
TROPER
HCRAESER

PAIDI

THE KALDI SPEECH RECOGNITION
TOOLKIT

Daniel Povey        Arnab Ghoshal        Gilles Bouliannea b c

Lukas Burget        Ondrej Glembek        Nagendra Goeld e

Mirko Hannemann        Petr Motlicek        Yanmin Qiand f

Petr Schwarz        Jan Silovsky        Georg Stemmerd g h

Karel Veselyd

Idiap-RR-04-2012

JANUARY 2012

aMicrosoft Research, USA
bSaarland University, Germany
cCentre de Recherche Informatique de Montr´eal, Canada
dBrno University of Technology, Czech Republic
eGo-Vivace Inc., USA
fTsinghua University, China
gTechnical University of Liberec, Czech Republic
hSVOX Deutschland GmbH, Germany

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12  info@idiap.ch  www.idiap.ch





The Kaldi Speech Recognition Toolkit
Daniel Povey1, Arnab Ghoshal2,

Gilles Boulianne3, Lukáš Burget4, Ondřej Glembek4, Nagendra Goel5, Mirko Hannemann4,
Petr Motlı́ček6, Yanmin Qian7, Petr Schwarz4, Jan Silovský8, Georg Stemmer9, Karel Vesely4

1 Microsoft Research, USA, dpovey@microsoft.com;
2 Saarland University, Germany, aghoshal@lsv.uni-saarland.de;

3 Centre de Recherche Informatique de Montréal, Canada; 4 Brno University of Technology, Czech Republic;
5 Go-Vivace Inc., USA; 6 IDIAP Research Institute, Switzerland; 7 Tsinghua University, China;

8 Technical University of Liberec, Czech Republic; 9 SVOX Deutschland GmbH, Germany

Abstract—We describe the design of Kaldi, a free, open-source
toolkit for speech recognition research. Kaldi provides a speech
recognition system based on finite-state automata (using the freely
available OpenFst), together with detailed documentation and a
comprehensive set of scripts for building complete recognition
systems. Kaldi is written is C++, and the core library supports
modeling of arbitrary phonetic-context sizes, acoustic modeling
with subspace Gaussian mixture models (SGMM) as well as
standard Gaussian mixture models, together with all commonly
used linear and affine transforms. Kaldi is released under the
Apache License v2.0, which is highly nonrestrictive, making it
suitable for a wide community of users.

I. INTRODUCTION

Kaldi1 is an open-source toolkit for speech recognition
written in C++ and licensed under the Apache License v2.0.
It is intended for use by speech recognition researchers. The
goal of Kaldi is to have modern and flexible code that is
easy to understand, modify and extend. Kaldi is available on
SourceForge (see http://kaldi.sf.net/). The tools compile on the
commonly used Unix-like systems and on Microsoft Windows.

Researchers on automatic speech recognition (ASR) have
several potential choices of open-source toolkits for building a
recognition system. Notable among these are: HTK [1], Julius
[2] (both written in C), Sphinx-4 [3] (written in Java), and the
RWTH ASR toolkit [4] (written in C++). Yet, our specific
requirements—a finite-state transducer (FST) based frame-
work, extensive linear algebra support, and a non-restrictive
license—led to the development of Kaldi.

The work on Kaldi started during the 2009 Johns Hopkins
University summer workshop project titled “Low Development
Cost, High Quality Speech Recognition for New Languages
and Domains,” where we were working on acoustic modeling
using subspace Gaussian mixture model (SGMM) [5]. Impor-
tant features of Kaldi include:

Integration with Finite State Transducers: We compile
against the OpenFst toolkit [6] (using it as a library).

Extensive linear algebra support: We include a matrix
library that wraps standard BLAS and LAPACK routines.

1According to legend, Kaldi was the Ethiopian goatherd who discovered
the coffee plant.

Extensible design: As far as possible, we provide our
algorithms in the most generic form possible. For instance,
our decoders work with an interface that provides a score for
a particular frame and FST input symbol. Thus the decoder
could work from any suitable source of scores.

Open license: The code is licensed under Apache v2.0,
which is one of the least restrictive licenses available.

