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Abstract

Many state-of-the-art approaches for Multi
Kernel Learning (MKL) struggle at finding
a compromise between performance, spar-
sity of the solution and speed of the opti-
mization process. In this paper we look at
the MKL problem at the same time from
a learning and optimization point of view.
So, instead of designing a regularizer and
then struggling to find an efficient method to
minimize it, we design the regularizer while
keeping the optimization algorithm in mind.
Hence, we introduce a novel MKL formula-
tion, which mixes elements of p-norm and
elastic-net kind of regularization. We also
propose a fast stochastic gradient descent
method that solves the novel MKL formula-
tion. We show theoretically and empirically
that our method has 1) state-of-the-art per-
formance on many classification tasks; 2) ex-
act sparse solutions with a tunable level of
sparsity; 3) a convergence rate bound that
depends only logarithmically on the num-
ber of kernels used, and is independent of
the sparsity required; 4) independence on the
particular convex loss function used.

1. Introduction

In recent years there has been a lot of interest in de-
signing principled classification algorithms over mul-
tiple cues, based on the intuitive notion that using
more features should lead to better performance. Fo-
cusing to the domain of the Support vector machines
(SVM) (Cristianini & Shawe-Taylor, 2000), the use of
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multiple cues has been translated in the use of multiple
kernels, weighted by some positive coefficients.

A recent approach in this field is to use a two-stage
procedure, in which the first stage finds the optimal
weights to combine the kernels, using an improved defi-
nition of the kernel alignment (Cristianini et al., 2002)
as a proxy of the generalization error, and a standard
SVM as second stage (Cortes et al., 2010). However
in this approach, even if theoretically principled, the
global optimality is not guaranteed, because the opti-
mization process split in two phases.

A different approach with a joint optimization pro-
cess is Multi Kernel Learning (MKL) (Lanckriet et al.,
2004; Rakotomamonjy et al., 2008; Sonnenburg et al.,
2006; Nath et al., 2009; Zien & Ong, 2007). In
MKL one solves a joint optimization problem while
also learning the optimal weights for combining the
kernels. MKL methods are theoretically founded,
which are based on the minimization of an upper
bound of the generalization error (Kakade et al., 2009;
Cortes et al., 2010), like in standard SVM. However
solving it is far more complex than training a sin-
gle SVM classifier. The main difficulty lies in design-
ing efficient optimization algorithms, especially when
a sparse solution is wanted. Sparsity is often achieved
using an l1 norm as regularizer or as constraint. Unfor-
tunately, the l1 norm is not smooth, so it slows down
the optimization process.

Most of proposed algorithms for MKL solve this dif-
ficult optimization problem with an alternating op-
timization approach, first optimizing over the ker-
nel combination weights, with the current SVM
solution fixed, then finding the SVM solution,
given the current weights (Sonnenburg et al., 2006;
Rakotomamonjy et al., 2008; Xu et al., 2008). One
advantage of the alternating optimization approach is
that it is possible to use existing efficient SVM solvers
for the SVM optimization step. On the other hand, for
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these algorithms, even if they are known to converge,
it usually is not possible to prove a bound on the maxi-
mum number of iterations needed. For the same reason
it is not possible to compute how the relevant quan-
tities affect the asymptotic computational complexity,
and often these dependencies are estimated numeri-
cally for the specific implementation at hand. For ex-
ample, SILP multiclass MKL algorithm (Zien & Ong,
2007) seems to depend polynomially on the number of
training examples and number of classes with an expo-
nent of ∼ 2.4 and ∼ 1.7 respectively. For the other al-
gorithms these dependencies are not clear. Moreover,
the learning process is usually stopped early, based on
the common assumption that it is enough to have an
approximate solution. This approach can be danger-
ous when a dual algorithm is used, potentially stopping
far away from the optimal solution (Chapelle, 2007).

