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Abstract

In this work, uncertainty decoding in automatic speech recognition is investigated in the context of ro-
bustness to additive and convolutional noise. In Garner (2009) and in Garner (2011), explicit calculation
of a Signal to Noise Ratio (SNR) cepstrum by means of a noise estimate is shown to have theoritical and
practiacal adavantages over the usual energy based spectrum, especially when they are combined with
traditional feature enhancement techniques, such as Cepstral Mean Normalization (CMN) and Cestral
Variance Normalization (CVN). This is the reason we try to investigate how these features behave when
we are trying to handle the uncertainty which is introduced by environmental or convolutional noise.
We compute uncertainty, which can be translated as a variance estimate, in the normal SNR front end
and pass this to the decoder. Unfortunatelly, this approximation suffers from theoritical and practical
problems, epsecially in low SNR conditions. The issue described and the performance of the uncertainty
decoding schemes we used, are examined with the aurora 2 digit recognition task.

Introduction

Speech recognition in noise has been an area of active research for many years. Powerful model based
compensation schemes, such as Parallel Model Combination (PMC) in Gales (1996), and Vector Tay-
lor Series (VTS), achieve good performance but are computationally expensive. Recently interest has
grown in a compromise between model-based and front-end schemes. Uncertainty decoding, so called
because a measure of the uncertainty introduced by the background acoustic noise is propagated into the
recognition process. For front-end uncertainty schemes, this uncertainty is computed mainly from the
features. Despite front-end uncertainty decoding achieving good performance for a range of acoustic en-
vironments, a fundamental problem arises in our case. By passing a single uncertainty-variance value to
the decoder per frame, when the SNR is low, can cause all the model variances to move to higher values.
When this occurs, the recogniser can no longer discriminate in these areas. This technical report exam-
ines if SNR features can handle this fundamental issue in front-end uncertainty decoding. Experiments
show that this scheme is not efficient yet, especially in noisy conditions, but it could be a good start point
for further research on uncertainty decoding as it produces better accuracy in same clean condition cases.

Marginalization over Variance

As this report is a continuation of the work that is introduced in Garner (2009) and Garner (2011)
we suggest that the reader should study these works first. In the “Marginalization over Variance“ point
of the aforementioned papers, it is shown that if we assume that an estimate, ν̂ of the noise variance
is always available, the form of equation (11) of Garner (2009) or (13) of Garner (2011), however,
with multiplicative instead of additive terms in the denominators, allows marginalization over the noise
variance.

If we assume that we have N frames of noise, nN = {n1, n2, . . . , nN}, that are observed in isolation,
we can write that:
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p(νf | {n}N) =
∏N
i=1 p(ni,fνf)(νf)∫∞

0

∏N
i=1 p(ni,f|ν ′

f)p(ν ′
f)dν

(1)

where the products are over the likelihood terms, not the priors. Again, hereafter we drop subscritps
for simplicity. The likelihood terms are exactly the form of equation (5) of Garner (2009) or (6) of
Garner (2011), and we arbitrarily choose an non-informative prior p(ν) ∝ ν−1. Equation (1) can then
be reduced to the inverse gamma distribution

p(ν | {n}N) =
BA

Γ(A)
ν−A−1 exp

(
−
B

ν

)
(2)

where

A = N, B =

N∑
i=1

|ni,f|2 (3)

The MAP solution, ν̂ of ν would be

ν̂ =
B

A+ 1
(4)

However, we can use the distibution to marginalise over ν. So, the posterior becomes in terms of ξ as
follows.

p(ξ | t) ∝ p(ξ)
∫∞

0
p(t|ξ,ν)(ν|{n}N)dν (5)

By substututing equation (11) from Garner (2009) or (13) from Garner (2011) and equation (2)
into (5), the forms are conjugate and the integral is just the normalizing term from the inverse gamma
distribution

p(ξ | t) ∝ p(ξ)× BA

Γ(A)

Γ(A+ 1)
ξ+ 1

(
|t|2 + (ξ+ 1)B

ξ+ 1

)−(A+1)

(6)

This distribution can be further simplified as follows

p(ξ | t) ∝ p(ξ)× BA

Γ(A)