Complete recipes: Our goal is to make available complete
recipes for building speech recognition systems, that work
from widely available databases such as those provided by
the Linguistic Data Consortium (LDC).

Thorough testing: The goal is for all or nearly all the
code to have corresponding test routines.

The paper is organized as follows: we start by describing
the structure of the code and design choices (section II);
then describe the matrix library of Kaldi (section III) and the
FST library (section IV). This is followed by describing the
individual components of a speech recognition system that
the toolkit supports: feature extraction (section V), acoustic
modeling (section VI), phonetic decision trees (section VII),
language modeling (section VIII), and decoders (section X).
Finally, we provide some benchmarking results in section XI.

II. OVERVIEW OF THE TOOLKIT

We give a schematic overview of the Kaldi toolkit in figure
1. The toolkit depends on two external libraries that are
also freely available: one is OpenFst [6] for the finite-state
framework, and the other is numerical algebra libraries. We use
the standard “Basic Linear Algebra Subroutines” (BLAS)and
“Linear Algebra PACKage” (LAPACK)2 routines for the latter
purpose, the details of which are described in section III.

We aim for the toolkit to be as loosely coupled as possi-
ble to make it easy to reuse and refactor. This is reflected
in the structure of the toolkit, where the library modules
can be grouped into two distinct halves, each depending
on only one of the external libraries. A single module, the
DecodableInterface (cf. section X), bridges these two
halves. This sort of decoupling is also reflected in the design
of individual classes. We have tried to structure the toolkit in

2Available from: http://www.netlib.org/blas/ and
http://www.netlib.org/lapack/ respectively.



External	
  Libraries	
  

Kaldi	
  C++	
  Library	
  

BLAS/LAPACK	
   OpenFST	
  

Matrix	
   FST	
  ext	
  LM	
   Tree	
  U>ls	
  

Feat	
   GMM	
   SGMM	
  

Transforms	
  

HMM	
  

Decoder	
  
Decodable	
  

Kaldi	
  C++	
  Executables	
  

(Shell)	
  Scripts	
  

Fig. 1. A simplified view of the different components of Kaldi. The library
modules can be grouped into those that depend on linear algebra libraries
and those that depend on OpenFst. The decodable class bridges these two
halves. Modules that are lower down in the schematic depend on one or more
modules that are higher up.

such a way that implementing a new feature will generally
involve adding new code and command-line tools rather than
modifying existing ones. We consider this an advantage for
maintainability and extensibility.

Access to the library functionalities is provided through
command-line tools written in C++, which are then called
from a scripting language for building and running a speech
recognizer. While this is similar to the traditional approach
followed in several toolkits (e.g. HTK), the Kaldi approach
differs fundamentally in how we view the tools. Each tool has
very specific functionality: for example, there are separate ex-
ecutables for accumulating statistics, summing accumulators,
and updating a GMM-based acoustic model using maximum
likelihood estimation. As such the code for the executables
tend to be very simple with only a small set of command line
arguments. Moreover, all the tools can read from and write to
pipes which makes it possible to chain together different tools.

An approach that has recently become popular is to have a
scripting language such as Python call the C++ code directly,
and to have the outer-level control flow and system design
done in this scripting language. This is the approach used
in IBM’s Attila toolkit [7]. The design of Kaldi does not
preclude doing this in future, but for now we have avoided
this approach because it requires users to be proficient in two
different programming languages.

A final point to mention is that we tend to prefer provably
correct algorithms. There has been an effort to avoid recipes
and algorithms that could possibly fail, even if they don’t fail
in the “normal case” (for example, FST weight-pushing, which
normally helps but which can fail or make things much worse
in certain cases).

III. THE KALDI MATRIX LIBRARY

The Kaldi matrix library provides C++ classes for vector
and different types of matrices (description follows), as well

as methods for linear algebra routines, particularly inner and
outer products, matrix-vector and matrix-matrix products, ma-
trix inversions and various matrix factorizations like Cholesky
and singular value decomposition (SVD) that are required by
various parts of the toolkit. The library avoids operators in
favor of function calls, and requires the matrices and vectors to
have correct sizes instead of automatically resizing the outputs.

