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ABSTRACT

Two of the major challenges in microphone array based adap-
tive beamforming, speech enhancement and distant speech
recognition, are robust and accurate source localization and
voice activity detection. This paper introduces a spatial gra-
dient steered response power using the phase transform (SRP-
PHAT) method which is capable of localization of competing
speakers in overlapping conditions. We further investigate the
behavior of the SRP function and characterize theoretically a
fixed point in its search space for the diffuse noise field. We
call this fixed point the null position in the SRP search space.
Building on this evidence, we propose a technique for multi-
channel voice activity detection (MVAD) based on detection
of a maximum power corresponding to the null position. The
gradient SRP-PHAT in tandem with the MVAD form an inte-
grated framework of multi-source localization and voice ac-
tivity detection. The experiments carried out on real data
recordings show that this framework is very effective in prac-
tical applications of hands-free communication.
Index Terms: Multi-source localization, Multi-channel voice
activity detection, Steered Response Power (SRP) localiza-
tion, Diffuse noise field

1. INTRODUCTION

Speaker localization is a demanding area of research in hands-
free speech communication using microphone arrays. In such
applications, accurate knowledge of the speaker location is es-
sential for an effective beampattern steering and interference
suppression. This task gets even more challenging in meet-
ing acquisition and conference recordings due to the presence
of competing speakers [1]. We will briefly review the main
approches to address this issue as follows:

I. High Resolution Spectral Estimation: Several algo-
rithms have been proposed based on high resolution spectral
estimation, such as minimum variance spectral estimation,
auto-regressive modeling and various techniques based on

eigen-analysis such as Multiple Signal Classification (MU-
SIC). These approaches are based on analysis of the received
signals’ covariance matrix, hence need an accurate estimation
of the source signals, and impose a stationarity assumption.
The underlying hypotheses are hardly realistic in case of
speech signals as well as the room acoustics and the results
are not very promising [2].

II. Time Difference Of Arrival (TDOA) Estimation: A
common localization approach is based on TDOA estimation
of the sources with respect to a pair of sensors. This ap-
proach is very practical if the placement of the microphones
provides an accurate 3D estimation of the delays. Some com-
mercial products such as automatic steering of cameras for
video-conferences have been developed based on this idea
[3]. In such applications, an updating rate of 300ms for lo-
cation information is possible even in unfavorable acoustic
conditions. However, in the scenario of multiple-target track-
ing and adaptive beam-steering, higher update rate is usually
beneficial [4]. The generalized cross correlation (GCC) is
the most celebrated technique for TDOA estimation. The
basic idea is to find the peak of the cross-correlation function
of the signal of two microphones. A weighting scheme is
usually applied to increase the robustness of this approach to
noise and multi-path effects. The maximum likelihood (ML)
weighting is theoretically optimal when there is an uncor-
related noise source and there is no reverberation effect. In
practice however, the performance of GCC-ML is highly de-
graded due to reverberation, and the Phase Transform (PHAT)
yields better results [5].
Alternative TDOA estimation approaches are based on room
impulse response identification. The basic idea behind
this approach is that the acoustic channel defined for each
speaker-microphone pair is a function of the speaker location.
Hence, identifying the room impulse response enables us to
compute TDOAs and localize the speakers. When there is
no prior knowledge about the microphone array geometry,
this scenario could be formulated as a blind Multiple-Input
Multiple-Output (MIMO) channel identification problem.



The solution usually incorporates blind source separation at
the pre-processing step and resolves the ambiguity of the
acoustic mixing process by localization along with the sepa-
ration of the individual sources [6, 7].
Some other alternatives for TDOA estimation are based on
singular value decomposition for estimation of the room im-
pulse response which is very practical for the speech signal
but requires at least 250ms of data to converge [8].

