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Translation of the short article on the previous page

When God 1 is going to place great responsibility upon a man, He always frustrates his spirit

and will, exhausts his muscles and bones, exposes him to starvation and poverty, harasses him

with troubles and setbacks beforehand, in order to stimulate his mind, to toughen his nature

and to enhance his abilities.

A man does not reform if nothing happens to him. A man is motivated to reform only when a

certain situation that makes him perplexed and thus start to think happens. Usually a man

does not realize his problems until he is told implicitly or explicitly.

A country will definitely collapse if it has neither internal upstandingministers and counsellors

nor external enemies and troublemakers.

Adversity makes men, and prosperity makes monsters.

—Mencius, 372 BC – 289 BC

(Translated by the author of the thesis)

1. the ruler of the universe in the traditional Chinese culture



Résumé

Cette thèse est motivée par l’objectif de développer des systèmes de traduction parole à

parole personnalisés et est axée autour d’un de ces composants fondamentaux – l’adaptation

interlinguale de locuteur dans le cadre de la synthèse vocale à partir d’une entrée textuelle.

Un système de traduction parole à parole personnalisé permet de traduire un signal d’entrée

parlé pour une personne donnée en un signal de sortie parlé tout en maintenant l’identité liée

à la voix.

Avant de traiter les questions techniques, cette thèse aborde la perception par l’homme de

l’identité du locuteur. Des tests d’écoute ont été menés afin de déterminer si les gens sont

en mesure de différencier des individus lorsqu’ils s’expriment dans plusieurs langues. Les

résultats de ces expériencesmontrèrent que cette tâche est réalisable. Toutefois, il était difficile

pour les auditeurs testés de différencier les locuteurs lorsque, à la fois, la langue et le type de

parole varient (enregistrements initiaux ou échantillons synthétisés).

Le problème fondamental dans l’adaptation interlinguale de locuteur est de déterminer

comment appliquer les techniques d’adaptation de locuteur lorsque les données d’adaptation

sont dans une langue différente de celle employée pour générer les modèles de synthèse.

Une grande partie de cette thèse est consacrée à l’analyse et à l’amélioration de l’adaptation

interlinguale de locuteur reposant sur les correspondances d’états MMC. Tout d’abord, les

conséquences d’une adaptation interlinguale non supervisée sont examinées, compte tenu

du lien direct avec le scénario d’application d’une traduction parole à parole personnalisée.

La comparaison des systèmes supervisés et non-supervisés montre que la performance de

l’adaptation interlinguale non-supervisée est comparable à la méthode supervisée, même si

le taux d’erreur phonème des systèmes non-supervisés est d’environ 75%.

Ensuite, les conséquences de la disparité de langue entre les modèles de synthèse et les

données d’adaptation sont examinées. Il a été constaté que cette disparité transmet des

informations indésirables de la langue, des données d’adaptation vers les modèles de syn-

thèse, limitant l’efficacité des transformations des classes de régression, de l’utilisation d’une

quantité plus importante de données d’adaptation, ainsi que de l’estimation itérative des

transformations d’adaptation.

Troisièmement, en vue de résoudre les problèmes causés par la disparité de langue, un
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Abstract in French

cadre d’adaptation axé sur les données et utilisant des connaissances phonologiques est

proposé. L’idée fondamentale est de grouper les états MMC en fonction des connaissances

phonologiques et en se basant sur les données, pour ensuite associer chaque état avec un

homologue phonologiquement cohérent dans une langue différente. Ce cadre est également

utilisé lors de la construction d’un arbre de régression pour l’estimation des transformations.

Il ressort que le cadre proposé atténue l’impact négatif de la disparité de langue, et conduit à

une solide amélioration par rapport aux précédentes méthodes de l’état de l’art.

Enfin, un cadre de transformation hiérarchique à deux couches est proposé, où une couche

vise à capturer les caractéristiques de la voix d’un locuteur cible, et l’autre couche compense

la disparité de langue. Une étude initiale a été menée afin de déterminer une méthode per-

mettant de construire cette structure hiérarchique de transformations. Bien que les résultats

préliminaires soient prometteurs, des investigations plus approfondies restent nécessaire

pour confirmer la validité de cette approche.

Mots-clés disparité de langue, correspondance d’états MMC, amélioration axée sur les don-

nées, hiérarchie d’adaptation à deux couches, adaptation interlinguale de locuteur, traduction

de parole à parole, synthèse vocale en utilisant des MMCs

(Translated by Laurent El Shafey as per the English version)
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Abstract

The thesis work was motivated by the goal of developing personalized speech-to-speech trans-

lation and focused on one of its key component techniques – cross-lingual speaker adaptation

for text-to-speech synthesis. A personalized speech-to-speech translator enables a person’s

spoken input to be translated into spoken output in another language while maintaining

his/her voice identity.

Before addressing any technical issues, work in this thesis set out to understand human

perception of speaker identity. Listening tests were conducted in order to determine whether

people could differentiate between speakers when they spoke different languages. The results

demonstrated that differentiating between speakers across languages was an achievable task.

However, it was difficult for listeners to differentiate between speakers across both languages

and speech types (original recordings versus synthesized samples).

The underlying challenge in cross-lingual speaker adaptation is how to apply speaker adap-

tation techniques when the language of adaptation data is different from that of synthesis

models. The main body of the thesis work was devoted to the analysis and improvement of

HMM state mapping-based cross-lingual speaker adaptation. Firstly, the effect of unsuper-

vised cross-lingual adaptation was investigated, as it relates to the application scenario of

personalized speech-to-speech translation. The comparison of paired supervised and unsuper-

vised systems shows that the performance of unsupervised cross-lingual speaker adaptation

is comparable to that of the supervised fashion, even if the average phoneme error rate of the

unsupervised systems is around 75%.

Then the effect of the language mismatch between synthesis models and adaptation data

was investigated. The mismatch is found to transfer undesirable language information from

adaptation data to synthesis models, thereby limiting the effectiveness of generating multiple

regression class-specific transforms, using larger quantities of adaptation data and estimating

adaptation transforms iteratively.

Thirdly, in order to tackle the problems caused by the language mismatch, a data-driven

adaptation framework using phonological knowledge is proposed. Its basic idea is to group

HMM states according to phonological knowledge in a data-driven manner and then to map

each state to a phonologically consistent counterpart in a different language. This framework

vii



Abstract in English

is also applied to regression class tree construction for transform estimation. It is found that

the proposed framework alleviates the negative effect of the language mismatch and gives

consistent improvement compared to previous state-of-the-art approaches.

Finally, a two-layer hierarchical transformation framework is developed, where one layer cap-

tures speaker characteristics and the other compensates for the language mismatch. The most

appropriate means to construct the hierarchical arrangement of transforms was investigated

in an initial study. While early results show some promise, further in-depth investigation is

needed to confirm the validity of this hierarchy.

Keywords language mismatch, HMM state mapping, data-driven enhancement, two-layer

adaptation hierarchy, cross-lingual speaker adaptation, personalized speech-to-speech trans-

lation, HMM-based speech synthesis
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　　本文的研究工作因開發個人化的語音到語音翻譯這一目標而開始，重點放在其一項

關鍵技術——用於文語轉換的跨語言說話人自適應。個人化的語音到語音翻譯器能夠在

將一個人的講話翻譯成另一種語言的同時，在合成語音中保留這個人的音色。

　　在著手處理技術問題之前，本文的研究工作首先著眼於理解人對音色的感知，希望

借聽辨實驗確定普通人是否能夠在若干說話人講不同語言的時候將他們區分開來。聽辨

實驗結果顯示，在跨語言的時候區分不同的說話人是可以辦到的。然而，要在跨語言且

跨語音類型（原始錄音和合成語音相比較）的情況下區別不同的說話人就比較困難了。

　　跨語言說話人自適應裡的核心挑戰是如何在自適應數據的語言和語音合成模型的語

言不同的時候應用說話人自適應技術。本論文工作的主體部分放在分析和改進基於隱馬

模型狀態映射的跨語言說話人自適應。首先，鑒于無監督跨語言說話人自適應和個人化

的語音到語音翻譯的應用場合相關，本文對它的效果加以研究。對成對的有監督及無監

督的系統的對比顯示，無監督跨語言說話人自適應的性能與有監督時的性能相當，即使

這些無監督的系統的平均音位識別錯誤率達75%左右。

　　在此之後，本文研究了語音合成模型和自適應數據之間語言不匹配所帶來的影響。

本文發現，這種不匹配把並不需要的語言信息從自適應數據轉移到了語音合成模型裡，

故而限制了對如下幾個方面的有效利用：生成多個針對特定回歸類別的轉換矩陣、使用

數量較大的自適應數據、迭代式估計自適應轉換矩陣。

　　第三，為了解決由語言不匹配引發的問題，本文提出一個使用語音知識的數據驅動

的自適應框架。它的基本想法是根據語音知識將隱馬模型的狀態以數據驅動的方式進行

分組，然後將每個狀態映射到另一種語言中一個語音類別一致的狀態上。這個框架也被

用於建立估計轉換矩陣所需的回歸類樹。本文發現，這個框架可以減弱語言不匹配的影

響，即使供測試的說話人不同，系統性能也有一致的提高。

　　最後，本文研究了一個雙層的變換框架——一層用於捕獲說話人的特徵，另一層用

於補償語言不匹配。本文對最恰當的建立這個雙層變換框架的方法進行了研究。初步的

結果顯示這個雙層框架有研究價值，但它還需進一步深入研究以證實確實有效。

　　　　　　關關關鍵鍵鍵詞詞詞 語言不匹配，隱馬模型狀態映射，數據驅動型改進，雙層自適應層次結

構，跨語言說話人自適應，個人化的語音到語音翻譯，基於隱馬模型的語音合成
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(Translated by the author of the thesis as per the English version)
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1 Introduction

1.1 Motivations

Language is a powerful tool of communication. Human beings enjoy the freedom to easily

communicate with one another due to the use of sophisticated languages. Regrettably, we also

suffer a great deal from the fact that there exist in the world a huge number of languages which

are often mutually unintelligible. The language barrier is a prominent hurdle to overcome

in order to facilitate better communication among people across the globe. Efforts to clear

this hurdle have been attempted long before the rise of technological solutions. For example,

quite a few auxiliary languages were invented and supposed to play the role of a lingua franca,

such as Esperanto, Ido, Interlingua, Lojban, etc. However, even Esperanto, the best-known

among all these auxiliary languages [Byram, 2004, page 464], remains of little importance

more than 120 years after its debut. On the other hand, although English, a natural language,

is functioning as the de facto lingua franca of today for historical reasons, this does not mean

at all that one can travel around the world without difficulty in communicating with locals.

Learning a foreign language undoubtedly requires a lot of time and energy. It would be highly

desirable that technology can lend a hand in freeing people of the obstacle posed by the

language barrier. Real-time automated speech-to-speech translation [Levin et al., 2000, Zhou

et al., 2003], a technology which can provide a means to bridge the gap between languages

and has the potential of largely reducing the cost of relying upon human interpreters, has

emerged as an important research topic. Researchersworking on this topic have been following

the straightforward architecture, which consists of three consecutive modules – automatic

speech recognition, machine translation and text-to-speech synthesis, to build automated

speech-to-speech translators (as shown in Figure 1.1).

The output voice identity of the speech synthesis module in Figure 1.1 usually comes from

a professional speaker (e.g., the system presented in [Bangalore et al., 2012] and the Google

Translate service) who has recorded a large amount of training data, so that high quality of

output synthesized speech can be guaranteed. This is a mature, but time-consuming and

costly solution. It is not realistic to collect a variety of voices and, as a result, the speech
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Speech-to-Speech Translation

Speech
Recognition

Machine
Translation

Speech
Synthesis

Merci! Merci! Thanks!

Figure 1.1 – Typical architecture of an automated speech-to-speech translator

synthesis module lacks voice diversity. As Figure 1.1 shows, two different speakers speak to the

translator but the same synthetic voice is heard. Having the same output voice may impede

communication when several people use speech-to-speech translators at the same time. For

the sake of voice diversity, research is being conducted on personalization of automated

speech-to-speech translation, namely, to discover how to make the output synthetic voice

sound like a user’s input voice despite the difference in language between the two. An exemplar

is the project called Effective Multilingual Interaction in Mobile Environments 1 (EMIME)

[Kurimo et al., 2010], which was mainly aimed at building a mobile device with personalized

speech-to-speech translation embedded such that one would be able to “speak” any foreign

language easily. Figure 1.2 visualizes the general idea.

Hello

ีดสัวส

Buenas
tardes

Bonjour

EMIME
speech-to-speech
translator

Figure 1.2 – Personalization of automated speech-to-speech translation (e.g., the EMIME
project)

Personalization of speech synthesis in recent research relies on speaker adaptation, a technol-

ogy which can produce synthesized speech in a particular speaker’s voice using merely tens

of adaptation utterances collected from this speaker. In the context of personalized speech-

to-speech translation, the key speaker adaptation technology is generally called cross-lingual

speaker adaptation (CLSA) [Wu et al., 2008, Chen et al., 2009, Wu et al., 2009, Gibson et al.,

1. http://www.emime.org
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2010, Oura et al., 2010, Peng et al., 2010] for text-to-speech synthesis. In other words, the focus

of research is how to adapt a speech synthesis module trained on speech data in a desired

language with a certain number of adaptation utterances in a different language collected

from a target speaker. So far cross-lingual speaker adaptation for speech synthesis is a fairly

new research topic that has not yet been investigated in depth.

There exist two dominant solutions to text-to-speech synthesis: unit selection (concatenative

synthesis) [Hunt and Black, 1996] and HMM-based speech synthesis (statistical parametric

synthesis) [Zen et al., 2009]. Unit selection produces new utterances by concatenating natural

speech segments selected from a large pre-recorded corpus, trying to minimize a weighted

summation of target costs (i.e., howwell a candidate speech segment from the corpusmatches

the required one) and concatenation costs (i.e., how well two adjacent candidate speech

segments combine). Personalization of unit selection relies on applying voice conversion

techniques [Kain and Macon, 1998, Sündermann et al., 2006] to these natural candidate

speech segments. However, voice conversion techniques have limited ability to capture the

full range of speaker variability [Watts et al., 2009] and are detrimental to the high quality of

natural speech. Furthermore, the large pre-recorded corpus normally contains only a handful

of speakers due to the high cost of collection of a great deal of speech data. The difference

between the voice characteristics in the pre-recorded corpus and those of a target speaker may

be considerable and as a result cause additional difficulty in voice conversion. In summary,

unit selection is not a good choice when voice diversity is demanded in output synthesized

speech.

By contrast, owing to its statistical parametric nature, HMM-based speech synthesis is a very

flexible framework, in which, for example, voice characteristics, speaking styles and emotion

of a speaker can be easily modified by adjusting parameters of HMM synthesis models. More

specifically, HMM-based speech synthesis lends itself particularly well to personalized speech-

to-speech translation since it includes a range of highly effective speaker adaptation algorithms

that centre around the so-called average voice synthesis paradigm [Yamagishi and Kobayashi,

2007, Yamagishi, 2006]. An average voice is an artificial voice trained by speaker adaptive

training [Anastasakos et al., 1996] on speech data collected from tens or even hundreds of

real speakers, ideally modelling speaker-independent phonetic and prosodic variations only.

