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Abstract—Recent research has demonstrated the effectiveness
of vocal tract length normalization (VTLN) as a rapid adaptation
technique for statistical parametric speech synthesis. VTLN
produces speech with naturalness preferable to that of MLLR-
based adaptation techniques, being much closer in quality to that
generated by the original average voice model. By contrast, with
just a single parameter, VTLN captures very few speaker specific
characteristics when compared to the available linear transform
based adaptation techniques. This paper proposes that the merits
of VTLN can be combined with those of linear transform based
adaptation technique in a Bayesian framework, where VTLN
is used as the prior information. A novel technique of propa-
gating the gender information from the VTLN prior through
constrained structural maximum a posteriori linear regression
(CSMAPLR) adaptation is presented. Experiments show that the
resulting transformation has improved speech quality with better
naturalness, intelligibility and improved speaker similarity.

Index Terms—Statistical parametric speech synthesis, hidden
Markov models, speaker adaptation, vocal tract length nor-
malization, constrained structural maximum a posteriori linear
regression

I. INTRODUCTION

The ability to transform voice identity in text-to-speech
synthesis (TTS) has been an important area of research with
applications in the medical, security and entertainment in-
dustries. One specific application that has seen considerable
interest by the research community is that of personalized
speech-to-speech translation, which can help overcome the
language barrier, especially on a mobile device. It is crucial
to this kind of application that the speaker characteristics are
introduced into the output speech from the very first utterance
spoken by a speaker. Hence, speaker characteristics need to
be estimated from very little adaptation data.

Statistical parametric synthesis [1] using hidden Markov
models (HMM) has proven to be a particularly flexible
and robust framework for performing speaker transformation,
leveraging off a range of speaker adaptation techniques previ-
ously developed for automatic speech recognition (ASR) [2].
The maximum likelihood linear transformation (MLLT) based
adaptation techniques entail linear transformation of the means
and variances of an HMM to match the characteristics of
the speech for a given speaker. These techniques require a

considerable amount of adaptation data (of the order of tens
of utterances) for reasonable adaptation performance. Rapid
adaptation techniques like vocal tract length normalization
(VTLN) have also been successfully applied to statistical
parametric speech synthesis [3]. By contrast, this technique
requires very little adaptation data in order to estimate only
a single parameter. This system preserves the naturalness of
the average voice, albeit capturing very few speaker charac-
teristics. It follows that combining the linear transform based
adaptation techniques with VTLN could result in improved
naturalness of synthesized speech whilst also being effective
at capturing the speaker characteristics. This provides a means
to rapidly adapt synthesized speech with a balanced trade-off
between naturalness and speaker similarity.

VTLN is a widely used speaker normalization technique in
ASR [4], [5]. It is inspired from the physical observation that
the vocal tract length (VTL) varies across different speakers
in the range of around 18 cm in males to around 13 cm
in females. The formant frequency positions are inversely
proportional to VTL, and hence can vary around 25% [6].
Although implementation details differ, VTLN is generally
characterized by a single parameter that warps the spectra
towards that of an average vocal tract in much the same way
that maximum likelihood linear regression (MLLR) transforms
can warp towards an average voice. The same technique can
also estimate the speaker characteristics of a target speaker,
and hence transform the average voice into the speech of
the target speaker. Initial investigations of VTLN for statis-
tical parametric speech synthesis were performed by Saheer
et.al. [7] using a grid search. An efficient implementation
of VTLN using expectation maximization (EM) with Brent
search optimization is presented by Saheer et.al. [3].

VTLN has been previously combined with constrained
MLLR (CMLLR) for rapid adaptation in ASR [8]. The
linear VTLN used by Breslin et.al. [8] is based on a set
of precomputed quantised transforms unlike the gradient de-
scent approach used in this paper. Also, a count smoothing
framework is used to incorporate the prior information since
a conjugate prior distribution is not possible for CMLLR.
The incorporation of prior information can be achieved in



a more subtle and efficient way by using constrained struc-
tural maximum a posteriori linear regression (CSMAPLR).
CSMAPLR itself is a more robust adaptation framework when
compared to CMLLR, and inclusion of an efficiently estimated
VTLN prior matrix for the root node can further enhance the
performance. The structural framework helps propagate the
prior information through the various levels of the regression
tree in an effective way.