The matrix library does not call the Fortran interface
of BLAS and LAPACK directly, but instead calls their C-
language interface in form of CBLAS and CLAPACK. In
particular, we have tested Kaldi using the “Automatically
Tuned Linear Algebra Software” (ATLAS) [8] library, the
Intel Math Kernel Library (MKL) library, and the Accelerate
Framework on OS X. It is possible to compile Kaldi with only
ATLAS, even though ATLAS does not provide some necessary
LAPACK routines, like SVD and eigenvalue decompositions.
For those routines we use a C++ implementation of code from
the “Java Matrix Package” (JAMA) [9] project.

A. Matrix and vector types
The matrix library defines the basic Vector and Matrix

classes, which are templated on the floating point precision
type (float or double).
template<typename Real> class Vector;
template<typename Real> class Matrix;

The Matrix class corresponds to the general matrix (GE)
in BLAS and LAPACK. There are also special classes
for symmetric matrices (SpMatrix) and triangular matrices
(TpMatrix) (for Cholesky factors). Both of these are rep-
resented in memory as a “packed” lower-triangular matrix.
Currently, we only support linear algebra operations with real
numbers, although it is possible to extend the functionality to
include complex numbers as well, since the underlying BLAS
and LAPACK routines support complex numbers also.

For matrix operations that involve only part of a vector or
matrix, the SubVector and SubMatrix classes are provided,
which are treated as a pointer into the underlying vector or
matrix. These inherit from a common base class of Vector

and Matrix, respectively, and can be used in any operation
that does not involve memory allocation or deallocation.

IV. FINITE STATE TRANSDUCER (FST) LIBRARY

We compile and link against an OpenFst [6], which is an
open-source weighted finite-state transducer library. Both our
training and decoding code accesses WFSTs, which are simply
OpenFst’s C++ objects (we will sometimes refer to these just
as FSTs).

We also provide code for various extensions to the Open-
Fst library, such as a constructed-on-demand context FST
(C) which allows our toolkit to work efficiently for wide
phonetic context. There are also different versions of or
extensions to some of the fundamental FST algorithms such
as determinization, which we implement with epsilon removal
and mechanisms to preserve stochasticity (discussed in Sec-
tion IX); minimization, which we modify to work with non-
deterministic input; and composition, where we provide a
more efficient version. We provide command-line tools with



interfaces similar to OpenFst’s command line tools, to allow
these algorithms to be used from the shell.

V. FEATURE EXTRACTION

Our feature extraction and waveform-reading code aims to
create standard MFCC and PLP features, setting reasonable
defaults but leaving available the options that people are most
likely to want to tweak (for example, the number of mel bins,
minimum and maximum frequency cutoffs, etc.). The feature
extraction pipeline is implemented as a series of functions,
each of which output a matrix of floating point numbers and
take a matrix as input, except the windowing function, which
reads the waveform samples as a vector.

The windowing function can optionally dither (add random
Gaussian noise to) the waveform, remove DC offset and
pre-emphasize the higher frequencies. Our FFT implementa-
tion [10] works for window lengths that are not powers of
2, and we also provide an implementation of split-radix FFT
for 0-padded windows whose lengths are powers of 2. We also
support cepstral liftering and optional warping of the Mel filter
banks using vocal tract length normalization (VTLN). Cepstral
mean and variance normalization, dynamic (i.e. delta) features
of arbitrary order, splicing of arbitrary number of frames to
the left or right of the current frame and linear projections
of such high-dimensional features using linear discriminant
analysis (LDA) or heteroscedastic linear discriminant analysis
(HLDA) [11] are supported at the executable layer through
simple command line tools. Additionally, we support reading
and writing of features in the format used by HTK [1].

VI. ACOUSTIC MODELING

Our aim is for Kaldi to support conventional models (i.e.
diagonal GMMs) and Subspace Gaussian Mixture Models
(SGMMs), but also to be easily extensible to new kinds of
model. Following the general design philosophy of Kaldi,
the acoustic modeling code is made up of classes with very
specific functionality that do not “know anything” about how
they get used. For example, the DiagGmm class just stores the
parameters of a diagonal-covariance Gaussian mixture model
(together with accessors and mutators for the parameters) and
provides methods for likelihood computation. Estimation of
GMMs is handled by a separate class3 that accumulates the
sufficient statistics.

