the overall experience of interaction between spatially separated 

families and friends. Reduced latency levels achieved to date have shown 

improved responsiveness of the system. 
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1   Introduction 

The TA2 (Together Anywhere, Together Anytime) project [1] tries to understand how 

technology can help to nurture family-to-family relationships to overcome distance 

and time barriers. This is something that current technology does not address well: 

modern media and communications are designed for individuals, as phones, 

computers and electronic devices tend to be user centric and provide individual 

experiences. Existing multiparty conferencing solutions available on the market, such 

as Microsoft RoundTable conferencing table [2], are not designed to be used in open, 

unconstrained environments.  

In our previous work [3], we have developed a framework for just-in-time 

multimodal association and fusion for open, unconstrained environments with 

spatially separated multimodal sensors. It relies on score-level information fusion 

derived from spatially separated sensors. By placing the sensors at their individually 

optimal locations, we clearly obtain a better performance of low-level semantic 

information. Performance levels achieved on hand-labelled, echo-cancelled dataset 

have shown sufficient reliability at the same time as fulfilling real-time processing 

requirements with latency within 200-300 ms. In current work we evolve the previous 

system towards better responsiveness of the system and integration of additional 

components, which have been identified as important for the extraction of additional 

semantic cues to be used by an orchestration engine [4]. The orchestration engine 

produces then an orchestrated video chat by choosing at each point in time the 



perspective that best represents the social interaction based on decision-level rule-

based fusion. 

 

Fig. 1. Illustration of a family environment setup. 

In this context, TA2 presents several challenges: the results need to be computed in 

real-time with low affordable delay from spatially separated sensors (as opposed to 

other systems, such as [5, 6, 7], relying on collocated sensors) in open, unconstrained 

environment. Furthermore, the results are supposed to be localised in the image space 

to allow for a dynamic and seamless orchestrated video chat. 

2   A Real-Time Architecture 

The presented multimodal cue detection engine includes a face detector, a multiple 

face tracker, multiple person identification, head pose and visual focus of attention 

estimation, an audio real-time framework with spatial localisation, a large vocabulary 

continuous speech recognizer and keyword spotter, multimodal association and fusion 

(see Fig. 2). A face tracking algorithm has been developed to track a variable number 

of faces even when there is no face detection for a long period of time. Although the 

accuracy of far-field Automatic Speech Recognition (ASR) is not yet good enough to 

be exploited for obtaining an accurate real-time transcription, it is sufficient to 

augment the behaviour of an orchestration module. Words in the transcript are used to 

search for participants’ proper names relevant to the group of people or keywords 

relevant to a given scenario. Furthermore, the orchestration (which is not part of the 

multimodal cue detection engine) will be able to reason and act upon these events 

together with other cues that could potentially come from a game engine, aesthetic or 

cinematic rules, making orchestrated video chat dynamic and seamless. 



 

Fig. 2. The system architecture is built around several modules comprising a so-called Video 

Cue Detection Engine (VCDE) with a face detector, a multiple face tracker, multiple person 

identification, head pose and visual focus of attention estimation; an Audio Cue Detection 

Engine (ACDE) with a direction of arrival estimator, a voice activity detector and a large 

vocabulary continuous speech recogniser; a Unified Cue Detection Engine (UCDE) with 

association, fusion and transmission of the results to external components (orchestration engine, 

video composition engine). 

The audio input to the multimodal cue detection engine and the semantic output 

from it are implemented via sockets, while the video stream is transferred via shared 

memory. The core capture devices for the system are a Full HD video camera and an 

audio diamond array with four omnidirectional microphones [8]. Video frames from 

the shared memory of the video grabber server are retrieved every 40 ms at a 

resolution of 640x360 pixels, while audio packets are retrieved every 10 ms and 

contain interleaved 4 channel PCM audio in 16-bit at 48 kHz.  

The multimodal processing operates in multi-framing mode with non-overlapping 

video frames, overlapping audio frames of 16 ms in step of 10 ms for voice activity 

detection and ASR, and overlapping audio frames of 32 ms in step of 16 ms for 

direction of arrival estimation. 



2.1   Multiple Face Tracking  

A multiple face tracking algorithm is automatically initialised and updated using 

outputs from a standard face detector [9]. The challenge for face tracking in this 

scenario is that face detections are not continuous and that the time between two 

successive detections can be very long (up to 30 s in our experiments). This is due to 

head poses that are difficult to detect by state-of-the-art algorithms, or partial 

occlusions caused by hands in front of the face (see Fig. 3). However, in the TA2 

scenario it is necessary to know at each time instant where the people are in the video 

scene. 