Γ(A+ 1)
ξ+ 1

(
|t|2 + (ξ+ 1)B

ξ+ 1

)−(A+1)

(7)

∝ p(ξ)× ABA

ξ+ 1

(
|t|2 + (ξ+ 1)B

ξ+ 1

)−(A+1)

(8)

If we assume a conjugate prior f(ξ) = 1
(ξ+1)γ the probability density function can be written as follows

p(ξ | t) ∝ ABA

(ξ+ 1)γ+1

(
|t|2 + (ξ+ 1)B

ξ+ 1

)−(A+1)

(9)

Which can be simplified as

p(ξ | t) ∝ ABA 1
(ξ+ 1)γ−A

(
|t|2 + (ξ+ 1)B

ξ+ 1

)−(A+1)

(10)

∝ ABA(ξ+ 1)A−γ

(
|t|2 + (ξ+ 1)B

)−(A+1)

(11)

∝ A
B
(ξ+ 1)A−γ

(
|t|2

B
+ ξ+ 1

)−(A+1)

(12)
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By substituting ξ + 1 = y ⇔ ξ = y − 1 and by differentiating we have that dξ = dy. So, equation
(12) can be written as

p(y | t) ∝ A
B
yA−γ

(
|t|2

B
+ y

)−(A+1)

(13)

evaluating the normalising constant this may be written as

p(y | t) =

yA−γ

(
|t|2

B
+ y

)−(A+1)

∫∞
1 y

A−γ

(
|t|2

B
+ y

)−(A+1) (14)

=
γ

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)
yA−γ

(
|t|2

B
+ y

)−(A+1)

(15)

where 2F1(·) is a Gauss hypergeometric function and γ > 0, |t|2

B
> 0.

A Brute Force Solution

Now we can estimate the mode and the first and second moments of the ξ+1 probability density function.
For the mode estimation we will ignore any term that does not depend on variable y.

µ =
d

dy

(
yA−γ

(
|t|2

B
+ y

)−(A+1))
= 0 (16)

µ = max

(
A− γ

γ+ 1
× |t|2

B
, 1

)
(17)

µ1
str =

γ

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

∫∞
1
yyA−γ

(
|t|2

B
+ y

)−(A+1)

(18)

=
γ

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

∫∞
1
yA−γ+1

(
|t|2

B
+ y

)−(A+1)

(19)

=
γ

γ− 1
× 2F1(A+ 1,γ− 1;γ;− |t|2

B
)

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

(20)

µ2
str =

γ

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

∫∞
1
y2yA−γ

(
|t|2

B
+ y

)−(A+1)

(21)

=
γ

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

∫∞
1
yA−γ+2

(
|t|2

B
+ y

)−(A+1)

(22)

=
γ

γ− 2
× 2F1(A+ 1,γ− 2;γ− 1;− |t|2

B
)

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

(23)

Here, we will assume that the SNR (ξ+ 1) is log-normally distributed in the Linear Spectral domain.
So, we may equate the moments of the SNR distribution with the moments of a Log-Normal Distribution.
The first two moments of the SNR distribution can be estimated as follows.

E[ξ+ 1] = E[Y] (24)
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E[(ξ+ 1)2] = E[Y2] (25)

By equating with the moments of a Log Normal distribution we have that

Eln[Y] = E[Y] (26)

eµstr+
σ2
str
2 =

γ

γ− 1
× 2F1(A+ 1,γ− 1;γ;− |t|2

B
)

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

(27)

µstr +
σ2
str

2
= log

(
γ

γ− 1
× 2F1(A+ 1,γ− 1;γ;− |t|2

B
)

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

)
(28)

σ2
str = 2 log

(
γ

γ− 1
× 2F1(A+ 1,γ− 1;γ;− |t|2

B
)

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

)
− 2µstr (29)

Eln[Y2] = E[Y2] (30)

e2µstr+2σ2
str =

γ

γ− 2
× 2F1(A+ 1,γ− 2;γ− 1;− |t|2

B
)

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

(31)

2µstr + 2σ2
str = log

(
γ

γ− 2
× 2F1(A+ 1,γ− 2;γ− 1;− |t|2

B
)