CSMAPLR has been proposed as a robust speaker adapta-
tion technique for statistical parametric speech synthesis [2].
The maximum a posteriori (MAP) criterion can better estimate
linear transforms when less adaptation data is available. The
structural MAP (SMAP) technique uses an identity matrix
as the initial prior distribution (at the root node) and uses a
tree structure to propagate this prior to different classes of
transforms. The tree structure is generated using linguistic
information; hence, the propagated prior information should
reflect the connection and similarity of the distributions of
linguistic information. Using the VTLN matrix as the initial
prior information for the root node of the CSMAPLR trans-
form could result in the propagation of speaker characteristics
and improved speaker adaptation even when very little data
is available. This paper presents the details of a novel tech-
nique of using VTLN as a prior in the Bayesian adaptation
framework for CSMAPLR.

II. THEORY

A. VTLN in Statistical Parametric Speech Synthesis

The main components involved in VTLN are a warping
function, a warping factor and an optimization criterion. Typ-
ically, the warping function has only a single variable α as
the warping factor, which is representative of the ratio of the
VTL of a speaker to an average VTL.

In ASR, where a mel or bark spaced filter bank is used, the
warping function tends to be linear or piecewise-linear, and is
normally applied directly to the filter-bank. By contrast, fea-
ture extraction for TTS systems tends not to use a filter-bank
analysis as it renders signal reconstruction difficult. Rather,
the feature commonly used in TTS is the mel-generalized
cepstrum (MGCEP) [9], which makes use of a bilinear trans-
form to achieve a frequency warp1. Since MGCEP already
includes a bilinear transform as its spectral warping function to
approximate the mel auditory scale, a bilinear transform-based
VTLN proposed by Pitz and Ney [10] can be implemented as
a zero-overhead modification of the MGCEP representation.
The bilinear transform of a simple first-order all-pass filter
with unit gain leads to a warping of the frequency ω into ω̃
in the complex z-domain as follows:

z̃−1 =
z−1 − α
1− αz−1

, |α| < 1 (1)

where z−1 = e−jω, z̃−1 = e−jω̃ , and α is the warping factor.
We define the m-th mel-cepstral coefficient, that is, frequency

1Spectral analysis in MGCEP also uses a generalized logarithmic function,
which has the effect of varying the analysis between an all-pole and a cepstral
model, according to a second parameter.

warped cepstrum, c̃m in MGCEP as

c̃m =
1

2πj

∮
C

logX(z̃) z̃m−1dz̃ (2)

logX(z̃) =

∞∑
m=−∞

c̃m z̃
−m (3)

Since the frequency warping is X(z̃) = X(z), we have a
linear transformation in the cepstral domain ck:

c̃m =

∞∑
k=−∞

1

2πj

∮
C

z̃−kzm−1dz̃ ck (4)

=
∑
k

Amk(α) ck (5)

where Amk(α) is the m-th row k-th column element of the
warping matrix Aα consisting of the warping factor α and the
Cauchy integral formula yields [10]:

Amk(α) =
1

2πj

∮
C

z̃−kzm−1dz̃ (6)

=
1

2πj

∮
C

(
z − α
1− αz

)−k
zm−1 dz̃ (7)

=
1

(k − 1)!

k∑
n=max(0,k−m)

(
k
n

)
× (m+ n− 1)!

(m+ n− k)!
(−1)nα2n+m−k. (8)

We may represent the linear transformation in the vector form

xα = Aαx (9)

where xα = (c̃1, · · · , c̃M )> and x = (c1, · · · , cK)>. The
transform may also be directly applied to the dynamic features
of the cepstra as well; the transformation matrix is block
diagonal with repeating Aα matrix. The maximum likelihood
criterion can be adopted for the optimisation of the warping
factor α [6]:

α̂s = argmax
α

P (xαs
| Θ, αs, ws) (10)

where xαs
represents features warped with the warping fac-

tor αs for speaker s; Θ represents average voice models,
ws represents the word sequence corresponding to features
and α̂s represents the optimal warping factor for speaker s.
VTLN can also be implemented as an equivalent feature-
space MLLT using Aα; such representation enables use of
the EM algorithm for finding optimal warping factors. The
main advantage of using the EM algorithm over, say, a grid
search is that the resulting warping factor estimation has finer
granularity of α values, and efficient implementation in time
and space. The EM algorithm can be embedded into HMM
training utilizing the same sufficient statistics as CMLLR [3],
[11], which transforms the spectral features as follows

x̃ = Ax+ b = Wξ. (11)

where ξ = [x>, 1]>, and W = [A, b]. Note that, the matrix
A and bias vector b of the CMLLR transform are far less
constrained than those for VTLN.