III. Beamformer Steered Response Power (SRP): Finally,
it is possible to localize the speaker directly based on the
beamformer output power. In this approach, the space is
scanned by steering the beam-pattern and finding the max-
imum power. The delay-and-sum beamformer, minimum
variance beamformer and generalized side-lobe canceler have
been the most effective methods for speaker localization [9].
Unlike TDOA-based approaches, SRP-based localization ap-
proaches have a higher effective update rate, i.e., they can
work with much shorter frames even in adverse acoustic con-
ditions; hence, they are practically appropriate for realistic
applications, especially in multi-party scenarios [10]. Dif-
ferent filtering proposals have been used in SRP techniques,
among which the phase-transform filter (PHAT) has been
shown to provide a robust localization framework [11].

This paper is organized as follows: The general concepts
of SRP localization approaches are introduced in 2.2. We then
provide theoretical as well as empirical evidence that the SRP
output power for the silent frames exhibits a peak correspond-
ing to a fixed point in its search space. Relying on this obser-
vation, we formulate a multi-channel voice activity detection
(MVAD) in Section 2.3. In Section 2.4 a multi-speaker mod-
ification of SRP-PHAT for localization of competing sources
is proposed by applying a spatial gradient function on the
beamformer output. We further carry out some experiments
on the real data recordings to evaluate the proposed frame-
work in Section 3. Conclusions are drawn in Section 4.

2. MULTI-SOURCE LOCALIZATION AND VOICE
ACTIVITY DETECTION

2.1. Signal model

We consider a scenario in which M microphones record the
signal of L sources; the single-channel received signal, xm(t),
is composed of two components: (1) a filtered version of the
original signal, sl, which has been convolved with the source-
microphone room impulse response, hm,l and (2) an uncor-
related independent additive noise nm(t)

xm(t) =

L∑
l=1

sl(t) ∗ hm,l + nm(t) (1)

2.2. SRP-PHAT source localization

The general procedure of the beamforming applies filter-and-
sum on the input microphone-channels. The filters are usually
adapted in order to enhance the source signal whilst suppress-
ing the interference; hence the beamformer output is maxi-
mized when the beampattern is focused accurately towards
the speaker. In the SRP localization, the output power is used
for a 3D scanning of the space where the maximum power
corresponds to the location of the active speaker. To state
it concisely, the Generalized Cross Correlation (GCC) is de-
fined as

Rm,n(τ) =
1

2π

∫∞
−∞(Gm(ω)Xm(ω))(Gn(ω)Xn(ω))∗ejωτdω

(2)
where X and G are the Fourier transform of the signal
and filter, respectively. Defining the weighting function
Ψm,n(ω) = Gm(ω)G∗

n(ω), the GCC function would be

Rm,n(τ) =
1

2π

∫∞
−∞ Ψm,n(ω)Xm(ω)X∗

n(ω)ejωτdω (3)

The PHAT weighting function is defined as

Ψm,n(ω) = |Xm(ω)X∗
n(ω)|−1 (4)

Substituting 4 into 3 and taking the summation of all pos-
sible microphone pairs, the SRP-PHAT is obtained

P(ρ, θ,ϕ) = 2π
∑
m,n

Rm,n(τm,n) m,n ∈ {1, 2, ...,M} (5)

where τm,n is the time difference of arrival of the source sig-
nal located at κ(ρ,θ,ϕ) to the two microphones m and n.
Note that the source location is represented in spherical coor-
dinates where ρ denotes the range and θ and ϕ correspond to
the azimuth and elevation, respectively.

The largest peak corresponds to the dominant speaker lo-
cated at

κ(ρ̂, θ̂, ϕ̂) = argmax
ρ,θ,ϕ

P(ρ, θ,ϕ) (6)

2.3. Multi-Channel VAD

In this section, we will investigate the SRP-PHAT formulation
when the input is a diffuse noise, which is often the case in
realistic environments without presence of any active speaker.
We characterize theoretically the existence of a predefined
point for the SRP function for the diffuse noise; hence, there
is no speech activity. Suppose that ni and nk represent the
noises at microphones i and k respectively. The cross spec-
tral density between ni and nk is