Since an average voice is obtained by averaging out speaker characteristics of many real

speakers, it would not differ remarkably from the voice in adaptation data in most cases

[Yamagishi et al., 2010a]. Although it is preferred to collect a lot of training data from each

real speaker, tens of utterances per speaker are acceptable in practice for training an average

voice synthesizer [Yamagishi et al., 2010a]. These are twomain advantages of the average voice

synthesis paradigm. Before speech parameter generation, an average voice is adapted towards

a given target speaker by means of speaker adaptation algorithms like CMLLR [Gales, 1998].

As only tens of adaptation utterances are needed from the target speaker, voice diversity in

output synthesized speech can be easily achieved. Consequently, the HMM-based speech

synthesis framework and the average voice synthesis paradigm are the foundation of the thesis

work.
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1.2 Scope of the Thesis

As mentioned above, the thesis work was motivated by personalization of speech-to-speech

translation. Prior to addressing any technical difficulties in developing personalized speech-to-

speech translation, it is firstly necessary to understand human perception of speaker identity,

i.e., to determine whether or not people can distinguish between speakers across languages

and also speech types (natural versus synthesized). Listening tests were conducted to help

answer this question.

A key component technique of personalization of speech-to-speech translation is cross-lingual

speaker adaptation for speech synthesis. It is a fairly new topic and previous relevant research

is limited. After comparing state-of-the-art approaches, HMM state mapping [Wu et al., 2009]

is selected to enable cross-lingual speaker adaptation for the thesis work. In order to discover

major difficulties in state mapping-based cross-lingual speaker adaptation, the unsupervised

adaptation approach and the impact of the language mismatch between synthesis models

and adaptation data are investigated. “Language mismatch” refers to the fact that the acoustic

space, phoneme inventory, prosodic patterns, articulatory features and so forth of a language

partially overlap those of another language.

Then the two following approaches to improving cross-lingual speaker adaptation are focused

upon. They both require a bilingual corpus containing many speakers.

1. Typically the minimum Kullback-Leibler divergence [Kullback and Leibler, 1951] crite-

rion is employed to determine state mapping relations. In order to enhance this simple

criterion, a jointly data-driven and phonological knowledge-guided approach is pro-

posed. This approach is adjusted and also applied to the generation of regression class

trees with a more appropriate structure for transform estimation.

2. A two-layer transformation framework is investigated, where the two layers capture

language information and speaker characteristics respectively. The goal is to factorize

language information out of speaker characteristics so that the language mismatch will

not have any impact on synthesis quality. Initial experiments towards the establishment

of such a hierarchy and training the two layers of transforms are presented.

Though speech-to-speech translation involves speech recognition, machine translation and

speech synthesis, the main focus of the thesis is only on speech synthesis. The other two

components are minimally touched.

1.3 Contributions to the State of the Art

Themain contributions in the following chapters to the state of the art of cross-lingual speaker

adaptation for speech synthesis can be summarized as follows:

1. The ability of people to distinguish between speakers across different languages is inves-
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tigated and confirmed. Speech quality is found to play a significant role in distinguishing

between speakers.

2. The possibility of using unsupervised cross-lingual speaker adaptation for personal-

ized speech-to-speech translation is examined. Unsupervised cross-lingual speaker

adaptation is found to be comparable to supervised cross-lingual speaker adaptation.

3. Themismatch between the input and output languages is found to be amajor detrimen-

tal factor in cross-lingual speaker adaptation. It hampers the effectiveness of regression

class tree-based adaptation, thereby limiting the ability of adaptation algorithms to

benefit from larger quantities of adaptation data. It also hampers the effectiveness of

iterative estimation of adaptation transforms.

4. Jointly data-driven and phonological knowledge-guided enhancement under the mini-

mum generation error criterion is proposed and applied to both statemapping construc-

tion and regression class tree growth. It alleviates the negative effect of the mismatch

between the input and output languages and gives consistent improvement compared

to previous state-of-the-art approaches.

5. A linear transformation-based two-layer hierarchy is developed, where one layer cap-

tures speaker characteristics and the other compensates for the mismatch between

the input and output languages. The basic structure and training methodology of this

hierarchy have been determined based on the limited number of available bilingual

speakers.

1.4 Outline of the Thesis

This thesis is composed of 7 chapters. Chapter 2 gives an overview of hiddenMarkov models,

speaker adaptation and the HMM-based speech synthesis framework (including its training,

synthesis and evaluation stages).

In Chapter 3, multilingual speech processing, the state of the art of cross-lingual speaker

adaptation for text-to-speech synthesis, required speech resources and the challenges of

evaluating cross-lingual speaker adaptation systems are discussed. The ability of people to

distinguish between speakers across languages is investigated in Chapter 3.

In Chapter 4, several paired supervised and unsupervised cross-lingual speaker adaptation

systems are compared, in order to examine the possibility of using unsupervised cross-lingual

adaptation in the context of personalized speech-to-speech translation. Then the focus of

Chapter 4 moves on to the investigation of the impact of the language difference between

adaptation data and average voice synthesis models. An intra-lingual speaker adaptation

system and four kinds of HMM state mapping-based cross-lingual speaker adaptation sys-

tems are compared. Various thresholds are used in the comparison to adjust the number of

regression class-specific adaptation transforms. The iterative fashion of transform estimation

in the context of cross-lingual speaker adaptation is also examined.
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In Chapter 5, a jointly data-driven and phonological knowledge-guided approach is proposed

for the purpose of enhancing HMM state mapping construction and regression class tree

growth. Firstly, the purely data-oriented minimum K-L divergence criterion is improved by

introducing phonological constraints into the procedure of HMM state mapping construction.

Then phonological knowledge is applied to guiding regression class tree construction. The

effectiveness and generalization across speakers of the proposed approach are evaluated

in this chapter. Finally, the possibility of iterative enhancement in an alternating fashion is

examined.

In Chapter 6, a hierarchical transformation framework is designed, in which there exist two

layers of linear transforms capturing target speaker characteristics and language information

respectively. How this hierarchy should be constructed and trained is investigated through

several adaptation experiments.

The thesis concludes with Chapter 7, where the contributions and limitations of the findings

in the thesis are presented. Possible future work is also discussed.
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2 Statistical Parametric Speech Synthe-
sis

The very first speech synthesizers developed by Christian Gottlieb Kratzenstein andWolfgang

von Kempelen individuallymore than 200 years agoweremechanical apparatus thatmimicked

human organs of articulation (e.g., vocal tract, vocal folds and so forth). They were able to

produce simple sounds like /a:/, /e:/, /i:/, /o:/, /u:/, etc [Schroeder, 1993]. In addition

to such mechanical synthesis techniques, researchers also developed electrical synthesis

techniques such as articulatory synthesis, source-filter synthesis, concatenative synthesis

[Klatt, 1987] and statistical parametric synthesis [Zen et al., 2009].

Nowadays the two dominant speech synthesis techniques are concatenative synthesis and

statistical parametric synthesis. One of the reasons is that storing a vast quantity of speech

recordings is no longer a problem. Concatenative speech synthesis is a straightforward tech-

nique, which produces an artificial utterance by concatenating natural speech segments that

are selected from a pre-recorded corpus as per a certain criterion. Artificial speech of high

quality and with good naturalness can be achieved through this technique, because the costly

pre-recorded corpus is normally very large, covering sufficient variation in the production of

speech.

Nevertheless, the inflexibility of concatenative speech synthesis becomes a formidable ob-

stacle when voice diversity is required. In the last two decades, the statistical parametric

HMM-based framework and its peripheral speaker adaptation technology, which were origi-

nally devised for automatic speech recognition, were introduced into speech synthesis and

have received a great deal of attention from the speech synthesis research community. The

HMM-based speech synthesis framework provides an elegant and principled solution to han-

dle voice diversity. This chapter presents a brief overview of the fundamentals of statistical

parametric speech synthesis and speaker adaptation, which form the foundations of this

thesis work.
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2.1 HiddenMarkovModels

The hidden Markov model was proposed by Leonard E. Baum and his colleagues in the

1960s [Baum and Petrie, 1966, Baum et al., 1970] and was introduced into speech recognition

research in the 1980s [Bahl et al., 1983, Poritz and Richter, 1986, Lippmann et al., 1987, Lee

et al., 1988, Rabiner et al., 1989, Lee, 1989]. This introduction led to a major advance in the

research on speech processing and had a profound impact on it.

2.1.1 Fundamentals

A hiddenMarkov model is a finite state machine that generates a sequence of discrete-time

observations. At a particular time t , it changes its state from qt−1 = i into qt = j according to

state transition probabilities
{

ai , j
}
, and then generates an observation ot according to the

output probability distribution of state j (“observation” refers to feature representations of

speech signals). The modifier “hidden” refers to the fact that i and j are unknown. That is, the

state that generates ot cannot be directly observed, though ot is known.

An HMM λ = (A,B ,Π) consisting of N emitting states can be specified by the three factors

A, B andΠ: state transition probabilities A = {
ai , j

∣∣i = 1,2, · · · ,N , j = 1,2, · · · ,N }
(from state

i to state j ), output probability distributions B = {
b j (ot )

∣∣ j = 1,2, · · · ,N }
and initial state

probabilities Π = {πi | i = 1,2, · · · ,N }. Depending on the values of πi and ai , j (i.e., zero or

non-zero), the topology of λmay be ergodic or left-to-right without skips.

a1,2 a2,3
1

a1,1 a3,3

3

a2,2

2
π1

b1(o )1 b2(o )2 b3(o )4

o1 o2 o3 o4

b2(o )3

observation 
sequence

Figure 2.1 – 3-state left-to-right HMMwithout skips

Figure 2.1 presents an illustration of a 3-state left-to-right HMMwith no skips (i.e., it is not

possible to move from state 1 to state 3 directly). This kind of HMM topology particularly

suits speech signal modelling: (1) Speech signals are a temporal series, meaning that nor-

mally there should not be a skip over one or more following states or reversion to a previous

state; (2) Speech signals can be approximately considered stable in a very short period (e.g.,

5ms), which corresponds to
{

ai ,i
∣∣ i = 1,2, · · · ,N}

; (3) Speech signals vary over time, which

corresponds to
{

ai ,i+1
∣∣ i = 1,2, · · · ,N −1

}
; (4) Speech signals themselves can be described by

8
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{
b j (ot )

∣∣ j = 1,2, · · · ,N }
.

The output probability distributions
{
b j (ot )

∣∣ j = 1,2, · · · ,N }
may be either discrete or con-

tinuous. When used for speech signal modelling,
{
b j (ot )

∣∣ j = 1,2, · · · ,N }
are continuous and

usually composed of a mixture of multivariate Gaussian distributions as follows:

b j (ot )=
M∑

m=1
w j mN

(
ot ;μ j m ,Σ j m

)
, (2.1)

where M is the number of Gaussian mixture components in state j ; w j m , μ j m and Σ j m are

the weight, mean vector and covariance matrix of the m-th Gaussian mixture component in

state j respectively. The weights
{

w j m
∣∣m = 1,2, · · · ,M}

must satisfy the constraints

M∑
m=1

w j m = 1, j = 1,2, · · · ,N (2.2)

w j m � 0, j = 1,2, · · · ,N , m = 1,2, · · · ,M (2.3)

such that∫
ot

b j (ot )dot = 1, j = 1,2, · · · ,N . (2.4)

In case that the observation vector ot can be divided into S independent streams (e.g., spectral

and excitation features are modelled by different streams in HMM-based speech synthesis),{
b j (ot )

∣∣ j = 1,2, · · · ,N }
can be reformulated as follows:

ot =
[
o�

t ,1 o�
t ,2 · · · o�

t ,S

]�
,

b j (ot )=
S∏

s=1
b j s(ot ,s) (2.5)

=
S∏

s=1

[
Ms∑

m=1
w j smN

(
ot ,s ;μ j sm ,Σ j sm

)]γs

, (2.6)

where Ms is the number of Gaussian mixture components in stream s; w j sm , μ j sm and Σ j sm

are the weight, mean vector and covariance matrix of the m-th Gaussian mixture component

in stream s of state j respectively; γs is the weight of stream s.

2.1.2 Three Fundamental Problems

There are three fundamental problems with respect to HMMs: (1) how to calculate the proba-

bility of a particular observation sequence; (2) how to find the optimal state sequence that

generates a given observation sequence; (3) how to optimize HMM parameters given an

observation sequence. This subsection touches on the three problems in brief.
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Calculation of the Probability of a Particular Observation Sequence

If the HMM state sequence that generates an observation sequence O = (o1,o2, · · · ,oT ) is

known to be Q = (
q1,q2, · · · ,qT

)
, calculating the probability of O being generated by λ is a

trivial problem. The formula is simply

p(O,Q|λ)=πq1bq1 (o1) ·
T∏

t=2
aqt−1,qt bqt (ot ). (2.7)

But given the “hidden” nature of HMMs, Q is actually an invisible sequence. All the possible Q

should be taken into consideration. As a result, the probability of O being generated by HMMs

λ should be calculated by

p(O|λ)= ∑
all Q

p(O,Q|λ) (2.8)

= ∑
all Q

[
πq1bq1 (o1) ·

T∏
t=2

aqt−1,qt bqt (ot )

]
. (2.9)

It is not possible to calculate p(O|λ) directly, as “all Q” corresponds to N T permutations of

states and Q is a very long sequence in practice (i.e., T is a large number). Hence the effi-

cient forward-backward algorithm is employed to solve this problem. Forward and backward

probabilities are defined as follows:

Forward: αt
(

j
)= p

(
o1,o2, · · · ,ot ,qt = j

∣∣λ) , (2.10)

Backward: βt
(

j
)= p

(
ot+1,ot+2, · · · ,oT

∣∣qt = j ,λ
)
. (2.11)

They are initialized by

α1
(

j
)=π j b j (o1), j = 1,2, · · · ,N , (2.12)

βT
(

j
)= 1, j = 1,2, · · · ,N (2.13)

and calculated recursively using

αt
(

j
)=

[
N∑

i=1
αt−1 (i ) ·ai , j

]
b j (ot ), j = 1,2, · · · ,N , t = 2,3, · · · ,T, (2.14)

βt
(

j
)= N∑

k=1
a j ,k bk (ot+1)βt+1 (k) , j = 1,2, · · · ,N , t = 1,2, · · · ,T −1. (2.15)

Then the probability of generating an observation sequence p(O|λ) can be obtained by

p(O|λ)=
N∑

j=1
αt

(
j
)
βt

(
j
)
, t = 1,2, · · · ,T. (2.16)
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Determinationof theOptimal State Sequence thatGenerates aGivenObservationSequence

Among all the N T permutations of states, there exists a sequence Q∗ = (
q∗
1 ,q

∗
2 , · · · ,q∗

T

)
which

maximizes p(O,Q|λ). This optimal state sequence is useful for decoding, initializing HMM

parameters at the training stage, etc. The Viterbi algorithm can efficiently find the optimal

state sequence Q∗ given an observation sequence O and HMM parameters λ.

Suppose δt
(

j
)
denotes the probability of the optimal state sequence until time t and ending

at state j , i.e.,

δt
(

j
)= max

q1,q2,··· ,qt−1
p
(

q1,q2, · · · ,qt−1,qt = j ,o1,o2, · · · ,ot ,
∣∣λ) , (2.17)

which is initialized by

δ1
(

j
)=π j b j (o1), j = 1,2, · · · ,N (2.18)

and calculated recursively using

δt
(

j
)= [

max
i∈{1,2,··· ,N }

δt−1(i ) ·ai , j

]
b j (ot ), j = 1,2, · · · ,N , t = 2,3, · · · ,T. (2.19)

Having obtained the N values of δT
(
qT

)
, we can determine q∗

T by choosing the maximal

δT
(
qT

)
and then trace back to q∗

1 along the path which corresponds to δT
(
q∗

T

)
in order to find

the entire optimal state sequence Q∗ that generates O.