Notable exception to the use of l1 regularization for
MKL are (Kloft et al., 2009; Orabona et al., 2010;
Vishwanathan et al., 2010) in which a lp norm con-
straint is introduced, to have a simpler problem and
to be able to tune the level of “sparsity” of the solu-
tion. However in this case the true sparsity is lost, and
the weights of the kernels, even if they can become ex-
tremely small, will never be exactly zero. Another lim-
itation is that many of these algorithms relies on par-
ticular loss functions, and the entire algorithm has to
be changed if the loss function is changed (Kloft et al.,
2009; Vishwanathan et al., 2010).

In this paper we look at the same time at the MKL
problem from a learning and optimization points of
view. Therefore, instead of designing a regularizer and
then try to find an efficient method to minimize it, we
design the regularizer while keeping the optimization
process in mind. In other words, a perfect regularizer
is useless if it is impractical to be used. The novel MKL
formulation that we propose gives 1) state-of-the-art
performance on many classification tasks; 2) exact
sparse solutions with a tunable level of sparsity; 3) a
convergence rate bound that depends only logarithmi-
cally on the number of kernels used, and is independent
of the sparsity required; 4) independence on the partic-
ular convex loss function used. As in (Orabona et al.,
2010; Jie et al., 2010; Martins et al., 2011), our al-
gorithm solves the optimization problem directly in
the primal formulation. This allows us to use any
complex loss functions, as the multiclass loss in
(Crammer & Singer, 2002) or more in general struc-
tured losses (Tsochantaridis et al., 2004), with mini-
mal changes to the algorithm. We call this algorithm
Ultra Fast Online Multi Kernel Learning, UFO-MKL.

The rest of the paper presents the theory and the ex-

perimental results supporting our claims. Section 2 re-
vises the basic definitions and the mathematical tools
needed, Section 3 introduces the Multi Kernel Learn-
ing problem. Section 4 presents the theory and algo-
rithm of UFO-MKL, while Section 5 reports experi-
ments on binary and multiclass classification tasks.

2. Preliminaries

In this section we introduce formally the notation, and
the needed mathematical tools. We indicate matrices
and vectors with bold letters. We also indicate with a
bar, e.g. w̄, the vector formed by the concatenation of
the F vectors wj , hence w̄ = [w1, w2, · · · , wF ].

We also introduce some concepts of convex analysis
that are needed in the following. For a more thorough
introduction see for example (Boyd & Vandenberghe,
2004). Given a convex function g : S → R, its
Fenchel conjugate g∗ : S → R is defined as g∗(u) =
supv∈S(vT u− g(v)). A vector x is a subgradient of a
function g at v, if ∀u ∈ S, g(u) − g(v) ≥ (u − v) · x.
The differential set of g at v, indicated with ∂g(v), is
the set of all the subgradients of g at v. If g is convex
and differentiable at v then ∂g(v) consists of a single
vector which is the gradient of g at v and is denoted by
∇g(v). A function g : S → R is said to be λ-strongly
convex w.r.t. a convex and differentiable function h iff
for any u, v ∈ S and any subgradient ∂g(u), g(v) ≥
g(u)+∂g(u)·(v−u)+λ(h(v)−h(u)−(v−u)·∇h(v)),
where the terms in parenthesis form the Bregman di-
vergence of h between v and u.

Let {xi, yi}N
i=1, with N ∈ N, xi ∈ X and yi ∈ Y, be

the training set. Consider a function φ(x) : X → H

that maps the samples into a high, possibly infinite,
dimensional space. In the binary case Y = {−1, 1},
and we use the standard setting to learn with ker-
nels1, in which the prediction on a sample x is a
function of the scalar product between an hyperplane
w and the transformed sample φ(x). With multi-
ple kernels, we will have F corresponding functions
φ

j(·), j = 1, · · · , F , and F corresponding kernels
Kj(x, x′) defined as φj(x) · φj(x′).

For multiclass and structured classification Y =
{1, . . . , M}, we follow the common approach to
use joint feature maps φ(x, y) : X × Y →
H (Tsochantaridis et al., 2004). Again, we will have
F functions φj(·, ·), j = 1, · · · , F , and F kernels
Kj((x, y), (x′, y′)) = φj(x, y) · φj(x′, y′). This def-
inition includes the case of training M different hy-
perplanes, one for each class. In fact φj(x, y) can be

1For simplicity we will not use the bias, it can be easily
added modifying the kernel definition.
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defined as

φj(x, y) = [0, · · · ,0, φ′j(x)
︸ ︷︷ ︸

y

,0, · · · ,0],

where φ′j(·) is a transformation that depends only on
data. Similarly w will be composed by M blocks,
[w1, · · · , wM ]. According to the defined notation,
φ̄(x, y) = [φ1(x, y), · · · , φF (x, y)]. With a slight abuse
of notation, in the following we will denote by φ̄(x, ·)
both the binary and multiclass feature transform.