Φik(ω) = Ni(ω)N∗
k(ω), (7)

where Ni(ω) and Nk(ω) are Fourier transform noises i and
k respectively. and the coherence between noises ni and nk

is

Γik(ω) =
Φik(ω)√

Φii(ω)Φkk(ω)
. (8)



For the diffuse noise, we have [12]

Γik(ω) = sinc

(
ωdik

c

)
, (9)

where dik is the distance between the two microphones and
c is the speed of sound. Substituting equation 9 into equation
3, we obtain

Ri,k(τ) =
1

2π

∫∞
−∞

Γik(ω)

|Γik(ω)|
ejωτdω

=
1

2π

∫∞
−∞

sinc(ωdik

c
)

|sinc(ωdik

c
)|
ejωτdω. (10)

In order to find the maximum of the SRP-PHAT function,
we compute the derivative w.r.t. τ; hence

∂Ri,k(τ)

∂τ
=

j

2π

∫∞
−∞

ωsinc(ωdik

c
)

|sinc(ωdik

c
)|
ejωτdω = 0. (11)

The above equality holds for τ = 0; hence the maximum
of Ri,k(τ) is obtained for a point with equal distance to the
two microphones. The same argument is true for all micro-
phone pairs; therefore on the direction perpendicular to the
microphone array the closest point to the center of the micro-
phone array is where the output power of the SRP is maxi-
mized. Obviously, this has a strong dependence on the ele-
vation and less sensitivity to the azimuth (θ). Since this is
obtained only when there is no speech activity, we call it the
null point of the SRP search space. We can exploit this fact
to detect voice activity in the acquired multi-channel speech
frames.

The integrated framework of SRP localization and MVAD
reduces the complexity of speech analysis in microphone-
array applications such as hands-free speech recognition. The
previous proposals on MVAD which takes advantage of the
extra information provided by additional sensors [13, 14] in-
creases the computational load. A few others have been also
published recently based on Gaussianity assumption of the
frequency components [15] or non-uniform phase assumption
[16]. In practice however, these hypotheses are not realis-
tic. On the other hand, the technique that we propose here
is based on a realistic model of the acoustic conditions as a
diffuse noise field and imposes no computational load on the
source localization and beamforming designed for data ac-
quisition. Moreover we don’t need any training or threshold
optimization which is a common computational load in any
VAD structure.

2.4. Spatial Gradient SRP-PHAT

In this section, we further exploit the integrated frame work
of SRP localization and MVAD, and extend it for multi-party
scenarios. The PHAT transform whitens the microphone sig-
nals; hence yields sharper peaks at the output power corre-
sponding to the actual location of the L sources. In multi-
speaker scenarios, the localization of L competing sources

amounts to the detection of the largest L peaks of the beam-
former output power. In practice however, the SRP-PHAT
output has many local maxima due to the multi-path effect
which make the extraction of the largest L peaks very diffi-
cult. Considering the fact that the SRP has a discrete search
space, we first apply a three dimentional box filtering (aver-
aging) defined as follows:

P̄(ρi, θi,ϕi) =

∑1
c=−1

∑1
b=−1

∑1
a=−1 P(ρi−c, θi−b,ϕi−a)

27
(12)

To find the second source location, we have to remove the
data corresponding to the dominant speaker from the search
space. Therefore, the data points from all directions of ρ,θ,ϕ
which correspond to the negative spatial gradient of the SRP
output power (P̄) are discarded. The directional derivative of
P̄ at point κ in direction u is obtained by

∇uP̄(κ) = lim
h→0+

P̄(κ+ hu) − P̄(κ)

h
= ∇P̄(κ)u, (13)

where u is the unit vector and ∇ on the right denotes the gra-
dient and

∇P̄(ρ,θ,ϕ) =
∂P̄

∂ρ
eρ +

1

ρ

∂P̄

∂ϕ
eϕ +

1

ρ sinϕ

∂P̄

∂θ
eθ, (14)

where eρ, eθ, eϕ are the canonical basis vectors of the co-
ordinate system. Then, the directional derivative defined in
equation 13 is computed at the location of the largest peak
denoted by κ in 26 u directions. Hence,

u ∈
{
ieρ + jeθ + keϕ√

i2 + j2 + k2
; i, j, k ∈ {−1, 1, 0}, i2 + j2 + k2 6= 0

}
(15)