 

Fig. 3. An example of difficult to detect head poses and partial occlusions [10]. 

The solution employed in this work is based on a multi-target tracking algorithm 

using Markov Chain Monte Carlo (MCMC) sampling, similar to [11]. This is a 

Bayesian tracking framework using particles to approximate the current state 

distribution of all visible targets. At each time step, targets are added and removed 

using the output of an additional probabilistic framework that takes into account the 

output of the face detector as well as long-term observations from the tracker and 

image [12]. 

The state space is the concatenation of the states of all visible faces, where the state 

of each single face is a rectangle described by the 2D position in the image plane, a 

scale factor and the eccentricity (height/width ratio). 

The dynamic model is the product of the models of each visible face and a Markov 

Random Field that prevents targets becoming too close to each other. The state 

dynamics of each single face are described by a first-order autoregressive model for 

the position and a zeroth-order model for scale and eccentricity.  

Finally, the observation likelihood is the product of the observation likelihoods of 

each visible face, which in turn is calculated using the Bhattacharyya distance 

between the HSV (Hue-Saturation-Value) colour histograms over three horizontal 

bands on the face region and the respective reference colour histograms which are 

initialised when the face is detected. 



2.2   Multiple Person Identification 

Whenever a tracker loses a target and reinitialises it later on, or a person leaves the 

visual scene and comes back later, the tracking algorithm tries to recognise the 

respective person in order to associate it to a previously tracked target. This is not 

done inside the tracking algorithm but on a higher level taking into account longer-

term visual appearance observations. Each person’s appearance is modelled by three 

sets of HSV colour histograms calculated on face and shirt regions. Using multiple 

histograms per person copes for different appearances due to changes in body pose. 

However, only the most similar histogram of a person is used and updated at each 

time.  

When identifying a "new" face, the current colour histograms are compared to the 

stored models of all previously seen people and if the similarity is above a certain 

threshold the corresponding ID is assigned, otherwise a new person model is created. 

 

Fig. 4. Consistent person identification within the session (here indicated by different colours) 

is an important requirement to the multimodal cue detection engine. 

2.3   Head Pose Estimation 

Based on the output of the face tracker, the head pose (i.e. rotation in 3 dimensions) of 

an individual is estimated. The purpose of computing head pose is the estimation of a 

person's visual focus of attention (see section 2.4). 

Head pose is computed using visual features derived from the 2-dimensional image 

of a tracked person's head. The features used here are gradient histograms [13] and 

colour segmentation histograms. Colour segmentation is done by classifying each 

pixel around the head as either skin, hair, clothing or background based on colour 

models that are adapted to each individual being tracked [14]. 



To compensate for the variability in the output of the face tracker, the 2-

dimensional face location is re-estimated by the head pose tracker. This serves to 

normalise the bounding box around the face as well as possible, while simultaneously 

using the visual features mentioned above to estimate pose. This joint estimation of 

head location and pose improves the overall pose accuracy [15]. 

2.4   Visual Focus of Attention 

Given the estimated belief (probability distribution) over head pose, the visual focus 

of attention target is estimated. In the context of this work, the following targets are of 

interest: the video conferencing screen, the touch sensitive table, and any other person 

in the room. 

The range of angles that correspond to each target is modelled using a Gaussian 

likelihood. This likelihood is derived from the known spatial locations of the targets 

within the conference room. The posterior belief over each target is computed with 

Bayes' rule using the method given in [16]. 

 

Fig. 5. Multimodal cue visualisation. For each person, it shows its ID (at the top-left of the face 

bounding box), its head orientation estimation, i.e. pan and tilt, with a variance indication (on 

the top and right side of the box), and the estimated distribution over targets where the person is 

looking at (at the bottom of the box), where the left-most target is the most likely one. The 

letter “S” means “screen”, “T” means “table”, “?” means “unknown”, and the numbers 

correspond to the IDs of the other persons. The blue line in the bottom of the image indicates 

the estimated direction of arrival of sound. The speech bubble indicates that a person is 

speaking, and the output of the keyword spotting is shown in the top-right of the image, here 

the word “I”. 