A (2, p) group norm ‖w̄‖2
2,p on w̄ is defined as

‖w̄‖2,p :=
∥
∥
[
‖w1‖2, ‖w2‖2, · · · , ‖wF ‖2

]∥
∥

p
,

that is the p-norm of the vector of F elements, formed
by 2-norms of the vectors wj . The dual norm of ‖·‖2,p

is ‖ · ‖2,q, where 1/p + 1/q = 1 (Kakade et al., 2009).

3. Multi Kernel Learning and

Regularizers

The MKL optimization problem was first proposed
in (Bach et al., 2004) and extended to multiclass
in (Zien & Ong, 2007). It can be written as

min
w̄

λ

2





F∑

j=1

‖wj‖2





2

+
1

N

N∑

i=1

ξi (1)

s.t. w̄ · (φ̄(xi, yi) − φ̄(xi, y)) ≥ 1 − ξi, ∀i, y 6= yi .

An equivalent formulation can be derived from the
this one through a variational argument. It has been
used in (Bach et al., 2004; Sonnenburg et al., 2006;
Rakotomamonjy et al., 2008). The variational formu-
lation allows to use an alternating optimization strat-
egy to efficiently solve the constrained minimization
problem. Recently in (Orabona et al., 2010; Jie et al.,
2010; Martins et al., 2011) it has been shown that it
is possible to efficiently minimize directly the formula-
tion in (1), or at least one variation of it.

We first rewrite (1) with group-norms. Using the no-
tation defined above, we have

min
w̄

λ

2
‖w̄‖2

2,1 +
1

N

N∑

i=1

ℓMC
(
w̄, φ̄(xi, ·), yi

)
, (2)

where ℓMC is the multiclass hinge
loss (Crammer & Singer, 2002). The (2, 1) group
norm is used to induce sparsity in the domain of
the kernels. This means that the solution of the
optimization problem will select a subset of the F
kernels. However, even if sparsity can be desirable

for specific applications, it could bring to a decrease
in performance (Kloft et al., 2009; Orabona et al.,
2010). Moreover the problem in (2) is not strongly
convex (Kakade et al., 2009), so its optimization al-
gorithm is rather complex and its rate of convergence
is usually slow (Bach et al., 2004; Sonnenburg et al.,
2006). The (2, p) group norm has been proposed
instead of the (2, 1) (Kloft et al., 2009; Orabona et al.,
2010; Vishwanathan et al., 2010), to be able to decide
the level of sparsity of the solution, but this formula-
tion never induces coefficients that are mathematically
zero for any p 6= 1. It is also interesting to note that
the convergence rate of the lp MKL becomes slower
when p → 1 (Orabona et al., 2010). This can be ex-
plained formally with the fact that the lp formulation
is 1/q strongly convex, where 1/p + 1/q = 1, and
strong convex functions are easier to be optimized.
In fact there are optimization algorithms that have
a convergence rate proportional to the inverse of
the strong convexity constant (Hazan et al., 2007).
When p tends to 1, q goes to infinity and the strong
convexity is lost, resulting in a slower convergence. In
other words, it is more difficult and slower to find a
sparse solution to the MKL problem.

Tomioka & Suzuki (2010) have proposed to use an
elastic net form of regularization for MKL, that can
be written as C(λ

2
‖w̄‖2

2,2 + (1−λ)‖w̄‖2,1). They have
justified this form of regularization as a mean to con-
trol the degree of sparsity of the solution. In this way
the solution has exact mathematical zeros, and the
number of zeros can be tuned by changing λ.

In the next Section we will introduce the new regu-
larization function, its theoretical properties and its
corresponding optimization algorithm.