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

)
(32)

µstr =
1
2

log

(
γ

γ− 2
× 2F1(A+ 1,γ− 2;γ− 1;− |t|2

B
)

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

)
− σ2

str (33)

Substituting (33) into (29) we have that

µstr = 2 log

(
γ

γ− 1
× 2F1(A+ 1,γ− 1;γ;− |t|2

B
)

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

)

−
1
2

log

(
γ

γ− 2
× 2F1(A+ 1,γ− 2;γ− 1;− |t|2

B
)

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

)
(34)

σ2
str = −2 log

(
γ

γ− 1
× 2F1(A+ 1,γ− 1;γ;− |t|2

B
)

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

)

+ log

(
γ

γ− 2
× 2F1(A+ 1,γ− 2;γ− 1;− |t|2

B
)

2F1(A+ 1,γ;γ+ 1;− |t|2

B
)

)
(35)

where µstr and σ2str are the mean and variance of a Gaussian distribution in the Log Spectral domain
for the brute force case.

A Potentially-Smarter Approximation

Starting again from equation (13) we will assume that for SNR values 0 < ξ < 1 tha probability density
function is flat. Taking this assumption we may change the integral limits from 0 to 1. So, starting from
equation (13) and evaluating again the normalization constant we have that
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p(y|t) =

yA−γ

(
|t|2

B
+ y

)−(A+1)

∫∞
0 y

A−γ

(
|t|2

B
+ y

)−(A+1) (36)

=
Γ(A+ 1)

Γ(γ)Γ(A− γ+ 1)

(
|t|2

B

)γ
yA−γ

(
|t|2

B
+ y

)−(A+1)

(37)

The first two moments of the above distibution can be estimated as follows 1

µ1
apr =

Γ(A+ 1)
Γ(γ)Γ(A− γ+ 1)

(
|t|2

B

)γ ∫∞
0
yyA−γ

(
|t|2

B
+ y

)−(A+1)

(38)

=
Γ(A+ 1)

Γ(γ)Γ(A− γ+ 1)

(
|t|2

B

)γ ∫∞
0
yA−γ+1

(
|t|2

B
+ y

)−(A+1)

(39)

=
Γ(A+ 1)

Γ(γ)Γ(A− γ+ 1)
Γ(γ− 1)Γ(A− γ+ 2)

Γ(A+ 1)

(
|t|2

B

)γ(
|t|2

B

)1−γ

(40)

=
Γ(γ− 1)Γ(A− γ+ 2)
Γ(γ)Γ(A− γ+ 1)

|t|2

B
(41)

=
A− γ+ 1
γ− 1

|t|2

B
(42)

µ2
apr =

Γ(A+ 1)
Γ(γ)Γ(A− γ+ 1)

(
|t|2

B

)γ ∫∞
0
y2yA−γ

(
|t|2

B
+ y

)−(A+1)

(43)

=
Γ(A+ 1)

Γ(γ)Γ(A− γ+ 1)

(
|t|2

B

)γ ∫∞
0
yA−γ+2

(
|t|2

B
+ y

)−(A+1)

(44)

=
Γ(A+ 1)

Γ(γ)Γ(A− γ+ 1)
Γ(γ− 2)Γ(A− γ+ 3)

Γ(A+ 1)

(
|t|2

B

)γ(
|t|2

B

)2−γ

(45)

=
Γ(γ− 2)Γ(A− γ+ 3)
Γ(γ)Γ(A− γ+ 1)

(
|t|2

B

)2

(46)

=
(A− γ+ 1)(A− γ+ 2)

(γ− 1)(γ− 2)

(
|t|2

B

)2

(47)

By equating again the moments of ξ+ 1 distribution with the moments of a Log Normal one we have
that

Eln[Y] = E[Y] (48)

eµapr+
σ2
apr

2 =
A− γ+ 1
γ− 1

|t|2

B
(49)

µapr +
σ2
apr

2
= log

(
A− γ+ 1
γ− 1

|t|2

B

)
(50)

σ2
apr = 2 log

(
A− γ+ 1
γ− 1

|t|2

B

)
− 2µapr (51)