B. CSMAPLR

CSMAPLR is a robust framework to estimate the CMLLR
transforms W based on the SMAP criterion [12] below:

Ŵ s = argmax
W

P (x | Θ, W s, ws)P (W s) (12)

where W s refers to the set of CMLLR transforms for the
target speaker s. P (xs | Θ,W s, ws) is a likelihood function
for W s and P (W s) is a prior distribution of the transform
W s. Matrix variate normal distributions are used as the prior
distribution P (W ):

P (W ) ∝ |Ω|−
L+1
2 |Ψ|−L

2

exp

[
−1

2
tr(W −H)>Ω−1(W −H)Ψ−1

]
(13)

where Ω ∈ RL×L, Ψ ∈ R(L+1)×(L+1) and H ∈ RL×(L+1)

are the hyperparameters of the prior distribution. In the SMAP
criterion, the tree structures of the distributions effectively
control these hyperparameters. The whole adaptation data is
used to estimate a global transform at the root node of the
tree based on the ML criterion and it is propagated to the
child nodes as a hyperparameter H . The transforms at each
child node are estimated using the corresponding adaptation
data and hyperparameters propagated with the MAP criterion.
This process is continued recursively from the root node to all
the leaf nodes of the tree structure.

In the CSMAPLR estimation, the hyperparameter Ψ is fixed
to the identity matrix and Ω to a scaled identity matrix, Ω =
τbIL. τb is a positive scalar that controls the scale factor for
the prior propagation and IL is L×L. The hyperparameter of
the prior distribution H at the root node of the tree structure is
set to an identity matrix, that is, a prior favouring no scaling.

C. Using VTLN as CSMAPLR Prior

The VTLN transformation presented in this paper can be
considered as a very constrained form of CMLLR/CSMAPLR,
only requiring estimation of a single parameter representing
the VTL of the speaker. This parameter normally gives some
measure of the vocal tract length, but more concretely is
known to be highly correlated with basic speaker characteris-
tics such as gender and as such can act as a prior for speaker
independent modelling. In fact the CSMAPLR adaptation
technique can use any arbitrary prior information (instead of
the identity matrix) at the root node of the tree structure.
This prior information can easily be replaced with the VTLN
transformation matrix (refer Figure 1). Hence, for the prior
distribution at the root node, we may set the hyperparameter
H as

HVTLN = [Aα,0] (14)

where Aα is the VTLN transformation matrix described by
α and 0 is a zero bias vector. The VTLN prior may be
used for the dynamic features of the cepstra; in this case
the hyperparameter matrix H is a block diagonal matrix with
repeating Aα matrix and zero bias vector. While propagating
the prior information through the lower nodes of the tree, τb

   [Aalpha,0]
VTLN Matrix

Fig. 1: Identity matrix is replaced with VTLN transformation matrix
as prior for the root node of the CSMAPLR transformation.

is the scale factor determining the influence of the VTLN
prior on the CSMAPLR adaptation technique. The value of
the scale factor can be empirically estimated depending on
the availability of adaptation data.

The gender characteristics estimated by VTLN when propa-
gated to the nodes of the tree structure are expected to improve
the speaker specific transform estimation for CSMAPLR.
More specifically, VTLN has been shown to be closer to
the average voice, and hence better in naturalness [3] and
CSMAPLR is known to bring in better speaker similarity when
very little adaptation data is available. A-priori, combination
of these two is expected to give improved performance with
respect to naturalness and speaker similarity.