Then in all directions as long as the gradient function has a
negative value, we take a small step ∆d = ρ ε

√
i2 + j2 + k2

with 0 < ε � 1 to the next data point and this procedure is
continued until all the data points with negative gradient are
discarded from the search space. The residual is then searched
to find the maximum power corresponding to the second dom-
inant speaker. This procedure is continued until the SRP max-
imum corresponds to the null point in the search space. The
number of active speakers at each frame is determined by de-
tecting this null point in the SRP residual.

3. EXPERIMENTS

In this section, we present experimental results on the pro-
posed integrated framework of SRP-PHAT localization and
MVAD based on (1) simulated data with the diffuse noise
field and (2) real recording using the MONC as well as RT09
databases.

3.1. Diffuse Noise Field Simulation and Results

We consider a scenario in which three white noise sources
are located at random positions in the room. The room im-
pulse responses are generated with the image model technique



[17] using intra-sample interpolation, up to 15th order reflec-
tions and omni-directional microphones. The corresponding
reflection ratio, β used by the image model was calculated via
Eyring’s formula:

β = exp(−13.82/[c× (L−1
x + L−1

y + L−1
z )× T ]) (16)

where Lx,Ly and Lz are the room dimensions, c is the sound
velocity in the air (≈342m/s) and T is the room reverberation
time. In our experiments T=300ms and the room direct-paths
are discarded from the impulse responses for generation of
the semi-diffuse noise signals [18]. Three noise sources are
randomly positioned in the room and a circular microphone
array with 8-channels and diameter of 20cm located at the
center of the room records the diffuse noise.

The SRP-PHAT run on the multi-channel diffuse noise
signal exhibits a consistent peak corresponding to the near-
est point to the maximum elevation to the center of the array.
The experiments are carried out for 128ms frames with 50%
overlap. The maximum elevation in search space of our sim-
ulation as well as real data tests are 85◦ and 75◦ respectively.
As illustrated in Fig.1 the null point exists at the ρ=5cm and
ϕ = 85◦ in the search space. As expected, the azimuth value
is almost random. These results provide empirical evidence
of the formulation derived in section 2.3. This joint frame-
work of gradient SRP-PHAT localization and voice activity
detection is shown to work well under the assumption of the
diffuse noise field for the real environments. In the following
section, we conduct some experiment on the real data record-
ings.
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Fig. 1. SRP-PHAT localization in diffuse noise field

3.2. Speech Database

We have evaluated our framework using two databases
recorded in real environments: (1) The Multichannel Over-
lapping Numbers Corpus (MONC) [19]. We have used the
following two recording scenarios; S1: one speaker located
at L1 (78cm,135◦,23◦) without overlapping, S12: one com-
peting speaker located at L2 (78cm,45◦,23◦), (2) Rich tran-
scription (RT09) is structured for mixing metadata extraction
and speech-to-text (STT) technologies. We use this database
of a precise evaluation of MVAD using 8-channel micro-
phone recordings. The details are explained in [20]. We use
file EDI_20071128_1000_ci01_NONE.sph that was
recorded in the IMR meeting room by array1 at Edinburgh.
We use the ICSI ground truth, that is, a hand transcription
automatically aligned with the data. In this sense, the ground
truth can contain errors; however, the results are still informa-
tive. File EDI_20071128-1000.rttm was used as the
ground truth.