Optimization of HMMParameters Given an Observation Sequence

HMM parameters are typically estimated under the maximum likelihood criterion, i.e., to

estimate λwhichmaximizes p(O|λ) given an observation sequence O. Unfortunately there

is no closed solution to this problem. The Baum-Welch algorithm [Baum, 1972], which is

a special case of the expectation-maximization (EM) algorithm [Dempster et al., 1977], is

generally employed for estimation of λ. Given initial values calculated by flat-start or using

annotations, it functions in an iterative manner to update λ until p(O|λ) converges. The EM
fashion guarantees that p(O|λ) increases as the estimation process of λ is repeated, but it is

very likely that p(O|λ) converges at a local maximum rather than at a global maximum.

In the E-step of each iteration, the auxiliary function Q(λ̃,λ) of λ to be estimated given λ̃ from

the previous iteration is computed by

Q(λ̃,λ)= ∑
all Q

p
(
Q|O, λ̃

)
logp

(
O,Q|λ). (2.20)

In the subsequent M-step, Q(λ̃,λ) is maximized with respect to λ, since it can be proved that

this is equivalent to maximizing p(O|λ) with respect to λ. As a result of the maximization, λ is

11



Chapter 2. Statistical Parametric Speech Synthesis

updated with the following equations [Bilmes, 1998]:

πi = γ1(i ), i = 1,2, · · · ,N (2.21)

ai , j =
∑T

t=1 ξt (i , j )∑T
t=1γt (i )

, i = 1,2, · · · ,N , j = 1,2, · · · ,N (2.22)

wi m =
∑T

t=1γt (i ,m)∑T
t=1γt (i )

, i = 1,2, · · · ,N , m = 1,2, · · · ,M (2.23)

μi m =
∑T

t=1γt (i ,m) ·ot∑T
t=1γt (i ,m)

, i = 1,2, · · · ,N , m = 1,2, · · · ,M (2.24)

Σi m =
∑T

t=1γt (i ,m) · (ot −μi m

)(
ot −μi m

)�∑T
t=1γt (i ,m)

, i = 1,2, · · · ,N , m = 1,2, · · · ,M (2.25)

where γt (i ) is the probability of being in state i at time t , γt (i ,m) is the probability of being

in the m-th sub-state distribution of state i at time t and ξt (i , j ) is the probability of being

in state i at time t and state j at time (t+1). They are computed according to the following

equations:

γt (i )=
p
(

O,qt = i
∣∣λ)∑N

i=1 p
(

O,qt = i
∣∣λ) ,

= αt (i )βt (i )∑N
j=1αt ( j )βt ( j )

, i = 1,2, · · · ,N , t = 1,2, · · · ,T ; (2.26)

γt (i ,m)= p
(

O,qt = i , st = m
∣∣λ)∑N

l=1
∑M

n=1 p
(

O,qt = l , st = n
∣∣λ) ,

= γt (i ) ·
wi mN

(
ot

∣∣μi m ,Σi m
)

∑M
k=1 wi kN

(
ot

∣∣μi k ,Σi k
) , (2.27)

i = 1,2, · · · ,N , t = 1,2, · · · ,T, m = 1,2, · · · ,M ;

ξt (i , j )= p
(

O,qt = i ,qt+1 = j
∣∣λ)∑N

l=1
∑N

n=1 p
(

O,qt = l ,qt+1 = n
∣∣λ) ,

= αt (i )ai , j b j (ot+1)βt+1( j )∑N
l=1

∑N
n=1αt (l )al ,nbn(ot+1)βt+1(n)

, (2.28)

i = 1,2, · · · ,N , j = 1,2, · · · ,N , t = 1,2, · · · ,T.

12



2.1. HiddenMarkovModels

2.1.3 Context-DependentModelling

In general, a single language contains tens of phonemes. Technically an HMM can be easily

trained for each of the phonemes to build a speech processing system, but in practice, such a

system performs poorly, because acoustic realizations of phonemes in natural speech vary

widely depending on their contexts and simple phoneme models cannot capture the sub-

stantial variations. A straightforward solution is to model context-dependent phones rather

than isolated phonemes. For instance, triphones are widely employed as a modelling unit. A

triphone model L-C+R describes how the core phoneme C is articulated when it is preceded

by a phoneme L and succeeded by a phoneme R, thereby being affected by coarticulation.

In order to capture all the specific acoustic variations of phonemes properly, it is necessary to

train every context-dependent model robustly. However, the number of context-dependent

models increases exponentially with the size of the contextual window. It is not possible to

guarantee that each context-dependent model can be trained over sufficient speech data. A

compromise solution to this data sparsity problem is to share training data across similar

context-dependent models such that model parameters receive adequate data for their robust

estimation. An additional problem to be solved is how to estimate models for contexts that

have not been observed at all in training data.

The most common technique for sharing training data across context-dependent models

is decision tree-based clustering [Young et al., 1994]. Its basic idea is depicted in Figure 2.2.

A set of phonologically derived questions needs to be prepared beforehand (see this figure

for examples). These questions can divide context-dependent models into different clusters

in each of which the context-dependent models are close to one another. Meanwhile, these

clusters generalize to unobserved contexts in training data.

A decision tree is grown in a top-downmanner as follows. Initially, all the context-dependent

model distributions (denoted by S as a set) derived from training data observations O =
(o1,o2, · · · ,oT ) are pooled to form a root node. The log likelihood L(S) of training data O

being generated by S is calculated on the assumption that all of the context-dependent

model distributions in that node are merged to form a shared mean vector μ(S) and a shared

covariance matrix Σ(S). A reasonable approximation of L(S) is given by

L(S)≈
T∑

t=1

∑
S∈S

log
(
p
(
ot

∣∣μ(S),Σ(S) ))γS (ot ) , (2.29)

where γS (ot ) is the posterior probability of ot being generated by model distribution S. This

node is then split into two, Syes(q) and Sno(q), by finding the question qwhich partitions the

context-dependentmodel distributions in the parent node so as to give themaximum increase

in log likelihood, i.e., to maximize ΔLq defined by

ΔLq = L
(
Syes(q)

)+L
(
Sno(q)

)−L(S) (2.30)

13
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1 2 3 4

a1,1 a2,2 a3,3 a4,4

π1 a1,2 a2,3 a3,4

* – /e/+*
left context

Y N

Y N Y N

/ɪ/ – /e/+/m/
/əʊ/ – /e/+/n/
/aɪ/ – /e/+/ʃ/

/b/ – /e/+/t/
/ɹ/ – /e/+/d/
/ð/ – /e/+/n/

/p/ – /e/+/ð/
/ʧ/ – /e/+/s/
/h/ – /e/+/ʃ/

/f/ – /e/+/ɫ/
/t/ – /e/+/d/
/θ/ – /e/+/m/

right context

Voiced on the left?

Vowel on the left? Fricative on the right?

Merge Merge Merge Merge

Figure 2.2 – Example of decision tree-based clustering of triphone models

with respect to q. This process is then repeated by splitting the node which yields the greatest

increase in log likelihood until the increase falls below a predefined threshold. To ensure that

all terminal nodes have sufficient training data associated with them, a minimum occupation

count is applied.

Alternatively, the abovemaximum likelihood criterion can be replaced with minimum descrip-

tion length (MDL) [Shinoda andWatanabe, 2000]. It can be shown that the MDL criterion is

equivalent to maximum likelihood with a stopping criterion on the basis of a likelihood thresh-

old that is calculated with respect to model complexity. As a result, the minimum occupation

count does not need to be applied. Finally, training data is shared within each leaf node to

estimate the tied context-dependent model distribution.

2.2 Speaker Adaptation

In order to build a personalized speech processing system, we can collect speech data from

the target speaker and then train a set of speaker-dependent HMMs on his/her data alone.

Unfortunately, a set of robust speaker-dependent HMMs requires a large amount of training

data from the target speaker, typically hundreds or thousands of utterances. This requirement

makes the speaker-dependent solution expensive, time-consuming and impractical for situa-

tions where diversity of target speakers is expected. Due to the statistical parametric nature of

the HMM-based speech processing framework, speaker adaptation techniques [Gales, 1998]

have been developed in order to address this problem. By means of speaker adaptation, the

14



2.2. Speaker Adaptation

voice characteristics of “source” HMMs can be adapted to those of a target speaker, given

only tens of adaptation utterances in the target speaker’s voice. In fact the “source” HMMs

can be any well-trained models but generally they are trained on speech data collected from

multiple speakers in order not to be biased towards any particular type of speaker (i.e., to be

speaker-independent).

2.2.1 Maximum Likelihood Linear Transformation

Model-space linear transformation is a simple, powerful and widely used approach to speaker

adaptation. It can be used to estimate speaker-specific linear transforms that capture the

differences between “source” speaker-independent models and given adaptation data, and to

apply them to Gaussian mixture components of the speaker-independent models in order to

adapt voice characteristics towards those of the given adaptation data. Such speaker-specific

linear transforms are typically estimated under the maximum likelihood criterion, i.e., the

combination of original distributions of the speaker-independent models and these linear

transforms should maximize the likelihood of the given adaptation data being generated by

this combination.

In the simplest case, a single set of global transforms
(

Â′
s , b̂

′
s , Ĥ ′

s

)
is applied to every Gaussian

mixture component of “source” speaker-independent models for adaptation towards a target

speaker s’s voice as follows:

μs,m = Â′
sμm + b̂′

s , (2.31)

Σs,m = Ĥ ′
sΣm Ĥ ′�

s , (2.32)

where
{
μm ,Σm

∣∣m = 1,2, · · · ,M}
are mean vectors and covariance matrices of the M Gaussian

mixture components of the speaker-independent models.
(

Â′
s , b̂

′
s , Ĥ ′

s

)
is the result of the

following expression when transform estimation is carried out under the maximum likelihood

criterion:(
Â′

s , b̂
′
s , Ĥ ′

s

)
= arg max
(A′

s ,b
′
s ,H

′
s)

p
(
Os

∣∣μs ,Σs
)
, (2.33)

Os =
(
os,1,os,2, · · · ,os,T

)
,

μs =
(
μs,1,μs,2, · · · ,μs,M

)
,

Σs =
(
Σs,1,Σs,2, · · · ,Σs,M

)
,

where
{

os,t
∣∣ t = 1,2, · · · ,T }

are observations in speaker s’s voice from time 1 to time T and{
μs,m ,Σs,m

∣∣m = 1,2, · · · ,M}
are mean vectors and covariance matrices of the M Gaussian

mixture components that have been adapted to speaker s’s voice.
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Chapter 2. Statistical Parametric Speech Synthesis

2.2.2 Regression Class

A single set of global transforms obtained according to Eq. (2.33) cannot fully capture the voice

characteristics of a target speaker and furthermore cannot make good use of adaptation data

when there is a moderately large amount (for example, 100∼200 utterances). Basically, the

more adaptation data there is, the greater number of transforms should be trained. Hence,

one solution is to divide the M speaker-independent Gaussian distributions into groups, the

number of which depends on the amount of adaptation data such that a more finely grained

transform can be robustly estimated for each group of Gaussian distributions.

A regression class tree is usually involved for the purpose of automatically adjusting the

number of finely grained transforms according to the amount of adaptation data and each leaf

node is a regression class (see Figure 2.3). A regression class tree is traversed in the top-down

manner during transform estimation and the search starts at the root node. Transforms are

generated only for the nodes which (i) have sufficient data and (ii) are either leaf nodes or

have any children without sufficient data. For example, a shared transform is generated when

neither node 3 nor node 4 has enough data but they as a whole do; the transform for node

2 is generated using data and distributions from both nodes 1 and 2 when node 2 does not

have enough data but node 1 does. This mechanism has an advantage that as many, robust,

finely grained transforms as possible can be estimated on available adaptation data. Whether

adaptation data is sufficient for a node is determined by a threshold 1 on the number of

adaptation data frames associated with the node.

1 2 3 4

Figure 2.3 – Regression class tree

There are two main methods of generating a regression class tree. One is to pool all the

Gaussian distributions of “source” speaker-independent models at a single node and to keep

splitting all the leaf nodes according to a distribution similarity measure (e.g., the Euclidean

distance betweenmean vectors [Young et al., 2009, Chapter 9]) and a stopping threshold on

the measure. The other one is to connect the root nodes of the decision trees obtained in

the training stage of “source” speaker-independent models to form a regression class tree,

which is especially beneficial to adaptation of pitch [Yamagishi et al., 2004]. This is by default

the method of generating a regression class tree in this thesis, unless a different method is

1. For instance, it is HADAPT:SPLITTHRESH in HTK.
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2.2. Speaker Adaptation

mentioned explicitly.

2.2.3 ConstrainedMaximum Likelihood Linear Regression

One example of model-space maximum likelihood linear transformation is constrained maxi-

mum likelihood linear regression (CMLLR) [Gales, 1998], where “constrained” means trans-

formation matrices are jointly applied to mean and covariance parameters (i.e., H ′
s,i ≡ A′

s,i ,

i = 1,2, · · · , I ). Interestingly, this constraint allows CMLLR to be regarded and implemented as

feature-space transformation, i.e., transformation matrices can be applied to speech features

instead of speaker-independent model parameters. Implementing CMLLR as feature-space

transformation provides the additional benefit of full covariance modelling, where full co-

variance statistics are captured in CMLLR transforms, thus requiring fewer parameters for

estimation.

From the perspective of feature-space transformation, CMLLR estimates a set of linear trans-

forms for speech features of given adaptation data such that the likelihood of the adaptation

data is maximized. An above-mentioned regression class tree may be involved in the course of

estimation. To be specific, CMLLR produces I linear transforms

Ŵ s =
{

Ŵ s,i
∣∣Ŵ s,i =

[
b̂s,i Âs,i

]
, i = 1,2, · · · , I } ,

where Âs,i is a square matrix and b̂s,i is a column vector so as to capture speaker s’s voice

characteristics from T observation frames of his/her adaptation data
{

os,t
∣∣ t = 1,2, · · · ,T }

. Ŵ s

is the result of the following expression:

Ŵ s = arg max
W s

∑
all Q s

p
(
Ōs ,Q s

∣∣μ,Σ )
, (2.34)

Ōs =
(
ōs,1, ōs,2, · · · , ōs,T

)
,

ōs,t = As,X1(t )os,t +bs,X1(t ), t = 1,2, · · · ,T, X1(t ) ∈ {1,2, · · · , I },
μ= (

μ1,μ2, · · · ,μM

)
,

Σ= (Σ1,Σ2, · · · ,ΣM ) ,

where
{
μm ,Σm

∣∣m = 1,2, · · · ,M}
are mean vectors and covariance matrices of the M Gaus-

sian distributions of “source” speaker-independent models, Q s is a possible state sequence

corresponding to Ōs , and X1(t ) represents mapping relations from a feature frame os,t to an

adaptation transform Ŵ s,i .