1The mode here is the same as in the previous case.
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Eln[Y2] = E[Y2] (52)

e2µapr+2σ2
apr =

(A− γ+ 1)(A− γ+ 2)
(γ− 1)(γ− 2)

(
|t|2

B

)2

(53)

2µapr + 2σ2
apr = log

(
(A− γ+ 1)(A− γ+ 2)

(γ− 1)(γ− 2)

(
|t|2

B

)2)
(54)

µapr =
1
2

log

(
(A− γ+ 1)(A− γ+ 2)

(γ− 1)(γ− 2)

(
|t|2

B

)2)
− σ2

apr (55)

Substituting (55) into (51) we have that

µapr = 2 log

(
A− γ+ 1
γ− 1

|t|2

B

)
−

1
2

log

(
(A− γ+ 1)(A− γ+ 2)

(γ− 1)(γ− 2)

(
|t|2

B

)2)
(56)

σ2
apr = −2 log

(
A− γ+ 1
γ− 1

|t|2

B

)
+ log

(
(A− γ+ 1)(A− γ+ 2)

(γ− 1)(γ− 2)

(
|t|2

B

)2)
(57)

Here, we will introduce a noise mean vector which can be estimated as follows

B =

N∑
i=1

|ni,f|2 (58)

B

A
=

∑N
i=1 |ni,f|

2

A
= x (59)

From now on we will express B in terms of A and noise mean x like B = Ax. Following this formula,
we can rewrite equations (34), (35), (56) and (57)

µstr = 2 log

(
γ

γ− 1
× 2F1(A+ 1,γ− 1;γ;− |t|2

x
1
A
)

2F1(A+ 1,γ;γ+ 1;− |t|2

x
1
A
)

)

−
1
2

log

(
γ

γ− 2
× 2F1(A+ 1,γ− 2;γ− 1;− |t|2

x
1
A
)

2F1(A+ 1,γ;γ+ 1;− |t|2

x
1
A
)

)
(60)

σ2
str = −2 log

(
γ

γ− 1
× 2F1(A+ 1,γ− 1;γ;− |t|2

x
1
A
)

2F1(A+ 1,γ;γ+ 1;− |t|2

x
1
A
)

)

+ log

(
γ

γ− 2
× 2F1(A+ 1,γ− 2;γ− 1;− |t|2

x
1
A
)

2F1(A+ 1,γ;γ+ 1;− |t|2

x
1
A
)

)
(61)

µapr = 2 log

(
A− γ+ 1
γ− 1

1
A

|t|2

x

)
−

1
2

log

(
(A− γ+ 1)(A− γ+ 2)

(γ− 1)(γ− 2)

(
1
A

|t|2

x

)2)
(62)

σ2
apr = −2 log

(
A− γ+ 1
γ− 1

1
A

|t|2

x

)
+ log

(
(A− γ+ 1)(A− γ+ 2)

(γ− 1)(γ− 2)

(
1
A

|t|2

x

)2)
(63)
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The simulation shows that the assumption of the distibution of y = ξ + 1 being flat for 0 < ξ < 1 is
really close to hypergeometric brute force solution even for low raw SNR values. This is summarized in
figure 1.
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Figure 1: Brute Force Solution vs Approximation

Cepstral Domain and Decoding

As we mentioned before µ and σ2 are the mean and variance in the Log Spectral space. In terms of
vectors and matrices equations (60), (61), (62) and (63) can be written as follows

µistr = 2 log

(
γ

γ− 1
× 2F1(A+ 1,γ− 1;γ;− |ti|

2

x
1
A
)

2F1(A+ 1,γ;γ+ 1;− |ti|2

x
1
A
)

)

−
1
2

log

(
γ

γ− 2
× 2F1(A+ 1,γ− 2;γ− 1;− |ti|

2

x
1
A
)

2F1(A+ 1,γ;γ+ 1;− |ti|2

x
1
A
)

)
(64)

Σiistr = −2 log

(
γ

γ− 1
× 2F1(A+ 1,γ− 1;γ;− |ti|

2

x
1
A
)

2F1(A+ 1,γ;γ+ 1;− |ti|2

x
1
A
)

)