4. UFO-MKL

Considering the regularizer in (Tomioka & Suzuki,
2010), note that there is no particular reason to use
the (2, 2) group norm, apart from having an easier op-
timization problem and a way to tune the level of spar-
sity. Similar considerations hold for the (2, p) group
norm. Hence, we propose to use a novel regularizer,
with the precise aim of having the optimal conver-
gence rate and an exact mathematical sparsity, tunable
through a parameter. Our regularization function is

Ω(w̄) := λ/2 ‖w̄‖2

2, 2 log F

2 log F−1

+ α‖w̄‖2,1, (3)

where F is the number of kernels. The first term of
Ω gives us an easy problem, while the second one
induces different levels of sparsity depending on α.
In fact, with the lp MKL formulation, it is possi-
ble to prove a convergence bound of the order of
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qF 2/q (Orabona et al., 2010). If F ≥ 3 and p =
2 log F

2 log F−1
, qF 2/q becomes equal to 2e log F , and the

rate of convergence will depend logarithmically on the
number of kernels (Jie et al., 2010). More in details,
with this choice of p the regularization becomes similar
to the entropic regularization. A similar method has
been used in the context of sparse linear optimization
in (Shalev-Shwartz & Tewari, 2009). This motivates
the choice of the first term in Ω. On the other hand,
using only this term would result in a fixed regulariza-
tion function, losing the possibility to adapt it to the
problem. Hence we mix the (2, 2 logF/(2 log F − 1))
squared group norm with a (2, 1) group norm, to be
able to tune the level of sparsity.

We propose to use a stochastic gradient descent al-
gorithm, so we can consider a generic loss function ℓ.
Hence the optimization problem becomes

min
w̄

Ω(w̄) +
1

N

N∑

i=1

ℓ
(
w̄, φ̄(xi, ·), yi

)
. (4)

Having designed the regularizer as being strongly con-
vex for any value of α, to minimize (4) we can use
stochastic gradient descent and mirror descent. Fig-
ure 1 shows the minimization algorithm, which we
call Ultra Fast Online Multi Kernel Learning (UFO-
MKL) algorithm. As in the mirror descent algo-
rithm, two sets of weights are maintained, a primal
one w̄t and a dual one θ̄t. At each step it takes a
sample at random from the training set and update
the dual vector θ̄t with a subgradient descent step,
where ∂ℓ

(
w̄t, φ̄(xt, ·), yt

)
is the subgradient w.r.t. w̄t.

Then the primal weight w̄t is calculated with lines 6-
7. These two lines correspond to the gradient of the
Fenchel dual of Ω. Line 6 have the effect to put to
zeros the kernels that have a norm smaller than αt. It
has the effect of inducing exact sparsity in the domain
of the kernels. Note that in the algorithm we only need
to access to scalar products, so that the kernels can be
used without any problem. Even the l2 norms of θ

j
t+1

can be calculated in an efficient incremental way as

‖θj
t+1‖2

2 = ‖θj
t‖2

2 − 2θ
j
t · zj

t + ‖zj
t‖2

2 .

where z̄t = ∂ℓ
(
w̄t, φ̄(xt, ·), yt

)
.

4.1. Convergence rate guarantee

In this section we prove a theoretical guarantee for
the convergence rate of UFO-MKL to the optimal
solution of (4). We use the primal-dual framework
for the minimization of regularized loss functions
in (Shalev-Shwartz & Kakade, 2008). Note that a sim-
ilar method has been rediscovered by Xiao (2010). We
use Theorem 2 in (Shalev-Shwartz & Kakade, 2008),

Algorithm 1 The UFO-MKL algorithm.

1: Input: α, λ, T
2: Initialize: w̄1 = 0, θ̄1 = 0, q = 2 logF
3: for t = 1, 2, . . . , T do

4: Sample at random (xt, yt)
5: θ̄t+1 = θ̄t − ∂ℓ

(
w̄t, φ̄(xt, ·), yt

)

6: vj =
∣
∣‖θj

t+1‖2 − αt
∣
∣
+
, ∀j = 1, · · · , F

7: w
j
t+1 =

vjθ
j

t+1

tλ‖θ
j

t+1
‖2

(
vj

‖v‖q

)q−2

, ∀j = 1, · · · , F

8: end for

that for completeness we restate here in a simpler form
and with our notation.