3.3. Single Speaker Localization and MVAD

In the first scenario, we run our algorithm on S1. The Signal-
to-noise Ratio (SNR) is estimated about 9dB. The results are
depicted in Fig. 2. The 3D search space of SRP-PHAT con-
sists of 150,000 points. The nearest vertical point to the cen-
ter of the array (SRP null-point) is N (ρ=0.45m,ϕ=75◦). The
null-point is detected when there is no speech activity in the
frame, e.g. the first two frames in the Fig. 2. The high ac-
curacy of the proposed MVAD can be seen in Fig. 2(e). For
instance, there exists a high energy noisy region between 3.62
and 3.94 seconds which has been correctly identified as a non-
speech part of the signal. By removing the silent frames using
MVAD, Fig. 3 is obtained. Note that the joint localization-
VAD framework exhibits highly accurate results as the stan-
dard deviation (SD) of azimuth estimation is 0.5◦ and the SD
of elevation estimation is 2◦. Accurate estimation of the range
however, is not possible.

3.4. Multi-Speakers Localization and MVAD

The second scenario considers overlapping speech segments.
In Fig. 4, generic SRP-PHAT has been used along with
MVAD. As we can observe, only the dominant speaker is
detected at each frame. The silent frames detected by MVAD
are shown at azimuth = 0. As the figure illustrates, the dom-
inant speaker is localized very accurately, the SD of azimuth
estimation is 1◦. If we use the spatial gradient modification
of SRP-PHAT, we can localize both the dominant as well as
the inferior speakers precisely at each frame. The results of
this experiment are depicted in Fig. 5. The results are shown
for the azimuth estimation. Upon the detection of a peak
at elevation = 75◦, the MVAD has detected a noisy region
where no speech activity is present. The dominant speaker is
indicated by circles; the inferior speaker is extracted by the
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Fig. 2. Speaker localization using SRP-PHAT in non-
overlapping conditions. (a) estimated azimuth (degrees), (b)
estimated elevation (degrees), (c) estimated range (metre), (d)
clean speech waveform, (e) distant speech recorded by micro-
phone array

gradient method and it is denoted by dots. The number of
active speakers is determined when the null-point is detected
in the gradient SRP-PHAT residual.

In our final experiment, we evaluate the proposed MVAD
on part of the RT09 database. A total 315s of speech signal
is processed in frames of length 256ms with 50% overlap.
The speech material is taken from an 83s and another 232s
segment of a file. This is in order to avoid physical noise
such as door slams in the background and such that more than
18% of frames are silent. This enables us to have a sound
evaluation of MVAD. It is not an exhaustive test; we only aim
to have an evaluation on a modern corpus.

The total error rate for MVAD is 6.4%, which consists of
2.7% missed speech and 3.7% false alarms. The proposed
MVAD is practical in meeting recordings, which are usually
moderate SNR speech but highly reverberant situations. The
sample spectrogram and the speech waveform are illustrated
in Fig. 6. The recognized silent parts (output of MVAD) are
indexed with boxes in a yellow strip. As the figure shows, the
signal is highly noisy. The majority of the errors in MVAD
happen at the transitions of silent and speech.

4. CONCLUSIONS

We proposed an integrated framework for multi-channel
multi-source localization and voice activity detection which
is very effective in real acoustic conditions and practical
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Fig. 3. Improvement of joint source localization and voice
activity detection framework in non-overlapping condition
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Fig. 4. Dominant speaker localization in overlapping condi-
tion using SRP-PHAT on MONC.

hands-free speech scenarios. Our method exploits the SRP
localization technique. We introduced a spatial gradient mod-
ification to SRP-PHAT for localization of competing sources.
We further worked out the SRP search space for the diffuse
noise field and characterized a fixed point corresponding to
the SRP peak for non-speech frames. This formulation led
to introducing another application of the gradient SRP-PHAT
as an MVAD. Experiments conducted on real data record-
ings showed that the framework could exhibit highly accurate
results for multi-source localization and voice activity detec-
tion in microphone array applications, in particular in highly
reverberant environments, such as aircraft cockpits and auto-
mobile interiors, where the noise fields are usually diffuse.
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