A. Gaussian mixture models
We support GMMs with diagonal and full covariance struc-

tures. Rather than representing individual Gaussian densi-
ties separately, we directly implement a GMM class that
is parametrized by the natural parameters, i.e. means times
inverse covariances and inverse covariances. Such an imple-
mentation is suitable for efficient (log-)likelihood computation
with simple dot-products. The GMM classes also store the
constant term in likelihood computation, which consist of all
the terms that do not depend on the data vector. In other words,
the constant term is the likelihood of the zero vector.

3In fact, different estimation classes are responsible for different estimation
algorithms, e.g. ML or MMI.

B. GMM-based acoustic model

The “acoustic model” class AmDiagGmm represents a collec-
tion of DiagGmm objects, indexed by “pdf-ids” that correspond
to context-dependent HMM states. Note that the acoustic
model is not actually an HMM, but just a collection of
densities. There are separate classes that represent the HMM
structure, principally the topology and transition-modeling
code and the code responsible for compiling decoding graphs,
which provide a mapping between the HMM states and the
pdf index of the acoustic model class. This class is imple-
mented as a std::vector of type DiagGmm, with a slightly
richer interface that supports, among other things, setting the
number of Gaussian components in each pdf proportional to
the occupancy of the corresponding HMM state. The classes
for estimating the acoustic model parameters are likewise
implemented as a std::vector of GMM estimators. Speaker
adaptation and other linear transforms like maximum likeli-
hood linear transform (MLLT) [12] or semi-tied covariance
(STC) [13] are implemented by separate classes.

C. HMM Topology

It is possible in Kaldi to separately specify the HMM
topology for each context-independent phone. The topology
format allows nonemitting states, and allows the user to pre-
specify tying of the p.d.f.’s in different HMM states; the main
envisaged use of this is for more advanced transition modeling.

D. Speaker adaptation

We support both model-space adaptation using maximum
likelihood linear regression (MLLR) [14] and feature-space
adaptation using feature-space MLLR (fMLLR), also known
as constrained MLLR [15]. For both MLLR and fMLLR,
multiple transforms can be estimated using a regression tree
[16]. When a single fMLLR transform is needed, it can be
used as an additional processing step in the feature pipeline.
It is also possible to only estimate the bias vector of an affine
transform, or the bias vector and a diagonal transform matrix,
which are suitable when the amount of adaptation data is
small4. The toolkit also supports speaker normalization using a
linear approximation to VTLN, similar to [17], or conventional
feature-level VTLN, or a more generic approach for gender
normalization which we call the “exponential transform” [18].
Both fMLLR and VTLN can be used for speaker adaptive
training (SAT) of the acoustic models.

E. Subspace Gaussian Mixture Models

For subspace Gaussian mixture models (SGMMs), the
toolkit provides an implementation of the approach described
in [5]. There is a single class AmSgmm that represents a whole
collection of pdf’s; unlike the GMM case there is no class that
represents a single pdf of the SGMM. Similar to the GMM
case, however, separate classes handle model estimation and
speaker adaptation using fMLLR.

4This is currently implemented only for fMLLR.



VII. PHONETIC DECISION TREES

Our approach for using decision trees that handle phonetic
context dependency is quite generic, and is designed to ef-
ficiently support wide phonetic contexts, as well as phone-
sets that have been expanded to include extra information
such as stress and position within a word. The conventional
approach [19] is to have a single decision tree for each
HMM-state of each phone, or for each phone, and to ask
questions about the phones to the left and right; the questions
are asked in a greedy way to maximize likelihood given
a single-Gaussian model. We support a more generic range
of approaches, including a single global decision tree, and
decision tree roots that are shared among specified groups
of phones, e.g. if the phones contain stress and position
information, we might share the root among a group of such
phones that corresponds to a “real” phone. To make this work,
we make it possible to ask questions about the central phone
and the identifier of the p.d.f. within the prototype topology: in
effect, this is asking about the HMM state. The internal code
for constructing and applying decision trees is very generic,
and based on the abstract notion of key-value pairs (e.g., the
position in a phonetic context window would be a key, and
the phone at that position would be a value). The code is also
designed to be easily extensible to clustering based on models
other than a single Gaussian.