2.5   Direction of Arrival Estimation 

Speaker localisation is performed by the direction of arrival module (Fig. 2). The 

algorithm is based on spatio-temporal fingerprint processing [17] in steps of 6°, which 

represents a computationally efficient solution with low algorithmic delay compared 

to short-term clustering of generic sector-based activity measures [8, 18] used in our 

previous study [3]. It relies only on the geometry of the microphone array and does 

not depend on prior knowledge of the room dimensions. It can be effectively used to 

both detect and localise multiple sources in open, unconstrained environments. 

2.6   Voice Activity Detection 

Voice activity detection (VAD) covers both verbal and paralinguistic activities and is 

implemented as a gate. The gate segments the input stream in accordance to 

directional and voice activity / silence information from an algorithm based on silence 

models or trained multi-layer perceptrons (MLP) using traditional ASR features [19]. 

The association and fusion [3] of the detected voice activity events with person IDs 

from the video-based identification are performed by the time voice activity is 

confirmed and the corresponding audio-based directional cluster is estimated. 

2.7   Keyword spotting 

The ASR component is represented by the Weighed Finite State Transducer (WFST) 

based token passing decoder known as Juicer [19]. The output from the decoder is 

used to perform the spotting, association and fusion [3] of proper names and 

keywords with person IDs from the video identification taking into account the 

estimated audio-based directional cluster for the corresponding time interval. More 

specifically, the spotting is performed based on the predefined list of participants and 

keywords relevant to the given scenario (e.g., orchestrated video chat). 

3   Improvements and Results 

During subjective evaluations of our previous version of multimodal cue detection 

engine, several bottlenecks have been experienced. To overcome these bottlenecks, 

several architectural and algorithmic changes have been applied and presented in this 

paper. 

First of all, while the socket interface was allowing for a flexible software solution, 

the experienced latency for uncompressed video signal transmission from remote 

video grabber was resulting in additional latency of 30-300 ms. This clearly 

noticeable lag was successfully removed by switching to a shared memory interface 

for video input stream. While a shared memory interface could be potentially used for 

audio input stream as well, experienced latency of 12-20 ms for the audio 

transmission is on an acceptable level. 



To reduce the latency of audio processing we have decided to reduce the 

algorithmic delays of both direction of arrival estimation and voice activity detection. 

The algorithmic latency of both components has been reduced from 200 ms down to 

128 ms. This is due to the replacement of the previous implementation based on a 

short-term clustering approach by the computationally more efficient spatio-temporal 

fingerprints processing and the reduction of corresponding temporal filters. 

Exact clock synchronisation between separated audio and video grabbers was seen 

as another source of potential problems and during subjective evaluations we have 

found that the use of local timestamps results in more consistent multimodal 

association and fusion. Moreover, since the position of people does not significantly 

change within a few hundred milliseconds, predictive temporal association was finally 

employed within the system to further remove possible lags during the capturing of 

the video stream by hardware and video grabber. 

We have found that it is beneficial to have acoustic tracking of the active acoustic 

sources as an additional input to the voice activity detection gate to properly treat 

barge-in events, which were not always detected in a former system. 

Since the participants do not sit at predefined positions in the room, theoretically it 

can cause ambiguities in the association and fusion. Clearly, the same acoustic 

directional cluster can correspond to different positions in the image and vice-versa. 

However, since the participants are mainly located around a coffee table, such 

ambiguities occur rarely during evaluations. 

Finally, head pose and visual focus of attention estimation have been identified as 

important semantic cues for the orchestration engine and have been successfully 

integrated into the multimodal cue detection engine. Head pose estimation is to be 

used for better selection of frontal/side views with respect to aesthetic and cinematic 

rules, while visual focus of attention can be beneficial for better modelling of social 

interactions (e.g. predictive turn estimation during grant-floor moments) and can have 

a direct impact on temporal filters within the aesthetic and cinematic rules. 

Objective evaluations of involved components were performed, and their results 

can be found in [3, 12, 14, 17]. The corresponding annotated dataset has been made 

publically available [10]. The algorithmic latency within the multimodal cue detection 

engine stays within 130 ms, except for proper name and keywords spotting, which are 

transmitted by the end of acoustically separated utterances. 

4   Conclusion 

We have developed a low delay real-time multimodal cue detection engine for open, 

unconstrained environments with spatially separated multimodal sensors. We have 

described applied architectural and algorithmic changes to reduce an overall latency 

down to 130 ms and fulfil real-time processing requirements. The achieved results are 

promising for future wider evaluations and further development of the platform in 

several directions such as improvement of performance, reduction of the latency, and 

integration of additional components allowing richer multimodal cues. 
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