Going back to the perspective of model-space transformation, we can create speaker-adapted

models by applying the inverse of CMLLR transforms Ŵ s to the “source” speaker-independent

models:

μs,m = Â
−1
s,X2(m)

(
μm − b̂s,X2(m)

)
, m = 1,2, · · · ,M , X2(m) ∈ {1,2, · · · , I }, (2.35)
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Chapter 2. Statistical Parametric Speech Synthesis

Σs,m = Â
−1
s,X2(m)Σm

(
Â
−1
s,X2(m)

)�
, m = 1,2, · · · ,M , X2(m) ∈ {1,2, · · · , I }, (2.36)

where X2(m) defines mapping relations from a Gaussian distribution
(
μm ,Σm

)
to an adapta-

tion transform Ŵ s,i .

CSMAPLR

Constrained structural maximum a posteriori linear regression (CSMAPLR) [Nakano et al.,

2006, Yamagishi et al., 2009a] is a speaker adaptation algorithm that improves the performance

of speaker adaptation by CMLLR. Ŵ s is estimated as per Eq. (2.37) in CSMAPLR, i.e., under the

structural maximum a posteriori criterion [Shinoda and Lee, 2001] instead of the maximum

likelihood criterion (see Eq. (2.34) for the contrast):

Ŵ s = arg max
W s

∑
all Q s

p
(
Ōs ,Q s

∣∣μ,Σ )
p (W s) , (2.37)

where p (W s) is the prior distribution of W s . The matrix Gaussian distribution is used for

p
(
W s,i

)
(i = 1,2, · · · , I ):

p
(
W s,i

)∝|Ω|− L+1
2 |Ψ|− L

2 exp

{
−1

2
tr
[(

W s,i −H s,i
)�

Ω−1 (W s,i −H s,i
)
Ψ−1

]}
, (2.38)

where L is the dimensionality of speech features, tr(·) calculates the trace of a matrix,Ω ∈RL×L ,

Ψ ∈ R(L+1)×(L+1) and H s,i ∈ RL×(L+1) are three hyperparameters of the prior distribution. In

CSMAPLR,Ψ is fixed to an identity matrix and

Ω≡ τ · I L×L =

⎡
⎢⎢⎢⎢⎣
τ

τ

. . .

τ

⎤
⎥⎥⎥⎥⎦

L×L

, τ> 0.

CSMAPLR requires a regression class tree in the course of transform estimation and H s,i refers

to the transform associated with a corresponding parent node. When estimating a transform

for the root node of the regression class tree, this hyperparameter is set to
[
0L×1 I L×L

]
.

For the sake of simplicity, techniques that involves linear transformation-based speaker adap-

tation are reviewed/explained merely in terms of CMLLR in this thesis.

2.2.4 Speaker Adaptive Training

It is possible to train speaker-independent models on a speech corpus containing a lot of

speakers by following the exact training procedure of speaker-dependent models. Due to

the large number of contexts encountered in speech synthesis compared to the number of

training speakers, it is highly likely that conventional decision tree clustering will lead to
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2.2. Speaker Adaptation

overly specialized leaf nodes that do not provide good speaker-independent modelling. In

the extreme case, each leaf node many come to represent a few contexts uttered by only a

handful of training speakers. Though this problem can be solved by shared-decision-tree-

based context clustering [Yamagishi, 2006, Chapter 4], speaker-independentmodels estimated

in this fashion still capture both desired phonetic variations and unwanted variations among

training speakers. The variations among training speakers often lead to distributions with

overly large variances, as Figure 2.4 illustrates.

logF0speaker 1 speaker 2 

logF0

speaker-independent distribution
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eq

ue
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y
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Figure 2.4 – Speaker-independent model distribution [Yamagishi, 2006, Chapter 5]

As a result, the speaker adaptive training (SAT) paradigm [Anastasakos et al., 1996] was pro-

posed to separate unwanted variations among training speakers from phonetic variations. It

jointly estimates a set of canonical SATmodels that capture phonetic variations and training

speaker-specific adaptation transforms that capture speaker variations. The following equa-

tions highlight the difference between speaker-independent model training in the speaker-

dependent fashion and by speaker adaptive training:

speaker-independent: arg max
λ

S∏
s=1

p
(
Os |λ

)
(2.39)

speaker adaptive: arg max
(λ,G )

S∏
s=1

p
(
Os |Gs(λ)

)
(2.40)

where G = (G1,G2, · · · ,GS) and Gs(·) denotes model transformation towards training speaker

s. Obviously, it is possible to take advantage of multiple regression classes for the estimation

of these speaker-specific adaptation transforms. In practice, speaker adaptive training is

initialized with speaker-independent models and proceeds in an iterative manner: updating

G , then mean vectors followed by covariance matrices, and finally back to G . After only a few

iterations, the speaker-independent distribution in Figure 2.4 may converge to a point where

it looks like the one in Figure 2.5.

CMLLR is particularly well suited to speaker adaptive training, as it can be implemented as
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Figure 2.5 – Canonical SATmodel distribution [Yamagishi, 2006, Chapter 5]

feature-space linear transformation so that normalized speech features, which ideally contain

no variation among training speakers, can be easily obtained and used to update canonical

model parameters [Young et al., 2009, Chapter 9].

2.3 HMM-Based Text-to-Speech Synthesis

HMM-based text-to-speech synthesis [Tokuda et al., 2002b] is a statistical parametric ap-

proach to speech synthesis. Parametrized speech, i.e., spectral features, excitation features

and duration information, are modelled by context-dependent HMMs during the training

stage [Yoshimura et al., 1999]. According to context-dependent labels derived from input

plain text by a text analyzer, well-trained context-dependent HMMs are concatenated and

speech parameters, which are finally converted into waveforms, are generated from the HMM

sequence 2 [Tokuda et al., 1995a,b, 2000]. This parametric nature makes HMM-based speech

synthesis a highly flexible solution – HMM parameters can be easily adjusted in order to

achieve various speaker identities, speaking styles, etc. Figure 2.6 presents a flow chart of this

process.

2.3.1 Basics

First of all, we discuss a few fundamental issues about the state-of-the-art HMM-based speech

synthesis framework in this section.

2. Such an HMM sequence is viewed as a single and longer HMM in speech parameter generation.
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Training of HMMs

context dependent
HMMs

TRAINING

SYNTHESIS
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spectral parameterexcitation parameter

Parameter generation
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SYNTHESIZED
SPEECH

Excitation
generation

Synthesis
filter

spectral parameterexcitation parameter

speech signal

Spectral
parameter
extraction

Excitation
parameter
extraction

SPEECH
DATABASE

Figure 2.6 – Flow chart of HMM-based speech synthesis [Tokuda et al., 2002b]

HMMTopology

Typically, five-state (or three-state) left-to-right HMMs with no skip are employed for all

the modelling units in HMM-based speech synthesis [Zen et al., 2009]. Research on model

topology was conducted, for example, stochastic Markov graphs applied in [Eichner et al.,

2000, 2001]. Though this was a flexible topology, it significantly increased computational

complexity of speech parameter generation.

Acoustic Features

Spectral features, F0 and band aperiodicity are modelled in different HMM streams for speech

synthesis. A key requirement of the feature representation is that it should allow reconstruc-

tion of speech signals while having the requisite properties to be well modelled by HMMs.

Commonly used spectral features include mel-(generalized) cepstrum [Tokuda et al., 1994],

line spectrum pair [Soong and Juang, 1984], etc.

The STRAIGHT (Speech Transformation and Representation using Adaptive Interpolation of

weiGHTed spectrum) vocoding technique [Kawahara et al., 1999] is widely used for spectrum

analysis and speech generation, as it generates more accurate smoothed spectrum and pro-

duces synthetic speech of high quality. STRAIGHT explicitly uses extracted F0 information to

conduct pitch-adaptive spectrum analysis combined with a surface reconstruction method
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in the time-frequency region to remove periodic components from estimated spectrum. The

estimated spectrum is then converted into spectral features like mel-cepstrum. An aperiod-

icity measure that represents the relative energy distribution of aperiodic components in

the frequency domain is also extracted [Kawahara et al., 2001]. Band aperiodicity, which is

employed to construct mixed excitation 3 for speech waveform generation, is comprised of

the averages of the aperiodicity measurements over a certain number of frequency bands (e.g.,

five bands: 0-1 kHz, 1-2 kHz, 2-4 kHz, 4-6 kHz and 6-8 kHz [Zen and Toda, 2005]). STRAIGHT

employs an FFT-based process to generate waveforms.

F0 Modelling

Because of the existence of voiced and unvoiced phonemes in languages, F0 contours are

intrinsically composed of segments with and without F0 values. The multi-space distribution

was proposed [Tokuda et al., 2002a] to model this kind of discontinuous speech feature. More

specifically, F0 is modelled by two spaces, one of which contains a normal, one-dimensional

continuous Gaussian distribution (i.e., the “voiced space”) while the other contains no dis-

tribution but a single sample point (i.e., the “unvoiced space”). The two spaces have their

respective weights, indicating the probability of a frame being voiced or unvoiced.

A multi-space distribution is similar to but more general than a Gaussian mixture model, as it

is allowed to contain various sorts of distributions in one model. For example, both discrete

and continuous distributions are contained at the same time in the case of F0 modelling.

If each space contains a Gaussian distribution and the dimensionality of all the Gaussian

distributions is a positive constant, the multi-space distribution degenerates into a Gaussian

mixture model.

DurationModelling

Duration is explicitlymodelled inHMM-based speech synthesis using single Gaussian distribu-

tions [Yoshimura et al., 1998]. The dimensionality of a multivariate state duration distribution

(when using only one stream) or the number of streams (when using a univariate state dura-

tion distribution per stream) is equal to the number of emitting states of an HMM, and the

n-th dimension or stream corresponds to the n-th emitting state. Explicit duration modelling

is straightforward since the length of phonemes needs to be determined at the synthesis stage,

which is mainly for the purpose of simplifying and speeding up the process of speech param-

eter generation (see Section 2.3.3 for details). Furthermore, the speaking rate and duration

patterns of synthesized speech can be easily adjusted by explicit duration modelling, which

helps to achieve voice diversity.

There exists an inconsistency in the conventional HMM-based speech synthesis framework

3. i.e. a sum of a pulse train with phase manipulation and white noise weighted by band aperiodicity in the
frequency domain
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2.3. HMM-Based Text-to-Speech Synthesis

– although speech parameters are generated using both HMMs and explicit state duration

distributions in the synthesis stage, these HMMs and state duration distributions are not

updated simultaneously in the training stage. The state duration distributions are actually

estimated by using state occupancy probabilities obtained in the last iteration of embedded re-

estimation of HMM parameters [Yoshimura et al., 1998, 1999] and then clustered by decision

tree-based context clustering. In order to solve this inconsistency, the hidden semi-Markov

model (HSMM)was introduced into speech synthesis [Zen et al., 2004]. The difference between

an HMM and an HSMM is illustrated in Figure 2.7. State distributions of spectrum, pitch

and duration can be estimated simultaneously in the training stage in HSMM-based speech

synthesis, where state distributions of duration play the role of state transition matrices

of HMMs. It was reported that the utilization of HSMMs could improve the naturalness of

synthesized speech [Zen et al., 2004].

(a) hidden Markov model (HMM)

(b) hidden semi-Markov model (HSMM)

a12 a23π1

a22 a33a11

b1(·) b2(·) b3(·)

p1(·) p2(·) p3(·)

b1(·) b2(·) b3(·)

π1 a12 a23

Figure 2.7 – Examples of an HMM and an HSMM (three emitting states, left to right, and
without any skip) [Zen et al., 2004]. p ′

i (·) indicates a state duration distribution.

The thesis work was not focused on the fundamentals of statistical parametric modelling for

speech synthesis, so in this thesis HMM-based speech synthesis is considered a generic term

that includes the HSMM-based framework.

Context-Dependent Synthesis Models

Tens of different contextual factors are employed in context-dependent labels for speech

synthesis, including phonetic contexts around a base phoneme (e.g., its left and right neigh-

bouring phonemes) andmany prosodic contexts (e.g., stress, tone, part of speech, the position

of a phoneme/syllable/word/phrase in the current syllable/word/phrase/utterance, the length

23



Chapter 2. Statistical Parametric Speech Synthesis

of the current syllable/word/phrase/utterance, etc) [Tokuda et al., 2002b]. This is because

natural speech varies to a great extent. A phoneme can be uttered very differently in different

situations, for example, stressed or not, at the beginning or the end of a sense group, at the

end of an interrogative or a declarative sentence, etc. Therefore very long context-dependent

labels denoting extremely specific phoneme variants are required to capture subtle acous-

tic variations for synthesizing natural-sounding speech. While not so critical for spectrum

modelling, these contextual factors are essential for appropriate modelling of prosody (in

particular, F0 and duration).

It is apparent thatHMM-based speech synthesis faces the problemof severe sparsity of training

data due to the large number of contexts. This problem is resolved by decision tree-based

clustering as described in Section 2.1.3.

2.3.2 Building VoiceModels for HMM-Based Speech Synthesis

We can collect speech data from a particular speaker and build a speaker-dependent syn-

thesizer by training HMMs on his speech data alone. This is not very difficult due to mature

techniques: (1) HMM parameters can be estimated by the Baum-Welch algorithm, as dis-

cussed in Section 2.1.2; (2) very specific acoustic variations of phonemes can be captured by a

huge amount of context-dependent models, as discussed in Section 2.3.1; and (3) the problem

of the severe sparsity of training data can be handled by decision tree-based clustering, as

discussed in Section 2.1.3. The main hurdle to training a set of speaker-dependent models is

collection of plenty of speech data from a target speaker, which makes speaker-dependent

modelling not always preferred and not even feasible when voice diversity is required. So we

move on to discussing the average voice synthesis paradigm.

Average Voice Synthesis Models

Although in theory speaker adaptation techniques can be applied to synthesis models trained

on speech data of any number of speakers, speaker adaptation performance is degraded

when there is sharp distinction in terms of voice characteristics or phonetic/prosodic patterns

between the “average” of training speakers and the target speaker [Yamagishi et al., 2010a].

So adapting speaker-dependent models is not appropriate in general. It is very likely that

the voice and phonetic/prosodic patterns of target speakers do not match those of a set of

speaker-dependent models.

In order to build synthesis models which suit as many target speakers as possible and thus to

obtain better adaptation performance, the average voice synthesis paradigm was proposed in

[Yamagishi, 2006, Yamagishi and Kobayashi, 2007]. An average voice can be regarded as an arti-

ficial voice trained on speech data collected from tens or hundreds of real speakers, by means

of shared-decision-tree-based context clustering [Yamagishi, 2006, Chapter 4] and speaker

adaptive training as discussed in Section 2.2.4. Shared-decision-tree-based context clustering
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ensures average voice model distributions in every leaf node are derived from speech data

of all the training speakers, i.e, to guarantee the speaker-independence of each synthesis

model. Speaker adaptive training normalizes speech features of a diversity of training speakers

such that ideally speaker-specific characteristics are extracted by adaptation transforms and

average voice synthesis models capture only common phonetic and prosodic variations across

training speakers.

Average voice synthesis models are more adaptable to various target speakers [Yamagishi

et al., 2010b]. Firstly, they are not biased towards any type of target speaker. Secondly, they

are trained over a huge quantity of normalized speech features, thereby covering muchmore

phonetic and prosodic variations of a spoken language.

It has been demonstrated that average voice synthesis models can be trained on speech

corpora designed for speech recognition like WSJ0 [Paul and Baker, 1992] and SPEECON [Iskra

et al., 2002], so training data collection is not a major issue and we just need to collect a

small amount of adaptation data from target speakers to achieve voice diversity by speaker

adaptation [Yamagishi et al., 2010a].