None of the algorithms for training and applying decision
trees ever enumerate all the possible phonetic contexts; this
important in order to generalize efficiently to wider-than-
triphone contexts. In order to avoid making monophone mod-
els a special case, we simply treat them as context-dependent
models with a phonetic-context window of 1. Note that the
position of the “central phone” within the context window
can be specified, which allows us to support things like left
and right biphone context dependency.

The toolkit makes it possible to supply arbitrary phonetic
questions for the decision tree clustering (note that for us,
a question is simply a set of phones). In the conventional
approach (e.g. [19]), these would be specified by a human
based on linguistic knowledge. However, since our goal is to
supply algorithms that are automated and generic as possible,
using only publicly available resources, all the experiments we
report here are with automatically derived questions. These
are based on a binary tree clustering of the phones; each
question corresponds to all the leaves under a particular node
in this binary tree. For experiments with stress and position-
dependent phones, we make the leaves of the tree correspond
to sets of phones for each “real” phone, and we introduce
separate questions that correspond to stress and position (this
is all done at the shell-script level).

VIII. LANGUAGE MODELING

Since Kaldi uses an FST-based framework, it is possible, in
principle, to use any language model that can be represented as
an FST. We are working on mechanisms that are able to handle
LMs that would get too large when represented this way.
We provide tools for converting LMs in the standard ARPA

format to FSTs. In our recipes, we have used the IRSTLM
toolkit [20] for purposes like LM pruning. For building LMs
from raw text, users may use the IRSTLM toolkit, for which
we provide installation help, or a more fully-featured toolkit
such as SRILM [21].

IX. CREATING DECODING GRAPHS

All our training and decoding algorithms use Weighted
Finite State Transducers (WFSTs). In the conventional
recipe [22], the input symbols on the decoding graph corre-
spond to context-dependent states (in our toolkit, these sym-
bols are numeric and we call them pdf-ids). However, because
we allow different phones to share the same pdf-ids, we would
have a number of problems with this approach, including not
being able to determinize the FSTs, and not having sufficient
information from the Viterbi path through an FST to work
out the phone sequence or to train the transition probabilities.
In order to fix these problems, we put on the input of the
FSTs a slightly more fine-grained integer identifier that we
call a “transition-id”, that encodes the pdf-id, the phone it is a
member of, and the arc (transition) within the topology specifi-
cation for that phone. There is a one-to-one mapping between
the “transition-ids” and the transition-probability parameters
in the model: we decided make transitions as fine-grained as
we could without increasing the size of the decoding graph.
An advantage of having the transition-ids as the graph input
symbols is that all we need in Viterbi-based model training is
the sequence of input symbols (transition-ids) in the Viterbi
path through the FST. We call this sequence an alignment. A
set of alignments gives us all the information we need in order
to train the p.d.f.’s and the transition probabilities. Since an
alignment encodes the complete phone sequence, it is possible
to convert alignments between different decision trees.

Our decoding-graph construction process is based on the
recipe described in [22]; however, there are a number of
differences. One important one relates to the way we handle
“weight-pushing”, which is the operation that is supposed to
ensure that the FST is stochastic. “Stochastic” means that
the weights in the FST sum to one in the appropriate sense,
for each state (like a properly normalized HMM). Weight
pushing can fail or can lead to bad pruning behavior if the
FST representing the grammar or language model (G) is not
stochastic, and FSTs based on backoff language models are
not stochastic due to redundant paths through backoff and
non-backoff arcs. Our approach is to avoid weight-pushing
altogether, but to ensure that each stage of graph creation
“preserves stochasticity” in an appropriate sense. Informally,
what this means is that the “non-sum-to-one-ness” (the failure
to sum to one) will never get worse than what was originally
present in G. This requires changes to some algorithms, e.g. to
determinization. There are other differences too: we minimize
after removing disambiguation symbols, which is more opti-
mal but requires changes to the minimization code of OpenFst;
and we use a version of determinization that removes input
epsilon symbols, which requires certain changes in other parts



of the recipe (chiefly: introducing disambiguation symbols on
the input of G).