Theorem 1. (Shalev-Shwartz & Kakade, 2008) Let g
be a β-strongly convex function w.r.t. the norm ‖ · ‖
over a set S and let ‖ · ‖∗ be its dual norm. Let
ℓ1, . . . , ℓT be an arbitrary sequence of convex loss func-
tions, and R such that maxi ‖∂ℓi(wi)‖∗ ≤ R. Define

wt = ∇g∗(− η
t

∑t−1

i=1 ∂ℓi(wi)) then, for any u ∈ S, and
any η > 0 we have

1

T

T∑

t=1

(
g(wt)

η
+ ℓt(wt)

)

− 1

T

T∑

t=1

(
g(u)

η
+ ℓt(u)

)

≤ η
R2(1 + log T )

2βT
.

This theorem introduces another way to mini-
mize strongly convex regularized objective func-
tions through stochastic gradient descent, different
from the well-known one used in the Pegasos algo-
rithm (Shalev-Shwartz et al., 2007). Here there is no
rescaling of the hyperplane at each step, so each single
iteration will be faster. This lack of rescaling makes
each iteration of UFO-MKL faster than each iteration
of OBSCURE (Orabona et al., 2010), so that the total
time needed to converge can be smaller. We will verify
this experimentally in Section 5.3.

Denote by z̄ = ∂ℓ
(
w̄, φ̄(x, ·), y

)
, we will now state the

convergence theorem for any loss function that satisfies
the following hypothesis

‖zj‖2 ≤ L‖φj(x, y′)‖2, ∀j = 1, . . . , F, y′ ∈ Y . (5)

Note that, for example, the hinge loss,
ℓHL

(
w̄, φ̄(x), y

)
:= |1 − yw̄ · φ̄(x)|+, and the logistic

loss, ℓLL
(
w̄, φ̄(x), y

)
:= log(1 + exp(−yw̄ · φ̄(x))),

satisfy this relation with L = 1. The multiclass
hinge loss function (Crammer & Singer, 2002;
Tsochantaridis et al., 2004), ℓMC

(
w̄, φ̄(x, ·), y

)
:=

maxy′ 6=y |1 − w̄ · (φ̄(x, y) − φ̄(x, y′))|+, satisfies with
L =

√
2 when φ(·, ·) induces the transformation in

which there is one hyperplane for each class.
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Theorem 2. Denote by f(w̄) = Ω(w̄) +
1
N

∑N
i=1 ℓ

(
w̄, φ̄(xi, ·), yi

)
and by w̄∗ the solution

that minimizes (4). Suppose that ‖φj(xt, ·)‖2 ≤ 1,
and the loss function ℓ satisfies (5). Let δ ∈ (0, 1),
then with probability at least 1 − δ over the choices of
the random samples we have that after T iterations of
the UFO-MKL algorithm

f(w̄T+1) − f(w̄∗) ≤ eL2(1 + log T ) logF

λδT
,

where e is the Euler’s number.

Proof. (Sketch) Using (5) and ‖φj(xt, yt)‖2 ≤ 1, we
have

‖∂ℓ
(
w̄t, φ̄(xt, ·), yt

)
‖2,q

≤ LF 1/q max
j=1,...,F

‖φj(xt, ·)‖2 ≤ LF 1/q

The function Ω(w̄) in (3) is λ/q-strongly convex w.r.t.
the norm ‖ · ‖2,q, for any α ≥ 0. Hence, using Theo-
rem 1, with η = 1 and g = Ω, and using Markov in-
equality as in (Shalev-Shwartz et al., 2007) we prove
the stated result.

To derive the UFO-MKL algorithm the only thing that
is missing is to calculate ∇Ω∗(θ̄).