2.3.3 Synthesis

The task of the synthesis stage, mathematically, means generating a speech feature sequence

O∗ = (
o∗
1 ,o

∗
2 , · · · ,o∗

T

)
from parameters λ of a particular HMM sequence on condition that O∗

maximizes the probability p(O|λ):

O∗ = arg max
O

p(O|λ) (2.41)

= arg max
O

∑
all Q

p(O|Q ,λ)p(Q|λ) (2.42)

≈ arg max
O

p(O|Q∗,λ)p(Q∗|λ) (2.43)

There is no known closed solution to Eq. (2.41), though it can be solved by the EM algorithm

[Tokuda et al., 2000]. In practice, as an approximation, this task is divided into two steps on

the basis of Eq. (2.42): firstly, an optimal state sequence Q∗ is determined by maximizing

p(Q|λ) with respect to Q ; secondly, the optimal speech feature sequence O∗ is generated by

maximizing p(O|Q∗,λ) with respect to O.

If speech feature vectors were independent and identically distributed, we could model only

“static” features (i.e., those extracted from speech waveforms directly) and then simply con-

catenating state mean vectors in λwould produce the desired O∗ for p(O|Q∗,λ). Obviously,
this results in a sudden change of speech features at every state boundary and there would

be audible discontinuities. Thus dynamic features are included in speech feature vectors

of training data for producing smooth speech feature trajectories [Tokuda et al., 1995a,b].

Given the explicit relationship between static and dynamic features, the parameter generation
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algorithm proposed in [Tokuda et al., 1995a,b] enables inference of observations that involves

both static and dynamic statistics including covariance matrices. The following describe how

to obtain the desired O∗ for p(O|Q∗,λ) given dynamic features.

Let C = [
c�
1 c�

2 · · · c�
T

]�
be the “static part” of speech features O = [

o�
1 o�

2 · · · o�
T

]�
,

i.e.,

ot =
[
c�

t Δc�
t Δ2c�

t

]�
, t = 1,2, · · · ,T. (2.44)

The first- and second-order dynamic features Δc t and Δ2c t there are defined by

Δc t =
L(1)
+∑

τ=−L(1)−

w (1)(τ)c t+τ, t = 1,2, · · · ,T, (2.45)

Δ2c t =
L(2)
+∑

τ=−L(2)−

w (2)(τ)c t+τ, t = 1,2, · · · ,T. (2.46)

Suppose D is the dimensionality of c t . The relation between O and C can be expressed by

O =W C , (2.47)

W =

⎡
⎢⎢⎢⎢⎣

W �
1

W �
2
...

W �
T

⎤
⎥⎥⎥⎥⎦ , (2.48)

W t =
[

W (0)
t W (1)

t W (2)
t

]
, t = 1,2, · · · ,T, (2.49)

W (n)
t =

[
0D×D︸ ︷︷ ︸
1st

· · · 0D×D w (n) (−L(n)
−

) · I D×D︸ ︷︷ ︸
(t−L(n)− )-th

· · · w (n)(0) · I D×D︸ ︷︷ ︸
t-th

· · ·

w (n)
(
L(n)
+

)
· I D×D︸ ︷︷ ︸(

t+L(n)
+

)
-th

0D×D · · · 0D×D︸ ︷︷ ︸
T−th

]�
, n = 0,1,2, (2.50)

where I D×D and 0D×D are D-by-D identity and zero matrices, respectively. By solving

∂p(W C |Q∗,λ)
∂C

= 0, (2.51)

we can obtain the desired static speech feature sequence C for waveform generation:

W �Σ−1W C =W �Σ−1μ, (2.52)

μ=
[
μ�

q∗
1

μ�
q∗
2

· · · μ�
q∗

T

]�
, (2.53)
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Σ=

⎡
⎢⎢⎢⎢⎣
Σq∗

1

Σq∗
2

. . .

Σq∗
T

⎤
⎥⎥⎥⎥⎦ , (2.54)

where μq∗
t
and Σq∗

t
represent the mean vector and covariance matrix of state q∗

t respectively.

Finally, the STRAIGHT vocoder can be employed to convert the static speech feature sequence

C into a waveform.

A major problem with the above-mentioned algorithm is that due to the statistical processing,

generated trajectories of speech features are often excessively smoothed and thus lead to

muffled synthesized speech. In order to alleviate this over-smoothing effect, a new algorithm

that also takes the output probability of global variances (GV) of generated trajectories into

consideration was proposed [Toda and Tokuda, 2005]. The variance vector calculated over

all the static speech feature frames of an utterance is defined as the global variance of this

utterance.

In the training/adaptation stage, global variances of training/adaptation utterances are mod-

elled by a single Gaussian distribution with parameters λGV (λGV and λ are estimated inde-

pendently). Considering both λGV and λ in the synthesis stage, the optimal static speech

feature sequence C∗ is generated by maximizing the product p(W C |Q∗,λ)ω ·p
(
gv(C )|λGV

)
with respect to C instead (ω is a constant weight). It was reported that the utilization of global

variances significantly improved the naturalness of synthesized speech [Toda and Tokuda,

2005]. In addition, it is possible to model global variances in a context-dependent fashion

[Oura et al., 2009].

2.3.4 Subjective Evaluation

The output of speech recognition is plain text or phoneme transcriptions. A computer can

efficiently and precisely assess a speech recognizer by calculating the word or phoneme error

rate of this textual output using reference plain text or phoneme transcriptions. By contrast, as

the output of speech synthesis is sound, dependable assessment of a speech synthesizer has

to rely on people’s perception of this acoustic output.

The dependency leads to a couple of problems. Firstly, judgements from a listener (even if he

is an expert) could be unintentionally biased, due to his hearing, the quality of earphones or

headphones he uses, the extent of quietness of the environment and even his mood when he

listens to the acoustic output [Black and Tokuda, 2005]. Secondly, judgements on merely a

few acoustic output samples are not representative of the overall performance of the speech

synthesizer that generates these acoustic samples. As a result, the most reliable approach

to evaluating a speech synthesizer is to obtain judgements from a sizable group of people

listening to a large number of acoustic samples generated by the speech synthesizer and

then scoring them according to certain criteria. After that, the performance of the speech
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synthesizer is typically presented by the average and a confidence interval of all these scores

or by a box plot.

The crucial objective of speech synthesis is to generate speech which sounds as natural as

if it is uttered by a real person. This not only determines how acceptable/pleasant a speech

synthesizer is to human ears, but also impacts upon the intelligibility of synthesized speech.

Naturalness of synthesized speech is thus considered one of the key measures of the perfor-

mance of a speech synthesizer. On top of that, it may be desirable that the voice characteristics

of a particular person can be fully reproduced in synthesized speech, thereby bringing voice

diversity for speech synthesizers in order to make them more favourable to customers or

helping to reconstruct the lost voice of a disabled person. Hence, speaker similarity between a

synthetic voice and the original target voice functions as another important measure of the

performance of a speech synthesizer.

Naturalness

Naturalness of synthesized speech is typically evaluated in the form of an AB test or anMOS

(mean opinion score) test. In an AB test, listening test subjects are presented with pairs of

speech samples first, where one is generated by the speech synthesizer being evaluated and

the other is generated by a baseline. Then they choose one sample which they think sounds

more natural from each pair. In anMOS test, a subject listens to only a single speech sample

generated by either the speech synthesizer being evaluated or a baseline. Then he is required to

score the sample on a 5-point scale ranging from 1 to 5, where 1means “completely unnatural”

and 5 means “completely natural” [Fraser and King, 2007].

A problem with AB tests is that it only permits pairwise comparison. Thus when comparing

multiple synthesis systems, it requires many tests to be run.

Speaker Similarity

Likewise, speaker similarity between a synthetic voice and an original target voice is typically

evaluated in two similar forms: an ABX test or a DMOS (differential mean opinion score) test.

In an ABX test, a listener is presented with an original recording in a target voice and then a

pair of speech samples generated by the speech synthesizer being evaluated and a baseline

respectively. After that, he is required to choose from the pair one speech sample which he

thinks has a closer voice identity to the target voice. In a DMOS test, a listener is presented

with an original recording in a target voice and then a speech sample generated by either

the speech synthesizer being evaluated or a baseline. After that, he is required to score the

synthesized sample on a 5-point scale ranging from 1 to 5, where 1means “sounds like a totally

different person” and 5 means “sounds like exactly the same person” [Fraser and King, 2007].

A potential problem with speaker similarity evaluation is that listeners may not be always

immune to speech quality in an ABX test. They may subconsciously choose the sample with
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better naturalness in a pair, especially when the two synthetic voices sound almost equally

similar to the reference speaker.

In addition, an ABX test only permits pairwise comparison too. It has the same problem as an

AB test when there are multiple systems to compare.

Intelligibility

Intelligibility is usually evaluated by inviting listeners to transcribe semantically unpredictable

sentences and then calculating the word error rate of their transcriptions. Semantically unpre-

dictable sentences can prevent listeners from guessing a fewmissing words based on semantic

context in order to ensure the only factor influencing the result is the intelligibility of the

speech itself.

Intelligibility is not evaluated in the thesis work as it is not an objective of the research nor is

it significantly impacted. The HMM-based speech synthesis framework has been shown to

provide good intelligibility [Hashimoto et al., 2011].

2.3.5 Objective Evaluation

Subjective evaluation of a speech synthesizer that relies on human perception, as described

above, requires a lot of effort and is considerably time-consuming and costly. Furthermore,

human perception is not always sufficiently sensitive, meaning that it is very difficult for

listeners to make trustworthy judgements when improvement and degradation are subtle.

Using merely subjective evaluation could hinder or even obstruct the progress of research.

Therefore, several objective metrics are also employed in synthesis evaluation. Objective

metrics can accelerate research, indicate small changes resulting from the utilization of new

algorithms or experimental settings and reveal promising research directions. Since in general

they only correlate with human perception loosely [Gray Jr. and Markel, 1976, Barnwell III,

1980, Yamagishi et al., 2010a], objective metrics should be employed with care when drawing

conclusions based on them alone.

Basically, an objective metric is a “distance” between a synthesized utterance and its corre-

sponding original recording. Owing to the parametric nature of HMM-based speech synthesis,

objective metrics can be calculated easily over the speech features of the synthesized utter-

ance and the original recording. For the sake of convenience and meaningful comparison, the

synthesized utterance to be assessed is normally generated using time-aligned durations from

the original recording (except when evaluating duration prediction) – In this way, frame-by-

frame calculation of objective metrics can be easily conducted and it can be assumed that two

aligned frames are produced by the same context-dependent phone.

The source-filter model is employed in the HMM-based speech synthesis framework, so the

parametric output of an HMM-based speech synthesizer contains spectral and excitation
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feature trajectories. Spectral distortion, the voicing error rate, RMSE and correlation coefficient

of F0 are typically used in order to measure the “distance” between generated spectra and F0

contours and those of a corresponding original recording.

Mel-Cepstral Distortion

Mel-cepstral distortion (MCD) [Kubichek, 1993] can be viewed as approximate logarithmic

spectral distance. As mel-cepstral distortion decreases, voice quality could be found to be

perceptually better [Toda et al., 2004]. Mel-cepstral distortion is used in this thesis because

mel-cepstrum (MCEP) was the only spectral feature considered in the entire thesis work.

Suppose c ref
t =

[
creft ,1 creft ,2 · · · creft ,D

]�
is the frame of mel-cepstrum of dimensionality D at

time t from an original recording and csyn
t =

[
csynt ,1 csynt ,2 · · · csynt ,D

]�
is the corresponding

frame from a synthesized utterance. Mel-cepstral distortion at the frame level is given by

[Kominek et al., 2008, Mashimo et al., 2001]

MCDf

(
c ref

t ,csyn
t

)
= 10



2

ln10
·
√√√√ D∑

d=1

(
creft ,d − csynt ,d

)2
(dB), (2.55)

and mel-cepstral distortion at the utterance level is given by

MCD
(
c ref,csyn

)
= 1

T
·

T∑
t=1

MCDf

(
c ref

t ,csyn
t

)
(dB), (2.56)

where T is the total number of frames in the original recording.

Voicing Error Rate, RMSE and Correlation Coefficient of F0

Suppose the F0 contours of an original recording and a corresponding synthesized utterance

are f ref = [
f ref
1 f ref

2 · · · f ref
T

]�
and f syn = [

f syn
1 f syn

2 · · · f syn
T

]�
, respectively. An F0

contour is intrinsically composed of segments with and without F0 values. It does not make

much sense to calculate any distance when f ref
t has a value but f syn

t does not, and vice versa.

As a result, two obvious objective metrics are the percentage of voiced-to-unvoiced (V2Uv)

and unvoiced-to-voiced (Uv2U) errors in a synthesized utterance.

The V2Uv and Uv2V error rates of f syn can be calculated as follows:

V2Uv
(

f ref, f syn
)
= 1

T
·
⎛
⎝ T∑

t=1, f ref
t has a value, f syn

t does not

1

⎞
⎠×100%, (2.57)
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Uv2V
(

f ref, f syn
)
= 1

T
·
⎛
⎝ T∑

t=1, f ref
t does not have a value, f syn

t does

1

⎞
⎠×100%. (2.58)

Then clearly there is always no distortion when neither f ref
t nor f syn

t has a value. Only the

aligned F0 frames that are voiced in both the original recording and synthesized utterance

are taken into account for other objective metrics, i.e., root-mean-square error (RMSE) and

correlation coefficient. Namely, only the F0 frames at time t that belongs to

TV =
{

t
∣∣∣t = 1,2, · · · ,T ; Both f ref

t and f syn
t have values.

}
(2.59)

are used for the calculation of RMSE between f ref and f syn according to

RMSE
(

f ref, f syn
)
=

√
1

V
· ∑

t∈TV

(
f ref

t − f syn
t

)2
(Hz), (2.60)

and the calculation of the correlation coefficient between f ref and f syn according to

CorrCoef
(

f ref, f syn
)
=

|TV|
∑

t∈TV

f ref
t f syn

t − ∑
t∈TV

f ref
t

∑
t∈TV

f syn
t√√√√|TV|

∑
t∈TV

(
f ref

t

)2−
( ∑

t∈TV

f ref
t

)2
·
√√√√|TV|

∑
t∈TV

(
f syn

t

)2−
( ∑

t∈TV

f syn
t

)2 , (2.61)

where |TV| is the number of elements in TV. RMSE reflects the microscopic, numerical distor-

tion of f syn while the correlation coefficient between f ref and f syn suggests their macroscopic,

geometric similarity.

2.4 Summary

In this chapter we revisited in brief the basics of hiddenMarkov models, context-dependent

modelling, the widely used maximum likelihood linear transformation framework for speaker

adaptation and speaker adaptive training, and finally the training, synthesis and evaluation

stages of HMM-based speech synthesis. The contents of this chapter serves as a foundation

for the entire subsequent research work.

HMM-based speech synthesis provides a nearly language-independent solution to building

a speech synthesizer. The only component that is strongly tied to language is the text ana-

lyzer and the questions set for decision tree-based state tying. This makes the HMM-based

speech synthesis framework particularly well suited to multilingual and cross-lingual speech

processing.
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Given that HMMs can provide a common foundation for speech recognition and speech

synthesis, there is hope to develop a unified framework (e.g., versatile models and features)

that may operate for both speech recognition and synthesis and could be particularly useful

for personalization of speech-to-speech translation.