III. EVALUATIONS WITH VTLN AS PRIOR

A. Experimental Setup

The HMM speech synthesis system (HTS) [1] is used
for generating the statistical parameters for speech synthesis.
HTS models spectrum, logF0, band-limited aperiodic compo-
nents and duration in the unified framework of hidden semi-
Markov models (HSMMs). The STRAIGHT vocoder is used
to synthesize speech from the parameters generated using
HTS. The HMM topology is five-state and left-to-right with
no skip states. Speech features are 59th-order mel-cepstra,
logF0, five-dimensional band aperiodicity, and their delta
and delta-delta coefficients, extracted from 48kHz recordings
with a frame shift of 5ms. The speaker dependent model is
built using UK English speech corpus including 5 hours of
clean speech data uttered by an RP professional narrator. The
evaluation experiments are performed on another UK English
test speaker. Subjective listening tests are performed using
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Fig. 2: Mel-cepstral distances of VTLN, CSMAPLR, and the pro-
posed VTLN-CSMAPLR techniques.

the Blizzard challenge 2010 test sentences for naturalness,
speaker similarity and intelligibility with different amounts of
adaptation data and different values of the scale factor. The
number of subjects was 40.

The subjective tests are based on mean opinion scores
(MOS) of naturalness and speaker similarity. The synthesized
utterances are rated on a 5-point scale, 5 being “completely
natural” or “sounds exactly like the target speaker” and 1
being “completely unnatural” or “sounds like a totally dif-
ferent speaker”. The subjective evaluations are also performed
for intelligibility using semantically unpredictable sentences
where subjects listen to the speech utterances and are asked
to type the corresponding text. The score for intelligibility is
based on the word error rate (WER) for the text entered by
the listeners. In addition, objective evaluation based on the
mel-cepstral distance (MCD) was also carried out. The MCD
is the Euclidean distance between the synthesized cepstra and
those of the values derived from the natural speech, and can
be viewed as an approximation to the log spectral distortion
measure according to Parserval’s theorem.

B. Results and Discussion

One hundred sentences were synthesized for objective eval-
uations for the test speaker. The values of the MCD scores
for different amounts of adaptation data are plotted in the
Figure 2. The figure shows the MCD score for two different
scale factors, 1 and 1000. The figure also compares the
objective scores with the VTLN adaptation technique based
on a single warping factor or regression class based multiple
warping factors. The objective results first show that 1) the
VTLN technique works best in comparison to others when
one adaptation sentence is used (around 7dB) whereas its
performance does not improve even if more than one sentence
is used for the adaptation and that 2) the CSMAPLR improves
the MCD to around 6dB when the number of adaptation
sentences is more than five. However, the performance of
the CSMAPLR technique rapidly becomes worse when the

number of adaptation sentences is less than five, reaching 10dB
MCD with only one adaptation utterance. Finally, the objective
results clearly show that the proposed VTLN-CSMAPLR
technique with scale factor 1000 alleviates this issue of the
CSMAPLR technique and improves the performance when the
number of adaptation sentences is less than five. We can see
that even if the number of adaptation sentences is just two, the
performance of the VTLN-CSMAPLR technique outperforms
the VTLN technique and its distortion is around 6.5dB.

The listening tests were performed with 1, 2 and 5 adapta-
tion sentences. The evaluation results of the listening tests are
shown in Figure 3. From the speaker similarity results, we can
see that VTLN works best when the number of adaptation sen-
tences is one or two and also that VTLN-CSMAPLR outper-
forms CSMAPLR with one or two adaptation sentences. There
is no significant difference among the adaptation methods with
five adaptation sentences. From the results on naturalness,
we see that VTLN does not improve naturalness even if
more data is used. However, VTLN and VTLN-CSMAPLR
both give better results than CSMAPLR with one or two
adaptation sentences. From the intelligibility evaluation, we
observe that there is no significant difference between VTLN
and VTLN-CSMAPLR with two and five sentences, but, on
the other hand, we can see that CSMAPLR has significantly
degraded intelligibility with one adaptation sentence. Although
there are minor inconsistencies with the MCD results, we
conclude that the VTLN prior can significantly improve the
CSMAPLR adaptation performance when the adaptation data
is very limited.

IV. CONCLUSIONS

This paper has presented a novel idea for combining the
merits of CSMAPLR and VTLN adaptation, resulting in an
improved adaptation technique. An efficient algorithm was
presented to use the VTLN transformation matrix as prior
information for the existing CSMAPLR adaptation. Perfor-
mance improvements were shown, especially when very little
adaptation data was available. The future work is to perform
more detailed evaluations in different scenarios and to use
multiple VTLN transforms as priors for different phoneme
classes instead of a single VTLN transform at the root node.
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