Theorem 3. Let

v =
[∣
∣‖θ1‖2 − α

∣
∣
+
, · · · ,

∣
∣‖θF ‖2 − α

∣
∣
+

]

,

then the component j of ∇Ω∗(θ̄) is equal to

θj

λ‖θj‖2

vq−1
j

‖v‖q−2
q

Proof. (Sketch) From standard Legendre-Fenchel du-
ality, we have that ∇Ω∗(θ̄) = argmax

w̄

w̄ · θ̄ − Ω(w̄).

Setting to zero the derivative of this argmax we have
that wj must must be proportional to θj , that is
wj = cjθ

j/‖θj‖, where cj are real numbers. So we
can focus on the coefficients cj , rewriting the argmax:

argmax
c

c · a − α‖c‖1 − λ/2 ‖c‖2
p,

where a = [‖θ1‖, · · · , ‖θF ‖], c = [c1, · · · , cF ]. This
problem is analyzed in Sec. 7.2 of (Xiao, 2010), and
using that theorems we have the stated result.

5. Experiments

In this section, we study the behavior of UFO-
MKL in terms of classification accuracy, computa-
tional efficiency and scalability. Our algorithm has

been implemented in MATLAB in the DOGMA li-
brary (Orabona, 2009), and we compare it against
the SHOGUN-0.9.2 toolbox2, which contains the
SILP algorithm (Sonnenburg et al., 2006) and the
Multiclass MKL (MC-MKL) algorithm (Zien & Ong,
2007). We also compare it with the OBSCURE
algorithm (Orabona et al., 2010), using the imple-
mentation in DOGMA. We consider the parameter
α ∈ {0.0001, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.02},
and use p=1.01 for the OBSCURE algorithm when
sparsity is desired in the solution. The λ parameter
has been chosen by cross validation as 1/(CN), where
N is the number of training points, and C is from
the set {1, 10, 102, 103}, and C=1000 yields the best
results for all the algorithms, except in the first and
second experiment where we fix C = 100.

We consider both hinge loss ℓHL and logistical loss ℓLL

for the binary classification task, and multiclass loss
ℓMC for all the multiple classes tasks. For multiple
classes extension of the binary SILP algorithm, we use
the 1-vs-All scheme.

5.1. Binary classification

We first carry out a set of experiments on the UCI bi-
nary data sets, and compare the results with SILP. We
follow the procedure in (Rakotomamonjy et al., 2008),
to test the algorithms with artificially generated ker-
nels. The candidate kernels are Gaussian kernels with
10 different bandwidths on all and each single dimen-
sion of the feature vectors, and similar for polynomial
kernels of degree 1 to 3. In UFO-MKL we use 10
epochs, that is 10 passes over all the training samples,
for the Liver and Ionosphere dataset, and 20 epochs
for the Sonar dataset. Results for varying values of
α are presented in Table 1. We can see that UFO-
MKL is significantly faster compared to SILP when
used with the hinge loss, especially on Sonar where
it is more than 10 times faster. In most cases SILP
gets a sparser solution than UFO-MKL’s one, which is
due to the different regularizer used. It is known that
l1 norm kind of regularizer can result in bad perfor-
mance when the problem is not sparse (Kloft et al.,
2009; Orabona et al., 2010). However, with proper
tuning of α, UFO-MKL can possibly still remove some
of the kernels, while still obtain superior performance
(see for example α = 1.0e − 3 on the Sonar dataset).

5.2. Multiclass synthetic data

Multiclass problems are often decomposed into several
binary sub-problems using methods like 1-vs-All, how-

2Available at http://www.shogun-toolbox.org.



Ultra-Fast Optimization Algorithm for Sparse Multi Kernel Learning

Table 1. Training time, accuracy and number of selected
kernels on UCI datasets with N samples and F kernels.