32



3 Cross-Lingual Speaker Adaptation for
Speech Synthesis

3.1 Multilingual Speech Processing

HMM-based speech synthesis, visited in the previous chapter, has developed into a mature

technology for building monolingual speaker-dependent voices. Unfortunately, application

scenarios in real life are not always as simplistic as that. Nowadays, multilingual speech

processing, which refers to technology that supports spoken input and output in a large

variety of languages at the same time [Schultz and Kirchhoff, 2006, Chapter 1], has caught

much interest from the research community. It is hoped that a single “language-independent”

system can be developed to handle multiple spoken languages seamlessly.

On the one hand, research on multilingual speech processing is motivated by the increasingly

common code-switching phenomenon. Code-switching refers to when people switch between

languages while speaking, thereby even a single sentence can containmore than one language.

Although a collection of monolingual systems can be effectively employed as a single mul-

tilingual system, such a simple combination has problems in tackling transitions from one

language to another. In the case of multilingual speech recognition, the performance of such a

combined system depends on the accuracy of a language identification module. Therefore the

difficulty is to build a highly reliable language identification system in addition to that of the

speech recognition itself. In the case of multilingual speech synthesis, it is not trivial to synthe-

size code-switched sentences naturally because segmental and supra-segmental consistency

needs to be maintained around language boundaries, and the voice characteristics should

also remain identical across language boundaries.

On the other hand, training data collection can pose a problem for some languages. In partic-

ular, there may not exist sufficient training data in languages that are not widely spoken in the

world. Training a monolingual system of high quality directly in such an under-resourced lan-

guage is thus infeasible. Nonetheless, it is possible that a good system in an under-resourced

language can be built by bootstrapping from a large amount of training data in other languages

that as a whole can more or less cover the acoustic space of the under-resourced one [Vu et al.,

2011, Imseng et al., 2012]. Research onmultilingual speech processing is also motivated by
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this possibility.

The HMM-based framework provides a promising direction to multilingual speech processing

and in fact research on multilingual modelling has been conducted for many years. The focus

of multilingual modelling is on how to share data and acoustic models among languages,

in order that such models may be also applied to languages not seen in the training data.

Köhler studied the possibility of creating “multilingual” phoneme models which could be

used in a variety of languages by exploiting acoustic-phonetic similarities of sounds [Köhler,

1996]. Byrne et al. proposed to train acoustic models over training data in English, Spanish,

Russian and Mandarin Chinese. A recognizer in the Czech language could then be built

directly with these acoustic models as well as phoneme mapping rules, and such a speech

recognizer could be enhanced by adaptation techniques if a certain amount of data in the

Czech language was available [Byrne et al., 2000]. More importantly, they found that even

models in training languages that performed poorly when used individually could contribute

to the overall combination. Lin et al. explored shared structures embedded in a large collection

of speech data spanning a number of spoken languages in order to establish a common

set of universal phone models that could be used for large vocabulary speech recognition

of all the languages either seen or unseen during training [Lin et al., 2009]. Schultz and

Waibel investigated different methods of building multilingual recognition models: through a

simple collection of monolingual models, sharing model distributions and Gaussian mixture

componentweights across languages, or sharingmodel distributions across languages [Schultz

andWaibel, 2001].

Similarly, efforts have been made to develop multilingual models for speech synthesis. Latorre

attempted to build a multilingual synthesizer over speech data frommultiple speakers and

in multiple languages by means of IPA-based phoneme sharing [Latorre, 2006]. He split

diphthongs into two in order to facilitate phoneme sharing across training languages. Qian et

al. proposed to share HMM state distributions across Mandarin Chinese and English by using

language-independent questions for clustering so as to build a bilingual speech synthesizer

capable of producing smoother transition at language boundaries [Qian et al., 2009]. In the

multilingual synthesis system that Zen et al. developed, sharing happened at the sub-state

level: covariance matrices and mean vectors were shared separately across training languages

[Zen et al., 2012].

3.2 From “Multilingual” to “Cross-Lingual”

“Multilingual” stresses the ability of a single system to handle more than one language while

“cross-lingual” stresses the possibility of transferring some characteristics (e.g. speakers’ voices,

recording environments, etc) from a language to another. The difference in meaning between

“multilingual” and “cross-lingual” seems vague because they are intertwined. For example,

Byrne’s above-mentioned work can be regarded as both multilingual and cross-lingual [Byrne

et al., 2000], as in this case multilingual modelling provided a solution to a cross-lingual
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problem of generating acoustic models for a new language using little or no in-language

training data.

Recently the research topic of transferring speaker characteristics from one language into

another has attracted a great deal of attention. This is an essential technique for personalized

speech-to-speech translation. An unavoidable issue in this research topic is that the acoustic

spaces of the two languages do not completely overlap because their phoneme inventories and

prosodic patterns are normally distinct. The fact that the acoustic space, phoneme inventory,

prosodic patterns, articulatory features and so forth of a language partially overlap those of

another language is referred to as “language mismatch” in this thesis.

The challenge in transferring speaker characteristics from one language to another is different

from that in Byrne’s and related work. In this, they facedmismatch between the language to be

recognized and the ones in the training data. As for transferring speaker characteristics across

languages, the voice characteristics need to be transferred from speech in some language to

speech in a different language without inadvertently capturing other language-dependent

characteristics, i.e., the language characteristics of models need to remain untouched.

Transferring speaker characteristics can be handled by speaker adaptation techniques de-

scribed in the previous chapter. The unique challenge is discovering how such techniques

can be applied in a cross-lingual fashion, ideally with the same efficiency as equivalent intra-

lingual approaches. This challenge is a direct consequence of the fact that state-of-the-art

speaker adaptation techniques cannot automatically identify and then single out speaker

characteristics. Given the language mismatch betweenmodels and adaptation data, not only

the voice characteristics but also the language characteristics of models may be adapted

towards those in adaptation data.

This thesis is focused on the investigation of cross-lingual speaker adaptation for speech

synthesis, more specifically, the influence of languagemismatch and how to alleviate this influ-

ence. We begin with preparatory issues like state-of-the-art cross-lingual speaker adaptation

approaches, model and data preparation and cross-lingual speaker similarity judgement.

It has been noted that researchers have used different terms for the same concepts in cross-

lingual speech processing. For example, we have seen at least four terms which refer to the

language of adaptation data: input language, source language, adaptation language and first

language. For the sake of clarity, the terms in Table 3.1 are adopted throughout this thesis.

3.3 State-of-the-Art Approaches to Cross-Lingual Speaker Adapta-

tion

Unlike intra-lingual speaker adaptation, cross-lingual speaker adaptation adapts the voice

characteristics of average voice synthesis models in an output language into those of a target

speaker who has provided adaptation data in an input language (Lin �= Lout). The fact that
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Table 3.1 – Key terminology for the research on cross-lingual speaker adaptation

Term Notation Definition

input language Lin the language spoken in adaptation data

output language Lout the language in which spoken output is synthesized

target speaker — the person whose voice characteristics are being adapted

target voice — the voice of a target speaker

Lin �= Lout prevents us from directly maximizing the likelihood of synthesis models for the

target speaker in the output language. In other words, there is no straightforward way of

computing the likelihood in Eq. (3.1) (see Eq. (2.34) for the contrast) though it is possible to

obtain a likelihood in practice:

Ŵ s = arg max
W s

∑
all QLout

s

p
(

Ō
Lin
s ,QLout

s

∣∣∣μLout ,ΣLout

)
. (3.1)

Hence, the inherent difficulty in cross-lingual speaker adaptation is how to extract speaker

characteristics from one language and apply them to another without having access to any

direct relationships between phonological representations in the input language and underly-

ing state distributions in the output language. Two types of techniques have been investigated

so far. Their common key point is to establish the missing relationships, either explicitly or

implicitly.

3.3.1 PhonemeMapping

A phoneme is the smallest contrastive unit in the sound system of a language. It serves

to distinguish between meanings of words in the language. Phoneme mapping across two

languages may be the most straightforward approach to cross-lingual speaker adaptation.

The relationship between the input and output languages is captured explicitly by phoneme

mapping pairs according to knowledge of phonetics [Moberg et al., 2004, Latorre et al., 2006,

Wu et al., 2008]. To be specific, two phonemes in two respective languages are regarded as

identical if they are represented by the same phonetic notation like the International Phonetic

Alphabet (IPA) [International Phonetic Association, 1999]. For instance, the English /g/ as

in garden and the French /g/ as in garçon can constitute a phoneme mapping pair. Apart

from this kind of phoneme shared across languages, a phoneme existing in only one language

gets mapped to one or several phonemes in the other language that either are perceptually

the closest or share the most articulatory features. According to phoneme mapping pairs,

adaptation data in the input language can be re-transcribed with phonemes of the output

language and thus cross-lingual speaker adaptation can be conducted in the intra-lingual

fashion.

The main disadvantage of phoneme mapping is that a phoneme is rather a large unit for
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mapping construction. It brings difficulty in finding equivalents in two languages, especially

when the phonology of the two languages differs to a great extent – this would result in many

inaccurate phonememapping rules. For example, mapping between Mandarin and English at

the phoneme level cannot provide good speech quality after cross-lingual speaker adaptation

[Wu et al., 2008].

Moreover, phonetic notations like IPA do not necessarily imply the same acoustic properties

across languages. Essentially, they are merely an abstraction of spoken languages that aims to

provide common representation of sounds on the basis of a few coarse, language-independent

descriptors such as voicing (for consonants), the place andmanner of articulation (for con-

sonants), the tongue and lip positions (for vowels), etc. Therefore, phonemes in different

languages sharing the same phonetic notation are not necessarily acoustically identical 1, let

alone those that do not share the same notation but are mapped to each other.

3.3.2 Bilingual Modelling

The basic idea of bilingual modelling for cross-lingual speaker adaptation is to train models

on a corpus including speech data in both the input and output languages, such that the

resultant models capture characteristics of the two languages at the same time. The effec-

tiveness of bilingual modelling (and multilingual modelling in a more general sense) has

been demonstrated for both speech recognition [Köhler, 2001, Schultz andWaibel, 2001] and

synthesis [Latorre et al., 2005, Qian et al., 2009]. Bilingual modelling establishes relationships

between the input and output languages in the form of shared models. A shared model means

that the model distribution is derived from training data in both the input language and the

output language. Ideally, all model parameters should be shared between the input and output

languages in the case of bilingual modelling.

Using the bilingual modelling technique, cross-lingual speaker adaptation can be treated

in the samemanner as intra-lingual speaker adaptation. Eq. (3.1) can be converted into the

following one:

Ŵ
Lin&Lout
s = arg max

W
Lin&Lout
s

∑
all Q

Lin&Lout
s

p
(

Ō
Lin
s ,QLin&Lout

s

∣∣∣μLin&Lout ,ΣLin&Lout

)
. (3.2)

Now it is possible to directly relate adaptation data to average voice synthesis models and thus

cross-lingual speaker adaptation can be carried out.

Because of the greedy top-downmanner of decision tree-based state clustering in the training

stage, when the input and output languages are substantially dissimilar, questions high up in a

decision tree may split distributions along the language boundary, which effectively prevents

any language sharing lower down in the decision tree. As a result, the principal drawback

of the bilingual modelling technique is its strong dependency on the phonological/acoustic

1. For example, the French /g/ in garçon is actually palatalized, which does not happen to the English /g/ in
garden.
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similarity of the input and output languages, which determines the proportion of shared

model distributions across the two languages. The smaller the proportion of shared models,

the less meaningful cross-lingual speaker adaptation should be expected. Unfortunately, it

is difficult to train a truly bilingual model set in the sense that every model distribution is

shared by the input and output languages. For instance, it has been reported that only less

than 50% of their HMM state distributions were shared across the input and output languages

for Spanish & Japanese in [Latorre et al., 2005], and English &Mandarin in [Qian et al., 2009].

3.3.3 Speaker and Language Factorization

Speaker and language factorization proposed in [Zen et al., 2012] shares the basic idea of

bilingual modelling: building synthesis models which includes both input and output lan-

guages. In speaker and language factorization, language-specific context-dependencies are

handled using cluster adaptive training (CAT) [Gales, 2000] and cluster-dependent decision

trees [Zen and Braunschweiler, 2009] while acoustic variations caused by voice characteristics

of speakers are captured by another layer, CMLLR transforms [Gales, 1998]. At the synthesis

stage, models in a target language to be synthesized are created in the form of linear combina-

tion of canonical models trained over speech data in several underlying prototype languages,

according to language-specific CAT interpolation weights.

To adapt such a speech synthesis system to a target speaker who can speak one of the training

languages, firstly, language-adapted models in this training language are composed using the

canonical models and pre-estimated Lin-specific CAT interpolation weights. Then speaker-

dependent CMLLR transforms are estimated. By using these speaker-dependent transforms,

the canonical models and pre-estimated Lout-specific CAT interpolation weights, speech in

any training language can be synthesized in the target speaker’s voice. The phonological

relationship between the input and output languages is captured by the common set of

canonical models trained over speech data in underlying prototype languages and language-

dependent CAT interpolation weights.

3.3.4 State Mapping

HMM state mapping across different languages is a similar technique to phonememapping.

This approach is built upon the assumption that languages have significant overlap in acoustic

feature space and state mapping provides an appropriate level of granularity to capture this

overlap while maintaining some correspondence between acoustic units (e.g., phonemes). It

was introduced into cross-lingual speech synthesis by Qian et al. [Qian et al., 2009]. Establish-

ing state mapping rules is carried out in a data-oriented manner, by finding the nearest state

emission pdf (say, Y ) of models in language L A for each (say, X ) of the state emission pdfs of

models in language LB according to a similarity measure of state emission pdfs. HMM state

mapping works like a function M L A �→LB (X )= Y , which captures the relationships between the

input and output languages at the sub-phonemic level. It is hoped that state mapping rules
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reflect correspondence between two different languages and are irrelevant to any specific

speaker, so average voice synthesis models [Yamagishi and Kobayashi, 2007, Yamagishi, 2006],

which are speaker-independent, are employed in construction of state mapping rules.

The Kullback-Leibler divergence [Kullback and Leibler, 1951] is typically used as the similarity

measure of state emission pdfs during state mapping construction. Given two continuous

probability density functions f (x) and g (x), the K-L divergence from f (x) to g (x) is defined as

DKL
(

f (x)||g (x))=∫
f (x) log

f (x)

g (x)
dx. (3.3)

This original definition is asymmetrical, i.e., DKL
(

f (x)||g (x)) �= DKL
(
g (x)|| f (x)). The symmet-

rical form of the K-L divergence between f (x) and g (x) is often used, which is

DKL
(

f (x),g (x)
)= DKL

(
f (x)||g (x))+DKL

(
g (x)|| f (x)) (3.4)

=
∫

f (x) log
f (x)

g (x)
dx +

∫
g (x) log

g (x)

f (x)
dx. (3.5)

If both f (x) and g (x) are Gaussian distributions, there is a closed solution for Eq. (3.5) [Myrvoll

and Soong, 2003]:

DKL
(

f (x),g (x)
)=

(
μ f −μg

)� (
Σ−1

f +Σ−1
g

)(
μ f −μg

)
2

+
tr
(
Σ−1

g Σ f +Σ−1
f Σg

)
2

−N , (3.6)

where N is the dimensionality of the random variable x and the function tr(·) calculates the
trace of a matrix.

Wu et al. proposed twomanners for utilizing HMM statemapping rules in [Wu et al., 2009]. The

data mapping manner functions as follows: (1) to apply statemapping rules between the input

and output languages to adaptation data such that the adaptation data in the input language is

represented as a state sequence in the output language; (2) given the correspondence between

the adaptation data and state distributions in the output language, to carry out “intra-lingual”

speaker adaptation on the side of the output language. The key point of the above description

is visualized in Figure 3.1.