+ log

(
γ

γ− 2
× 2F1(A+ 1,γ− 2;γ− 1;− |ti|

2

x
1
A
)

2F1(A+ 1,γ;γ+ 1;− |ti|2

x
1
A
)

)
(65)
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µiapr = 2 log

(
A− γ+ 1
A(γ− 1)

|ti|
2

x

)
−

1
2

log

(
(A− γ+ 1)(A− γ+ 2)
A2(γ− 1)(γ− 2)

(
|ti|

2

x

)2)
(66)

Σiiapr = −2 log

(
A− γ+ 1
A(γ− 1)

|ti|
2

x

)
− log

(
(A− γ+ 1)(A− γ+ 2)
A2(γ− 1)(γ− 2)

(
|ti|

2

x

)2)
(67)

Here the mean vectors and diagonal covariance matrices are in the log spectral domain. Moving to
the cepstral domain we will use a descrite cosine transform (DCT). The DCT will be represented as a
matrix C. In a general case of mean vectors µl, µc and covariance matrices Σl, Σc in the log spectral and
cepstral domains respectively, we can write as in Gales (1996) that

µc = Cµl (68)

Σc = CΣlCT (69)

Mapping from the Log spectral to the cepstral domain will lead to full covariance matrices. Using
delta and delta-delta (acceleration) parameters the mean vectors and covariance matices will have the
following form in the cepstral domain.

µc =
[
(Cµl)T (C∆µl)T (C∆2µl)T

]T (70)

where ∆µl and ∆2µl are the delta and delta-delta mean vectors in the log spectral domain.

For the covariance matrix we have that

Σc =

 CΣlCT CδsdΣlCT Cδs−ddΣlCT

C(δsdΣl)TCT C∆ΣlCT Cδd−ddΣlCT

C(δs−ddΣl)TCT C(δd−ddΣl)TCT C∆2ΣlCT

 (71)

where ∆Σl and ∆2Σl are the covariance matrices of the delta and delta-delta parameters and δsdΣl,
δd−ddΣl and δs−ddΣl are the covariance matrices which represent the correlation between static and
delta, delta and accelaration, and static and accelaration parameters respectively. In our case we assume
diagonal covariance matrices which means that the cross correlation terms between static, delta and
delta-delta parameters are considered equal to zero. We keep only the the diagonals of the full static,
delta and delta-delta covariance matrices. Therefore, the final covariance matrices in the cepstral domain
will have the following form

Σc =



σ2
s11

0 . . . . . . . . . . . . . . . . . . 0

0
. . . 0 . . . . . . . . . . . . . . .

...
... 0 σ2

snn
0 . . . . . . . . . . . .

...
... . . . 0 σ2

d11
0 . . . . . . . . .

...
... . . . . . . 0

. . . 0 . . . . . .
...

... . . . . . . . . . 0 σ2
dnn

0 . . .
...

... . . . . . . . . . . . . 0 σ2
dd11

0
...

... . . . . . . . . . . . . . . . 0
. . . 0

0 . . . . . . . . . . . . . . . . . . 0 σ2
ddnn



(72)

where σ2
s, σ

2
d and σ2

dd are the diagonal elements of the covariance matrices of the static, delta and
delta-delta parameters respectively and n the dimensionality.
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For decoding noise uncertainty, the Gaussian likelihood estimation in the Viterbi decoder will be
estimated as follows

p(µc|M) =
1√

(2π)n|Σm + Σc|
1
2

exp(−
1
2
(µc − µm)T (Σc + Σm)−1(µc − µm)) (73)

where µm and Σm are the mean vector and covariance matrix of the already trained acoustic model
M. This translates into that during the decoding stage we add the estimated variance features with the
trained acoustic model’s variance parameters.