Loss α Time (seconds) Accuracy # Kernels 6= 0

Liver, N=241, F=91

ℓHL 1.0e−3 2.7 ± 0.3 71.8 ± 3.8 89.7 ± 0.6
2.5e−3 2.9 ± 0.3 66.1 ± 2.7 30.5 ± 3.5

ℓLL 1.0e−3 3.5 ± 0.4 68.7 ± 4.1 91.0 ± 0.0
2.5e−3 3.6 ± 0.4 64.5 ± 3.4 28.1 ± 15.4

SILP 3.0 ± 0.6 64.7 ± 1.8 9.9 ± 1.8

Ionosphere, N=245, F=442

ℓHL 1.0e−3 6.1 ± 0.8 92.1 ± 2.1 257.7 ± 87.0
2.5e−3 6.1 ± 0.3 91.4 ± 1.7 93.2 ± 7.9
5.0e−3 8.2 ± 0.5 89.2 ± 2.4 37.4 ± 5.6

ℓLL 1.0e−3 21.9 ± 2.0 91.8 ± 2.6 442 ± 0.0
2.5e−3 18.2 ± 1.4 87.8 ± 2.0 119.7 ± 6.3
5.0e−3 19.2 ± 0.9 86.4 ± 3.6 1.6 ± 2.5

SILP 41.9 ± 9.5 91.9 ± 2.1 19.6 ± 3.0

Sonar, N=145, F=793

ℓHL 1.0e−3 9.9 ± 0.5 80.3 ± 3.5 379.7 ± 131.1
2.5e−3 10.9 ± 0.9 79.6 ± 4.7 192.6 ± 12.5
5.0e−3 11.7 ± 0.5 75.7 ± 2.4 55.6 ± 9.1

ℓLL 1.0e−3 22.4 ± 2.1 77.0 ± 4.6 793.0 ± 0.0
2.5e−3 21.9 ± 1.5 75.5 ± 4.1 200.1 ± 64.8
5.0e−3 21.9 ± 1.8 74.4 ± 4.5 28.8 ± 4.3

SILP 191.2 ± 38.7 78.7 ± 3.8 30.0 ± 2.2
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Figure 1. (top) Kernel matrices of the 3-classes synthetic
experiments correspond to 4 different features. Sample
1–100, 101–200 and 201–300 are from class 1, 2 and 3
respectively. (bottom) Corresponding kernel combination
weights, normalized to have sum equal to 1, obtained by
SILP (binary) and by UFO-MKL (multiclass) (last figure).

ever solving the multiclass learning problem jointly us-
ing a multiclass loss can yield much sparser solutions.
Intuitively, when l1-norm is used to impose sparsity in
the domain of kernels, different subsets of kernels can
be selected for different binary classification problems.
Therefore, the combined multiclass classifier might not
obtain the desired sparse properties. Moreover, the
confidence outputs of the binary classifiers may not
lie in the same range, so it is not clear if the winner-
takes-all hypothesis is the correct approach for comb-
ing them.

To prove our point, we have generated a 3-classes clas-
sification problem consisting of 300 samples, with 100
sample from each class. There are in total 4 different
features, the kernel matrices corresponding to them
are shown in Figure 1 (top). These features are gen-
erated in a way that Kernels 1–3 are useful only for
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Figure 2. (Top) Comparison of UFO-MKL to OBSCURE
on convergence rate with the same value of p, and α =
0 for UFO-MKL. (Bottom) Performance comparison on
Caltech-101 using different MKL algorithms.

distinguishing one class (class 3, class 1 and class 2,
respectively) from the other two, while Kernel 4 can
separate all the 3 classes. The corresponding kernel
combination weights obtained by the SILP algorithm
using the 1-vs-All extension and our multiclass UFO-
MKL are shown in Figure 1 (bottom). It can be ob-
served that each of the binary SILP classifiers pick two
kernels. UFO-MKL selects only the 4th kernel, achiev-
ing a much sparser solution.

5.3. Multiple classes image categorization

Most of the state-of-art results obtained on several
object categorization datasets use algorithms which
combine multiple features (see (Gehler & Nowozin,
2009; Orabona et al., 2010) and references therein).
The Caltech-101 dataset is the most popular bench-
mark for object categorization. In the experi-
ments, we used the pre-computed features and ker-
nels of (Gehler & Nowozin, 2009) which the authors
have made available3. There are in total 39 kernels,
with 5 different training and test splits. The best
results on this data were obtained using regulariza-
tion which favors sparsity (Gehler & Nowozin, 2009;
Orabona et al., 2010). For brevity, we refer the in-
terested reader to (Gehler & Nowozin, 2009) for the
details of the features and kernels.