Eq. (3.1) can be converted into

Ŵ
Lout
s = arg max

W Lout
s

∑
all QLout

s

p

(
Ō

Lin
s , M

Lin �→Lout

(
QLin

s

)∣∣∣∣μLout ,ΣLout

)
(3.7)

for the data mapping manner. As reported by [Wu et al., 2009], the data mapping manner

provides good speaker similarity, but a slight foreign accent can be perceived and the speech

quality is degraded.

As for the transform mapping manner proposed in [Wu et al., 2009], conventional intra-lingual
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input language (Lin)
average voice

output language (Lout)
average voice

Lin adaptation data 
in a target voice

Figure 3.1 – Data mapping manner for cross-lingual speaker adaptation. Small cylinders
denote adaptation data segments that are moving from the input language to the output
language.

speaker adaptation on the side of the input language is performed first as described below:

Ŵ
Lin
s = arg max

W
Lin
s

∑
all Q

Lin
s

p
(

ōLin
s ,QLin

s

∣∣∣μLin ,ΣLin

)
. (3.8)

Then these resultant speaker-specific transforms Ŵ
Lin
s are associated with state distributions

of synthesis models in the output language through state mapping rules between the input

and output languages. So the average voice synthesis models in the output language can

be adapted with Ŵ
Lin
s , which functions as if it were Ŵ

Lout
s . The key point of this process is

illustrated in Figure 3.2, where Ŵ
Lin
s = {

W 1,W 2,W 3,W 4,W 5
}
as an example.

As reported by [Wu et al., 2009], the transformmapping manner provides good speech quality,

but speaker similarity is degraded.

3.3.5 Summary

Two types of solutions for cross-lingual speaker adaptation have been reviewed in this section:

multilingualmodelling and explicitmapping betweenmonolingualmodels. As formultilingual

modelling, speaker and language factorization solves the two problems with direct bilingual

modelling [Zen et al., 2012]: (1) All the speech data from different languages and speakers is

simply mixed for model training, so acoustic variations among languages as well as speakers

are not well dealt with; (2) Only a single decision tree per state is used to represent all the train-

ing languages, without taking into account the possibility that each training language might

have its exclusive context-dependency, especially for prosody. As for the explicit mapping

techniques, state mapping has been shown to be superior to phonememapping because it
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input language (Lin)
average voice

output language (Lout)
average voice

[W1]

[W5]

[W4]

[W4]

[W3]
[W2]

[W1]
[W5]

[W3]

[W3]

[W4]

Figure 3.2 – Transformmappingmanner for cross-lingual speaker adaptation. “[W i ]” indicates
a transform estimated by intra-lingual speaker adaptation on the side of the input language.

uses finer grained acoustic units and is based on data-oriented mapping rules [Wu et al., 2008,

2009].

HMM state mapping is theoretically and practically simpler than speaker and language fac-

torization, and is yet to be investigated in depth. In addition, mapping at the phoneme, state

or sub-state level (e.g., to mapmean vectors and covariance matrices separately) is generally

inevitable as long as the language of adaptation data is not one of the training languages of

synthesis models. Hence, this thesis is focused on the investigation of state mapping-based

cross-lingual speaker adaptation.

3.4 Speech Resources

In this section, speech corpora that have been used in this thesis for the research of cross-

lingual speaker adaptation are described. These corpora include training data, adaptation

data, test data and data for system enhancement (i.e., development data).

3.4.1 Training Data and Average Voice Synthesis Models

No dedicated speech database was recorded for building average voice synthesis models for

the thesis work. Specially designed training data is not necessary since training average voice

synthesis models over a speech corpus that was originally designed for continuous speech

recognition proved to be viable [Yamagishi et al., 2010a].

As a result, five sets of average voice synthesis models were built on WSJ0 [Paul and Baker,

1992], SPEECON [Iskra et al., 2002], WSJCAM0 [Robinson et al., 1995], GlobalPhone [Schultz,
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2002] and PHONDAT1 respectively for subsequent experiments in this thesis. The phoneme

sets of these languages can be found in Appendix A. Speech features for training the fivemodel

sets included

1. 39th-order STRAIGHTmel-cepstra,

2. one-dimensional logF0,

3. band aperiodicity (BNDAP),

4. first- and second-order dynamic features (delta and delta-delta coefficients) of the above

three kinds of features,

and were extracted from 16kHz WAV files with a window shift of 5 milliseconds. The HMM

topology was five-state, left-to-right with no skip and single Gaussian-per-state. Table 3.2

presents their specifics.

Table 3.2 – Specifics of the five average voices employed in the thesis

Average voice ID AV-ENG-US AV-CMN-sc

Training corpus WSJ0 SI84 SPEECON

Language American English Mandarin Chinese

# of training speakers used (|+~) 43 + 40 97 + 103

# of training utterances used 7085 5914

Total duration (hours) 13.66 12.29

Dimensionality of static BNDAP 5 5

# of tied states of spectrum 3203 2975

System paradigm HTS-2007 [Yamagishi et al., 2009b]

Average voice ID AV-ENG-UK AV-CMN-gp AV-DEU

Training corpus WSJCAM0 GlobalPhone PHONDAT1

Language British English Mandarin Chinese German

# of training speakers used (|+~) 53 + 39 56 + 54 73 + 71

# of training utterances used 9891 5419 10090

Total duration (hours) 18.90 13.37 9.60

Dimensionality of static BNDAP 21 21 21

# of tied states of spectrum 4014 2829 2155

System paradigm HTS-2010 [Yamagishi andWatts, 2010]

3.4.2 Adaptation, Test and Development Data

Despite the fact that only monolingual speech data is required by cross-lingual speaker adap-

tation, a bilingual corpus is considered “indispensable” for research. A bilingual corpus in this

thesis refers to a collection of spoken data read by a set of speakers where each speaker has

recorded utterances in two languages (there is no mid-utterance code-switching) in the same
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chamber. Ideally, average voice synthesis models should be trained over a bilingual corpus for

multilingual and cross-lingual speech synthesis research, because, for example, an underlying

assumption of the state mapping technique is that speaker variability has been factored out

of average voice models so that the average voice in the input language is identical to that in

the output language. This assumption is true only when the two average voices are trained

over a bilingual corpus. It is unfortunate that training average voice synthesis models over

a bilingual corpus is not possible in most cases, mainly because of the difficulty of finding

sufficient fluent bilingual speakers.

A bilingual corpus is effectively used for twomain purposes in multilingual and cross-lingual

speech processing research. Firstly, speech data of a target speaker in the input and output

languages is used as adaptation data and test data, respectively. Secondly, since state-of-

the-art adaptation techniques always blindly adapt all the aspects (speaker characteristics,

background noise characteristics, etc) of synthesis models towards those of adaptation data

simultaneously, a bilingual corpus needs to be used to keep speaker (and background noise)

characteristics constant such that language characteristics can be focused on. For example, a

bilingual corpus is particularly useful as development data in the work in Chapter 5, where it

is hoped to enhance HMM state mapping construction and regression class tree growth in

order to alleviate negative effects caused by the inherent language mismatch problem with

cross-lingual speaker adaptation.

3.4.3 Bilingual Corpora Employed in the Thesis Work

Three bilingual corpora were involved for the thesis work: a pilot corpus in Mandarin and

English, a high-quality corpus in Mandarin and English and another high-quality corpus in

German and English.

(1) Pilot bilingual corpus (Mandarin and English)

The pilot bilingual (Mandarin and English) corpus contains two male native Mandarin speak-

ers (H and Z ) and was recorded in a quiet meeting room in the author’s laboratory in 2009.

The two speakers speak English well but Z has a pronounced foreign accent when speaking

English.

There are 40 adaptation and 22 test utterances per language per speaker in this pilot bilin-

gual corpus. The Mandarin and English prompts were selected from SPEECON and WSJ0,

respectively. H and Z read the same prompts.

(2) High-quality bilingual corpora (Mandarin/German and English)

Two high-quality bilingual corpora 2 were recorded in an anechoic studio (German & English

[Wester, 2010b], and Mandarin & English [Wester and Liang, 2011]) in the University of Ed-

inburgh in 2010. The speakers are native speakers of German or Mandarin. On the basis of

2. http://www.emime.org/participate/emime-bilingual-database
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the English accent rating results in [Wester, 2010b] and [Wester and Liang, 2011], five male

and five female speakers are selected from the German-English corpus, six male and five

female speakers are selected from the Mandarin-English one and they have the most natural

English accent. In addition, a male Mandarin-English speaker whose spoken English is heavily

Mandarin-accented was also selected. The 22 speakers are listed in Table 3.3.

Table 3.3 – Bilingual speakers involved in the thesis

Native language Gender Bilingual speaker ID

German male GM1 GM2 GM3 GM6 GM7

German female GF1 GF2 GF4 GF6 GF7

Mandarin male MM1 MM3 MM4 MM5 MM6† MM7 MMh

Mandarin female MF1 MF2 MF4 MF5 MF7

† the heavily accented Mandarin-English speaker
a Pattern of speaker IDs: [native language (G/M)] [gender (M/F)] [serial number]

The 22 speakers read the same English prompts. The 10 German-English speakers read the

sameGerman prompts and the 12Mandarin-English speakers read the same Chinese prompts.

Throughout this thesis, English is always regarded as the output language. The two languages,

German andMandarin Chinese, are regarded as input languages. Table 3.4 lists the partition

of the high-quality bilingual data according to the usage of different utterances.

Table 3.4 – Usage of the high-quality bilingual data

Range of utterance IDs 0001∼0025 0026∼0125
English DATA-TEST-ENG-25 DATA-DEV-ENG-100†

Mandarin — DATA-ADP-CMN-100

German — DATA-ADP-DEU-100

a Pattern: DATA-[usage]-[language]-[the number of utterances]
b DEV = development, ADP = adaptation, TEST = test
† also used as adaptation data in intra-lingual (English) speaker adapta-
tion

3.5 Synthesis Evaluation in the Context of Cross-Lingual Speaker

Adaptation

The synthesis evaluations discussed in Sections 2.3.4 and 2.3.5 can be divided into two groups

in the context of cross-lingual speaker adaptation. One group includes all the objective evalu-

ations as well as the naturalness and intelligibility evaluations. The cross-lingual fashion of

speaker adaptation is unlikely to have an impact on the evaluation of these metrics except
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the essential issues discussed in Sections 2.3.4 3 and 2.3.5 4. By contrast, speaker similarity

evaluation may pose additional problems for listeners in the context of cross-lingual speaker

adaptation. To be more specific, if reference recordings are presented to listeners in the input

language in a listening test, theymay find it difficult to judge speaker similarity between a refer-

ence recording and a synthesized sample, which is always in the output language. This section

describes in detail the different evaluation metrics employed in this thesis for cross-lingual

speaker adaptation, with specific attention to speaker similarity.

3.5.1 Objective Evaluation

Original recordings collected in the output language, as discussed in Section 3.4, are used as

reference data in objective evaluations. Speech samples are generated by an adapted speech

synthesizer in a cross-lingual fashion using durations obtained from forced-alignment of the

reference recordings 5. Then all the four objective metrics, mel-cepstral distortion, the voicing

error rate, RMSE and correlation coefficient of F0, can be easily calculated using the formulae

presented in Section 2.3.5.

A potential problem in objective evaluations of cross-lingual speaker adaptation is that original

reference recordings in the output language may have an accent different from that of average

voice synthesis models, for normally only adaptation data is in the mother tongue of a target

speaker. The effectiveness of objective evaluations is thus arguable: If accent is considered a

part of speaker identity, objective evaluations would make more sense; otherwise objective

evaluations would be less reliable because such foreign-accented evaluation data does not

provide an ideal reference. In order to alleviate this problem, speakers who by-and-large had

minimal foreign accents when speaking English were chosen from the bilingual corpora.

3.5.2 Subjective Evaluations of Naturalness and Intelligibility

The evaluations of naturalness and intelligibility of a speech synthesizer do not require any

original reference recordings. Therefore no matter how a speech synthesizer is built (speaker-

dependent, adapted in an intra-lingual fashion, or adapted in a cross-lingual fashion), the

naturalness and intelligibility evaluations of the synthesizer follow exactly the same procedure

as described in Section 2.3.4.

Note that improving the naturalness and intelligibility of synthesized speech is also important,

although this is not the principal goal of research on personalization of speech-to-speech

translation, which is improving speaker similarity.

3. I.e., subjective evaluation results could be unintentionally biased due to quite a few factors and a large
number of speech samples need to be listened to to ensure evaluation results are representative of the synthesizer
and reliable.

4. I.e., objective measures only correlate with human perception loosely.
5. See Section 2.3.5 for the advantage of using time-aligned durations from original recordings.
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3.5.3 Subjective Evaluation of Speaker Similarity

Speaker similarity evaluation always requires an original reference recording of the target

speaker’s voice. In the context of cross-lingual speaker adaptation, ideally, the original ref-

erence recording should be in the output language as well. This is possible in a research

laboratory since a bilingual corpus has been recorded for this purpose.

However, this is not necessarily possible in actual application scenarios of cross-lingual

speaker adaptation. For example, the key motivation of personalization of speech-to-speech

translation is to make people “speak” a language that they cannot actually speak, which im-

plies that recordings of the speaker’s voice in the output language are not readily available.

As a result, no matter whether or not speech data in the output language can be effectively

collected from a target speaker, it is necessary to conduct a speaker similarity evaluation of

a personalized speech-to-speech translator using the reference speaker’s voice in the input

language and synthesized speech samples in the output language. This is the only convincing

evaluation that reflects the performance of the personalized translator.

An essential question emerges from this: Are people capable of judging the similarity between

two voices when they speak different languages? Vocal cords and vocal tract are decisive factors

of how a person sounds, but speaking style also plays an important role in his speaker identity.

It is likely that one can sound like a different person when speaking a different language,

because of the unique phonetic and prosodic patterns of each language. Since personalized

speech-to-speech translation is driven by the assumption that the answer to this essential

question is yes, it is important to obtain confirmation of this assumption. The remainder of

this section reports on experiments conducted towards this goal.

This question was already partially addressed in previous studies. [Wester, 2010a] investigated

cross-lingual speaker discrimination using natural speech stimuli in two language pairs, Ger-

man & English and Finnish & English. The experiments in [Wester, 2010a] shows that listeners

were able to complete this task well and could discriminate between speakers significantly

better than chance. However, listeners performed significantly worse when a pair of speech

stimuli contained two different languages than they did when there was only a single language

in a pair.

The paper [Winters et al., 2008] shows that listeners could generalize knowledge of speakers’

voices across English and German, which are two phonologically similar languages. [Wester,

2010a] involved Finnish, which is from the Uralic language family rather than the Indo-

European family like English and German. The results in [Wester, 2010a] shows there was no

indication that speaker discrimination between Finnish and English was more difficult for

native English listeners than speaker discrimination between German and English.

Listeners’ ability to discriminate between speakers when comparing synthesized speech to

natural speech within a single language (English) was investigated in [Wester and Karhila,

2011]. It was found that listeners also completed this task well, with speaker discrimination
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results being significantly above chance. However, listeners performed significantly worse

when a pair of speech stimuli contained two speech types (i.e., synthesized and natural) than

they did when there was only one type (either synthesized or natural) in a pair. Furthermore,

speaker discrimination across speech types was found to be more difficult for listeners than

across languages.