Experiments

As we mentioned before, we evaluated our method with the aurora 2 database which is a digit recognition
task. The experimental setup is the same as in Garner (2009) and Garner (2011). We tried four basic un-
certainty decoding schemes. Each scheme was combined with cepstral mean normalization being applied
on both observations (SNR estimates) and variances. The basic Front-Ends we used are shown in figure
(2). Feature extracrion sequence with and without the use of CMN are shown in block diagrams (a) and
(b) respectively. In these experiments we consider as baseline case, the case where SNR estimates plus
one are passed to the decoder. In our baseline case, variance features are again calcuted with equation
(61). In the second scenario, observations are replaced by the mode of the SNR + 1 probability density
function, as it is described in the ”Brute Force Solution“ part. In this case, variance features are estimated
using equation (61). In the third case, SNR estimates are replaced by calculating a mean vector using
equation (60) with variance features estimated again with equation (61). In the final case scenario, we
use the mode of the SNR probability density function and we calculate variance features by using equa-
tion (63). The values of A and γ, used for the estimation of the observations and variance features are
shown in the following tables.

Parameter Mode Case Straight Solution Case Maximum Likelihood case
A - Noise Vectors 20 20 20
γ - Prior 0.0 2.1 -

Table 1: Calculation of Observations - Simple and all Uncertainty Cases

Parameter Mode Case Straight Solution Case Maximum Likelihood case
A - Noise Vectors 10 10 10
γ - Prior 2.1 2.1 2.1

Table 2: Calculation of Variance Features - Hypegeometric Case

Parameter Mode Case
A - Noise Vectors 20
γ - Prior 2.1

Table 3: Calculation of Variance Features - Assumption Case

9



(a) (b)

Figure 2: a) Front-End without CMN b) Front-End with CMN
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Figure 3: Baseline Maximum Likelihood Mean Case vs Maximum Likelihood Mean with Uncertainty
Decoding - Hypergeometric Variance Case
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Figure 4: Maximum Likelihood Mean with CMN Case vs Maximum Likelihood Mean with CMN and
Uncertainty Decoding - Hypergeometric Variance Case. Here, CMN masks the impact of uncertainty
decoding in all cases. This is why the plots are identical.
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Figure 5: Mode Case vs Mode with Uncertainty Decoding - Hypergeometric Variance Case
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Figure 6: Mode with CMN Case vs Mode with CMN and Uncertainty Decoding - Hypergeometric Variance
Case. Here, CMN masks again the impact of uncertainty decoding in all cases. This is why the plots are
identical.
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Figure 7: Hypergeometric Mean Case vs Hypergeometric Mean with Uncertainty Decoding - Hypergeo-
metric Variance Case
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Figure 8: Hypergeometric Mean with CMN Case vs Hypergeometric Mean with CMN and Uncertainty
Decoding - Hypergeometric Variance Case. Here, CMN masks the impact of uncertainty decoding in
almost all cases. This is why the plots are almost identical.

13



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-5 0 5 10 15 20 25

A
c
c
u

ra
c
y
 (

%
)

Signal to Noise Ratio (dB)

multi a (93.53, 82.97)
multi b (93.53, 84.98)
multi c (92.75, 82.18)

clean a (98.59, 43.90)
clean b (98.59, 49.32)
clean c (98.44, 43.51)

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-5 0 5 10 15 20 25

A
c
c
u

ra
c
y
 (

%
)

Signal to Noise Ratio (dB)

multi a (93.52, 82.83)
multi b (93.52, 84.93)
multi c (92.77, 82.13)

clean a (98.58, 43.77)
clean b (98.58, 49.20)
clean c (98.44, 43.39)

(b)

Figure 9: Mode Case vs Mode with Uncertainty Decoding - Assumption Variance Case

Conclusions

Besides the fact that SNR features are shown to work very well in noisy conditions, we don’t have any
evidence that variance features associated with SNR ones can increase the recognition performance in
noisy environments. As it is depicted in the graphs, we have an improvement in the final case scenario,
but this improvement is masked when we are using basic feature enhancement techniques such as CMN,
in almost all cases. This means that the proposed method faces some theoretical and/or practical prob-
lems. The main theoritical problem could be the log-normal assumption in the spectral domain. What
could be a practical problem is the fact that we use variance estimates only for testing and not for train-
ing. Overall, we believe that the proposed method has potential but it needs more investigation in the
aforementioned possible causes of problems. Here, we should make a reference on Ephraim and Rahim
(1999) and Ephraim and Roberts (2005), as in these papers another alternative method of estimating
variance features in the cepstral domain is introduced. The reader is advised to study these papers, too.
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