The graph creation process required in test time is put
together at the shell-script level. In training time, the graph
creation is done as a C++ program which can be made more
efficient. The aim is for all the C++ tools to be quite generic,
and not to have to know about “special” things like silence.
For instance, alternative pronunciations and optional silence
are supplied as part of the lexicon FST (L) which is generally
produced by a script.

X. DECODERS

We have several decoders, from simple to highly optimized;
more will be added to handle things like on-the-fly language
model rescoring and lattice generation. By “decoder” we mean
a C++ class that implements the core decoding algorithm. The
decoders do not require a particular type of acoustic model:
they need an object satisfying a very simple interface with a
function that provides some kind of acoustic model score for
a particular (input-symbol and frame).
class DecodableInterface {
public:
virtual float LogLikelihood(int frame, int index) = 0;
virtual bool IsLastFrame(int frame) = 0;
virtual int NumIndices() = 0;
virtual ˜DecodableInterface() {}

};

Command-line decoding programs are all quite simple, do
just one pass of decoding, and are all specialized for one
decoder and one acoustic-model type. Multi-pass decoding is
implemented at the script level.

XI. EXPERIMENTS

We report experimental results on the Resource Manage-
ment (RM) corpus and on Wall Street Journal. We note that
the experiments reported here should be fully reproducible,
except for minor differences in WER due to differences in
compiler behavior and random number generation algorithms.
The results reported here correspond to version 1.0 of Kaldi;
the scripts that correspond to these experiments may be found
in egs/rm/s1 and egs/wsj/s1, and we will provide “system
identifiers” (corresponding to training runs) to help locate
particular experiments in our scripts.

The scripts include all data preparation stages, and require
only the original datasets as distributed by the Linguistic Data
Consortium (LDC).

A. Comparison with previously published results

We first report some results intended to demonstrate that the
basic algorithms included in the toolkit give results comparable
to those previously reported in the literature.

Table I shows the results of a context-dependent triphone
system with mixture-of-Gaussian densities; the HTK baseline
numbers are taken from [23] and the systems use essentially
the same algorithms. The features are MFCCs with per-speaker
cepstral mean subtraction. The language model is the word-
pair bigram language model supplied with the RM corpus. The
WERs are essentially the same. Decoding speed was about

TABLE I
BASIC TRIPHONE SYSTEM ON RESOURCE MANAGEMENT: %WERS

Test set
Feb’89 Oct’89 Feb’91 Sep’92 Avg

HTK 2.77 4.02 3.30 6.29 4.10
Kaldi 3.20 4.21 3.50 5.86 4.06

TABLE II
BASIC TRIPHONE SYSTEM, WSJ, 20K OPEN VOCABULARY, BIGRAM LM,

SI-284 TRAIN: %WERS

Test set
Nov’92 Nov’93

Bell 11.9 15.4
HTK (+GD) 11.1 14.5

KALDI 11.8 15.0

0.13xRT, measured on an Intel Xeon CPU at 2.27GHz. The
system identifier for the Kaldi results is tri3c.

Table II shows similar results for the Wall Street Journal
system, this time without cepstral mean subtraction. The WSJ
corpus comes with bigram and trigram language models, and
most of our experiments use a pruned version of the trigram
language model (with the number of entries reduced from
6.7 million to 1.5 million) since our fully-expanded FST gets
too large with the full language model (we are working on
decoding strategies that can work with large language models).
For comparison with published results, we report bigram
decoding in Table II, and compare with published numbers
using the bigram language model. The baseline results are
reported in [24], which we refer to as “Bell” (for Bell Labs,
the authors’ affiliation), and a HTK system described in [25].
Note that the HTK baseline is gender dependent while ours
is not, so the comparison may not be entirely fair; we have
other algorithms, such as VTLN to handle gender dependency,
and chose not to build this type of gender-dependent system.
The system id for the Kaldi system is tri3a. Our results are
slightly better than the Bell Labs results, and although HTK’s
are better than ours, this difference can be attributed to the
gender dependency.