3www.vision.ee.ethz.ch/~pgehler/projects/iccv09/
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We start by comparing the convergence rates of UFO-
MKL and OBSCURE, which is the state-of-art p-
norm multiclass MKL solver. The training time of the
OBSCURE algorithm is proportional to q/λ, where
1/p + 1/q = 1. Therefore, when a sparse solution is
needed, the algorithm becomes slow because q becomes
big. For a fair comparison, we first set q = 2 log F in
OBSCURE, and α = 0 in UFO-MKL, so that their
regularizers become exactly the same. Figure 2 (top)
shows the value of the objective function as a function
of the training time. OBSCURE is faster in the be-
ginning because its first stage is an online algorithm,
which quickly determines the region of the space where
the optimal solution lives. UFO-MKL, after ≈ 1min
of computation, converges faster than OBSCURE. We
think that this is due to the simpler algorithm that
does not require a scaling after each update, hence
each iteration in UFO-MKL is faster.

Following the experimental setup widely used in the
computer vision literatures, we also report the re-
sults obtained using different MKL methods on var-
ious number of training data in Figure 2 (bottom).
The results support our claim of the previous section
that multiclass loss function is more suitable for this
type of problem, as all the methods that use the multi-
class loss outperform SILP. MC-MKL is computational
infeasible for 30 samples per category, and its sig-
nificant performance gap from OBSCURE and UFO-
MKL seems to indicate that it stops before converging
to the optimal solution. UFO-MKL also outperforms
OBSCURE, probably because OBSCURE does not get
a real sparse solution although it tends to be sparse.
More importantly, the accuracy is comparable with
the best results obtained in the literature by the LP-
β algorithm (Gehler & Nowozin, 2009) using the same
kernels: 70.4% for 15 training samples per category
and 77.8% for 30 samples.

5.4. Scalability w.r.t. the number of kernels

To test the scalability of UFO-MKL we tested it on
the Oxford Flower data set (Nilsback & Zisserman,
2006)4, generating 1400 kernels. The task of the
dataset is to classify 17 different flower categories.
Each class has 80 images with predefined train and
test splits. Precomputed distance matrices for 7 dif-
ferent features are available. For each precomputed
matrix, we generates 200 kernels using exp(−γ−1 · d)
with 200 different γ values in the range between 0.01
and 100. Figure 3 (top) reports the results for varying
number of kernels. Our algorithm outperforms all the
other baseline in term of both accuracy and efficiency.

4www.robots.ox.ac.uk/~vgg/research/flowers/
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Figure 3. Running time performance of UFO-MKL and
other baseline approaches w.r.t. different number of ker-
nels and varying values of α.

UFO-MKL is 3-5 times faster compared to OBSCURE,
which is again due to the factor that OBSCURE does
not get a real sparse solution. It suggests that UFO-
MKL is more suitable for feature selection tasks when
a lot of kernels are available. Figure 3 (bottom left)
shows the number of selected kernels and the accuracy
obtained by varying values of α, using the same num-
ber of epochs. We see that a larger value of α, which
corresponds to a sparser solution, leads to a slower
running time. Figure 3 (bottom right) reports the ac-
curacy and the number of non-zero kernel weights of
the last solution when the algorithm stops. It can be
seen that when the model becomes over sparse (larger
α) the performance starts dropping. However small
values of α, which result in a denser model, do not
correspond to higher accuracy, in fact many less dis-
criminative kernels are included in the solution.

6. Conclusions and Discussion

This paper presents a new MKL formulation and a fast
algorithm, UFO-MKL, to solve it. It optimizes the ob-
jective function directly in the primal with a stochas-
tic subgradient descent method. Experiments show
that UFO-MKL achieves state-of-art performance on
binary and multiclass classification problems. Our
approach is general, hence it can be applied to any
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convex loss function such as structure output predic-
tion (Tsochantaridis et al., 2004), to have an MKL al-
gorithm for structured output.

UFO-MKL has a guaranteed convergence rate, with
a logarithmic dependence on the number of kernels.
Moreover the level of sparsity is tunable, and the so-
lution found will always have exact zeros.
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