B. Other experiments

Here we report some more results on both the WSJ test
sets (Nov’92 and Nov’93) using systems trained on just the
SI-84 part of the training data, that demonstrate different
features that are supported by Kaldi. Note that the triphone
results for the WSJ sets are worse than those in Table II

TABLE III
RESULTS ON RM AND WSJ, 20K OPEN VOCABULARY, BIGRAM LM,

TRAINED ON HALF OF SI-84: %WERS

RM (Avg) WSJ Nov’92 WSJ Nov’93
Triphone 3.97 12.5 18.3

+ fMLLR (spk) 3.59 11.4 15.5
+ LVTLN (spk) 3.30 11.1 16.4

Splice-9 + LDA + MLLT 3.88 12.2 17.7
+ SAT (fMLLR) 2.70 9.6 13.7

SGMM 3.32 10.4 16.4
+ spk-vecs (spk) 2.76 10.0 13.81

+ fMLLR (spk) 2.55 9.9 13.4



due to the smaller training set. We also report results on the
RM task for comparison. The RM results reported here are
averaged over 6 test sets–the 4 mentioned in table I together
with Mar’87 and Oct’87–and so the WER with the basic
triphone system is different from the average in Table I. The
best result for conventional GMM system is achieved by a
speaker-adaptively trained system that splices 9 frames (4 on
each side of the current frame) and uses LDA to project
down to 40 dimensions, together with MLLT. Comparable
performance is achieved with an SGMM system trained on
MFCC features (static +∆+∆∆) that uses speaker vectors and
fMLLR adaptation (we have not yet tried the SGMM system
on top of the better LDA-based features).

XII. CONCLUSIONS

We described the design of Kaldi, a free and open-source
speech recognition toolkit. The toolkit currently supports mod-
eling of context-dependent phones of arbitrary context lengths,
and all commonly used techniques that can be estimated using
maximum likelihood. It also supports the recently proposed
SGMMs. Development of Kaldi is continuing and we are
working on using large language models in the FST frame-
work, lattice generation and discriminative training.

ACKNOWLEDGMENTS

We would like to acknowledge participants and collabora-
tors in the 2009 Johns Hopkins University Workshop, includ-
ing Mohit Agarwal, Pinar Akyazi, Martin Karafiat, Feng Kai,
Ariya Rastrow, Richard C. Rose and Samuel Thomas; Patrick
Nguyen, for introducing the participants in that workshop and
for help with WSJ recipes, and faculty and staff at JHU for
their help during that workshop, including Sanjeev Khudanpur,
Desirée Cleves, and the late Fred Jelinek. We would like
to thank Michael Riley, who visited us in Brno to deliver
lectures on finite state transducers and helped us understand
OpenFst, and Henrique (Rico) Malvar of Microsoft Research
for allowing the use of his FFT code. We would like to
acknowledge the help with coding and documentation from
Sandeep Boda and Sandeep Reddy (sponsored by Go-Vivace
Inc.) and Haihua Xu. We thank Pavel Matejka (and Phonexia
s.r.o.) for allowing the use of feature processing code.

We would like to acknowledge the support of Geoffrey
Zweig and Alex Acero at Microsoft Research. We are grateful
to Jan (Honza) Černocký for helping us organize the workshop
at the Brno University of Technology during August 2010. We
had excellent system support from Tomas Kašpárek, and we
thank Renata Kohlová for administrative support.

During the development of Kaldi, Arnab Ghoshal was
supported by the European Community’s Seventh Framework
Programme under grant agreement no. 213850 (SCALE); the
BUT researchers were supported by the Technology Agency
of the Czech Republic under project No. TA01011328, and
partially by Czech MPO project No. FR-TI1/034. The JHU
2009 workshop was supported by National Science Foundation
Grant Number IIS-0833652, with supplemental funding from
Google Research, DARPA’s GALE program and the Johns

Hopkins University Human Language Technology Center of
Excellence.

Finally, it is quite possible that someone else who helped
us significantly was inadvertently omitted here; if so, we
apologize.

REFERENCES

[1] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu,
G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. Woodland,
The HTK Book (for version 3.4). Cambridge University Engineering
Department, 2009.

[2] A. Lee, T. Kawahara, and K. Shikano, “Julius – an open source real-
time large vocabulary recognition engine,” in EUROSPEECH, 2001, pp.
1691–1694.

[3] W. Walker, P. Lamere, P. Kwok, B. Raj, R. Singh, E. Gouvea, P. Wolf,
and J. Woelfel, “Sphinx-4: A flexible open source framework for speech
recognition,” Sun Microsystems Inc., Technical Report SML1 TR2004-
0811, 2004.

[4] D. Rybach, C. Gollan, G. Heigold, B. Hoffmeister, J. Lööf, R. Schlüter,
and H. Ney, “The RWTH Aachen University Open Source Speech
Recognition System,” in INTERSPEECH, 2009, pp. 2111–2114.

[5] D. Povey, L. Burget et al., “Subspace Gaussian Mixture Models–
A Structured Model for Speech Recognition,” Computer Speech &
Language, vol. 25, no. 2, pp. 404–439, April 2011.

[6] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri, “OpenFst:
a general and efficient weighted finite-state transducer library,” in Proc.
CIAA, 2007.

[7] H. Soltau, G. Saon, and B. Kingsbury, “The IBM Attila speech recogni-
tion toolkit,” in IEEE Workshop on Spoken Language Technology (SLT),
2010, pp. 97–102.

[8] ATLAS homepage, http://math-atlas.sourceforge.net/.
[9] JAMA homepage, http://math.nist.gov/javanumerics/jama/.

[10] H. S. Malvar, Signal Processing with Lapped Transforms. Artech
House, Inc., 1992.

[11] N. Kumar and A. G. Andreou, “Heteroscedastic discriminant analysis
and reduced rank HMMs for improved speech recognition,” Speech
Communication, vol. 26, no. 4, pp. 283–297, December 1998.

[12] R. Gopinath, “Maximum likelihood modeling with Gaussian distribu-
tions for classification,” in Proc. IEEE ICASSP, vol. 2, 1998, pp. 661–
664.

[13] M. J. F. Gales, “Semi-tied covariance matrices for hidden Markov
models,” IEEE Trans. Speech and Audio Proc., vol. 7, no. 3, pp. 272–
281, May 1999.

[14] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density hidden Markov
models,” Computer Speech and Language, vol. 9, no. 2, pp. 171–185,
1995.

[15] M. J. F. Gales, “Maximum likelihood linear transformations for HMM-
based speech recognition,” Computer Speech and Language, vol. 12,
no. 2, pp. 75–98, April 1998.

[16] ——, “The generation and use of regression class trees for MLLR
adaptation,” Cambridge University Engineering Department, Technical
Report CUED/F-INFENG/TR.263, August 1996.

[17] D. Y. Kim, S. Umesh, M. J. F. Gales, T. Hain, and P. C. Woodland,
“Using VTLN for broadcast news transcription,” in Proc. ICSLP, 2004,
pp. 1953–1956.

[18] D. Povey, G. Zweig, and A. Acero, “The exponential transform as a
generic substitute for vtln,” in Asru 2011 (submitted), 2011.

[19] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based state tying
for high accuracy acoustic modelling,” in Proc. 1994 ARPA Human
Language Technology Workshop, 1994, pp. 304–312.

[20] M. Federico, N. Bertoldi, and M. Cettolo, “IRSTLM: An open source
toolkit for handling large scale language models,” in INTERSPEECH,
2008, pp. 1618–1621.

[21] A. Stolcke, “Srilm-an extensible language modeling toolkit,” in Pro-
ceedings of the international conference on spoken language processing,
vol. 2, 2002, pp. 901–904.

[22] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers
in speech recognition,” Computer Speech and Language, vol. 20, no. 1,
pp. 69–88, 2002.



[23] D. Povey and P. C. Woodland, “Frame discrimination training for HMMs
for large vocabulary speech recognition,” in Proc. IEEE ICASSP, vol. 1,
1999, pp. 333–336.

[24] W. Reichl and W. Chou, “Robust decision tree state tying for continuous
speech recognition,” IEEE Transactions on Speech and Audio Process-
ing, vol. 8, no. 5, pp. 555–566, September 2000.

[25] P. C. Woodland, J. J. Odell, V. Valtchev, and S. J. Young, “Large
vocabulary continuous speech recognition using HTK,” in Proc. IEEE
ICASSP, vol. 2, 1994, pp. II/125–II/128.