This section investigates how well listeners are able to discriminate between speakers when

they have to deal with speech stimulus pairs that cross both language and speech type bound-

aries, which is exactly the scenario of personalized speech-too-speech translation. It is inves-

tigated whether previous findings on the language pairs of German & English and Finnish

& English also hold true for English & Mandarin Chinese, which is from the Sino-Tibetan

language family. Speaker discrimination experiments with Mandarin and English were con-

ducted, in which native English listeners were presented with natural speech stimuli in English

and Mandarin, synthesized speech stimuli in English and Mandarin, or natural Mandarin

speech and synthesized English speech stimuli. In each experiment, these listeners were asked

to judge whether or not the utterances in a pair were spoken by the same person.

Preparation of Speech Stimuli

The bilingual (Mandarin and English) corpus [Wester and Liang, 2011] mentioned in Section

3.4.3 was used as adaptation data and natural speech stimuli in the speaker discrimination ex-

periments. Synthesized speech stimuli in English/Mandarin were all speaker-adapted samples

on the basis of AV-ENG-US/AV-CMN-sc. Five females and five males with the least degree of

foreign accent in their spoken English were selected. An accent rating task was used to decide

the degree of foreign accent of each speaker [Wester and Liang, 2011].

(1) Stimuli Obtained by Intra-Lingual Speaker Adaptation

The two average voices were adapted to each of the 10 selected speakers with 105 English

and 60 Mandarin adaptation utterances (i.e., on average, 86060 English and 84715 Mandarin

speech frames per speaker), respectively. The difference of 45 utterances was due to the fact

that Mandarin sentences were much longer than English ones. To ensure the amount of

adaptation data in the two languages was comparable, the number of Mandarin adaptation

utterances was limited.

The speaker adaptation procedure was applied in the supervised intra-lingual manner. The

CSMAPLR algorithm [Nakano et al., 2006, Yamagishi et al., 2009a] was employed for transform

estimation. For speech stimulus generation, global variances calculated on the adaptation data

and duration models of the average voices were used. The use of the average voice duration

models was aimed at ensuring synthesized speech stimuli had natural prosody and were not

affected by foreign prosody present in the adaptation data.

(2) Stimuli Obtained by Cross-Lingual Speaker Adaptation
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Chapter 3. Cross-Lingual Speaker Adaptation for Speech Synthesis

The English average voice AV-ENG-US was adapted once again to each of the 10 selected

speakers using their 60 Mandarin adaptation utterances. The cross-lingual speaker adaptation

procedure was applied in the supervised data-mapping manner. Likewise, the CSMAPLR

algorithm, global variances calculated on the adaptation data and durationmodels of AV-ENG-

US were employed for transform estimation and speech stimulus generation.

Design of Listening Experiments

Four listening experiments (Exp. I ∼ Exp. IV) were conducted to examine people’s ability of

discriminating between speakers across languages and/or across speech types, as shown in

Figure 3.3.
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Figure 3.3 – Configurations of the four listening experiments

Each listening experiment consisted of two parts: one test on female speakers and one test on

male speakers. So there were a total of eight listening tests, none of which included speech

stimulus pairs across genders. 40 English and 40 Mandarin sentences from newspaper text

were used in each listening test. None of the 80 sentences had been used as adaptation data.

Each listening test consisted of 160 stimulus pairs (i.e., 320 utterances in total). Each sentence

occurred four times in a listening test – twice in matched-speaker pairs and twice in mixed-

speaker pairs. The two sentences within a pair were always different. Each of the five male (or

female) speakers was presented in combination with every other male (or female) speaker

twice and counterbalanced for order. It was also ensured that the number of mixed-language

pairs was equal to that of matched-language pairs.

Eighty native English listeners with no known hearing, speech or language problems, 20-

30 years of age, were recruited at the University of Edinburgh. Each listener participated in

one of the eight listening tests (thus 10 listeners per listening test). This took between 35

and 45 minutes. The listeners were asked to judge whether the two utterances in each pair

were uttered by the same speaker or two different speakers. In addition, they were asked to
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3.5. Synthesis Evaluation in the Context of Cross-Lingual Speaker Adaptation

indicate on a 3-point scale how sure they were of their judgements. Listeners were paid for

their participation.

Experimental Results

In all box plots in this section, a median is indicated by a solid bar across a box which shows

quartiles; whiskers extend to 1.5 times the inter-quartile range and outliers beyond this are

represented by circles.
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Figure 3.4 – Percent correct in Exp. I (i.e., only natural speech stimuli)

Results from all the 10 listeners in each of the eight listening tests were pooled. Figure 3.4

shows the results of Exp. I, where only natural speech stimuli were presented to listeners.

An analysis of variance (ANOVA) with speaker gender as the between-test factor shows that

there was a significant main effect of speaker gender at the 5% significance level [F (1,18)=
6.49, p = 0.02014]. Therefore, results on male and female speakers are presented separately in

the following analysis.

Figure 3.5 shows box plot results of all the four experiments. The order of presentation of

the mixed-language pairs – “Eng/Man” and “Man/Eng” – did not have a significant effect on

percent correct, so they were combined. ANOVAs with the type of language pair (“Eng/Eng”,

“Man/Man” and “Eng/Man”) as the within-test factor were conducted for all the four experi-

ments. In all cases, a significant main effect of the type of language pair was found. Tukey’s

HSD tests show that listeners performed significantly worse when listening to mixed-language

pairs than they did when listening to matched-language pairs. For both female and male

speakers in Exp. IV, there was also a significant difference between “Man/Man” and “Eng/Eng”.

This was in contrast to previous experiments, in which no significant differences between
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Figure 3.5 – Percent correct in the eight listening tests (N=Natural speech, S=Synthesized
speech, _W=Within-language adaptation, _A=Across-language adaptation)
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matched-language pairs were found, irrespective of the speech being natural or synthesized.

Table 3.5 shows the results in terms of mean percent correct for each of the four experiments.

Differences in terms of percent correct between these experiments are also given.

Table 3.5 – Mean percent correct in all the four experiments

Speaker gender Experiment ID
Language pair (%)

Eng/Eng Man/Man Eng/Man

female

I (Eng N, Man N) 92.8 85.5 72.6

II (Eng S_W, Man S_W) 86.3 76.3 64.6

III (Eng S_W, Man N) 77.3 81.0 51.5

IV (Eng S_A, Man N) 69.3 84.5 50.6

I – II 6.5 9.2 8.0

(difference) II – III 9.0 -4.7 13.1

III – IV 8.0 -3.5 0.9

male

I (Eng N, Man N) 94.0 94.0 84.0

II (Eng S_W, Man S_W) 89.3 89.8 78.1

III (Eng S_W, Man N) 88.3 92.3 60.4

IV (Eng S_A, Man N) 80.5 90.8 61.1

I – II 4.7 4.2 5.9

(difference) II – III 1.0 -2.5 17.7

III – IV 7.8 1.5 -0.7

Discussions

It was shown in [Wester, 2010a] that when comparing speech stimuli across languages (English

&German and English & Finnish), listeners’ performance dropped on average by 10 percentage

points, from 90-100% correct (matched-language) to 80-90% correct (mixed-language). Exp.

I shows a similar picture. For the male Mandarin-English speakers, listeners followed this

pattern exactly. For the female Mandarin-English speakers, the results were about 10% lower.

Speaker discrimination usingMandarin & English does not seem to bemore difficult for native

English listeners than that using German & English or Finnish & English, when we look at the

cases of using male speakers. However, significant differences are found between the results of

listeners on female Mandarin-English speakers and other female speakers (German-English

and Finnish-English), as well as between the results of listeners on female Mandarin-English

speakers and the male German-English speakers. The most likely explanation would be

that the five female Mandarin-English speakers are intrinsically more confusable than other

speakers.
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To illustrate this, Figure 3.6 shows a non-metric multi-dimensional scaling (MDS) plot of the

judgements given by the 80 native English listeners. The plots are 2-dimensional projections

of a 4-dimensional space (stress = 0.02 for the results on male speakers and 0.014 for those on

the female speakers).

The MDS plot can be interpreted as follows: The proximity between a speaker’s English and

Mandarin data points indicates how well listeners distinguished between speakers across

the two languages. A large distance between a speaker’s English and Mandarin data points

indicates that they were difficult to recognize as the same person. TheMDS plot also shows

which speakers were most confusable, as their data points are close together. Note, however,

that it is not clear from this initial analysis what the acoustic correlates of the dimensions are.

In the plot with respect to female speakers, the data points of speakers 1 and 4 totally overlap,

meaning that listeners were not able to distinguish between the two speakers. Speaker 2’s

English andMandarin data points are quite far away from each other. Speaker 3’s English and

Mandarin data points merge but are quite close to speaker 5’s data points. Three out of the five

female speakers were clearly difficult for the listeners. Compare this to the plot with respect

to male speakers in which speakers 2, 3, 4 and 5 all have Mandarin and English data points

that are near each other, i.e., listeners were able to recognize these speakers well across the

two languages. Only speaker 1 seems more difficult to identify across the two languages and is

more confusable with speaker 3 in Mandarin and speaker 2 in English.

When going from Exp. I to Exp. II, i.e., from natural speech to synthesized speech, we observe

small drops in listeners’ performance of 7-9%on female speakers and of 4-6%onmale speakers.

The synthesized speech created using intra-lingual speaker adaptation led to speaker identities

that were recognized as individuals in matched-language pairs. The results on synthesized

speech are very similar to those found on natural speech.

In Exp. III and Exp. IV, the focus was on mixed-language pairs. Going from Exp. II to Exp.

III, we see a drop of 13% in listeners’ performance on female speakers and a drop of 18%

on male speakers. When applying cross-lingual speaker adaptation, there was no further

drop in performance in mixed-language pairs. But in this case, for female speakers, listeners

already performed at near chance levels. There was a drop of about 8% in the results with

respect to matched-language (English) pairs, when intra-lingual speaker adaptation became

cross-language speaker adaptation.

Conclusions about Speaker Similarity Evaluation

It has been confirmed that listeners are able to carry out speaker discrimination tasks well,

that is, deciding whether or not a speaker in one language sounds similar to the original

speaker in another language. The current study has shown that native English listeners did

not experience more difficulties with Mandarin than Finnish or German in such a speaker

discrimination task.
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Figure 3.6 – MDS plots of the judgements of the 80 listeners
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[Wester, 2010a] showed that listeners were well able to compare natural stimuli across lan-

guages (on average, 82-90% correct). The discrimination study in [Wester and Karhila, 2011]

showed that listeners were also reasonably able to discriminate between speakers across

speech types (synthesized and natural) within a language (on average, 69-73% correct). The

experiments in this section show that when, in addition to comparing different speech types,

listeners also had to contend with pairs across languages, their ability to correctly discriminate

between speakers suffered quite substantially (on average, 51-61% correct). To summarize,

listeners are able to discriminate between speakers across languages or across speech types,

but the combination of these two factors leads to a speaker discrimination task that is too

difficult for listeners to perform successfully. Consequently, future research in personalized

speech-to-speech translation will need to be concentrated on further improving a speaker’s

synthetic voice so as to achieve the goal of sounding like the original speaker. This provides

ample motivation for the work conducted in the following chapters.

3.6 Summary

In this chapter, we revisit speech processing in the multilingual and cross-lingual contexts and

then discuss preparatory issues for research on personalization of speech-to-speech transla-

tion and cross-lingual speaker adaptation: state-of-the-art cross-lingual speaker adaptation

approaches, model and data preparation, and evaluation of adaptation performance in the

cross-lingual circumstance. A critical issue in evaluation in the cross-lingual circumstance,

which is the capability of people distinguishing between speakers across languages, was

investigated. It was confirmed in our experiments that cross-language speaker discrimina-

tion/identification is indeed feasible, though with some caveats.

The contribution presented in this chapter was a piece of collaborative work with Dr Mir-

jam Wester based in the Centre for Speech Technology Research (CSTR), the University of

Edinburgh and originally published in the following conference paper:

– Mirjam WESTER and Hui LIANG, “Cross-Lingual Speaker Discrimination Using Natural and

Synthetic Speech”, Proc. of Interspeech, pp. 2481–2484, August 2011.
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Lingual Speaker Adaptation

4.1 Overview

The previous chapter presented an overview of cross-lingual speaker adaptation for text-to-

speech synthesis, andmore importantly, provides us with evidence that people are capable

of distinguishing between speakers across languages, even if the languages are considerably

dissimilar in terms of their phonology (e.g., Mandarin Chinese and English). This conclusion

suggests that personalization of speech-to-speech translation is an attainable objective of

research and deserves further attention and efforts. Meanwhile, the major difficulty has been

also revealed in the previous chapter: It is the poor quality of synthesized speech through

speaker adaptation (even intra-lingual speaker adaptation, let alone cross-lingual speaker

adaptation) that hampers listeners’ judgement when they compare voices across both lan-

guages and speech types. Therefore, the main focus in the rest of this thesis work should be to

improve the performance of cross-lingual speaker adaptation, such that it can be comparable

to that of intra-lingual speaker adaptation. After that, it can be assumed that improvements to

monolingual speech synthesis and intra-lingual speaker adaptation will also carry over to the

cross-lingual scenario.

As discussed in the previous chapter, throughout this thesis cross-lingual speaker adaptation

is applied using the HMM state mapping technique. Application of HMM state mapping to

cross-lingual speaker adaptation for speech synthesis is a fairly new approach (proposed in

[Chen et al., 2009] and [Wu et al., 2009] in 2009) and thus has not been yet investigated in depth.

It has been observed that its performance is inferior to that of intra-lingual speaker adaptation

[Chen et al., 2009], but what exactly causes the gap in performance between intra-lingual and

cross-lingual speaker adaptation has not been revealed by earlier work. In order to advance

the state of the art, it is important that we can quantify the differences between cross-lingual

and intra-lingual speaker adaptation in terms of their impacts on the quality of synthesized

speech and speaker similarity that can be reproduced.

Intuitively, it is expected that the major cause of the gap in performance is the inherent mis-

match between the languages of adaptation data and synthesis models used in cross-lingual
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speaker adaptation, since suchmismatch does not exist in intra-lingual speaker adaptation.

However, it has not been analyzed how this mismatch between languages affects the perfor-

mance of cross-lingual speaker adaptation for speech synthesis. In order to work out how the

state of the art of cross-lingual speaker adaptation can be improved, an in-depth analysis of

the impact of the inherent language mismatch is conducted in this chapter, with the goal of

understanding the underlying mechanism.

Apart from the inherent issue of language mismatch in cross-lingual speaker adaptation

itself, there exists another potential issue due to the scenario of personalized speech-to-

speech translation. Unsupervised speaker adaptation is necessary for personalization of

speech-to-speech translation, as it can help to adapt the average voice synthesis models of

a speech-to-speech translator towards a user’s voice characteristics as the user continues to

use the translator. Nevertheless, since transcriptions of adaptation data produced by a speech

recognizer may contain errors, it is possible that the unsupervised fashion is detrimental to

speaker adaptation in a cross-lingual setting. Hence, an investigation is carried out in this

chapter in order to examine the possibility of utilizing unsupervised cross-lingual speaker

adaptation in the scenario of personalized speech-to-speech translation.

This chapter begins with unsupervised cross-lingual speaker adaptation and then an investi-

gation into the inherent language mismatch between adaptation data and synthesis models

follows. This order of presentation is due to the fact that the conclusion on unsupervised

cross-lingual speaker adaptation can help to decide which fashion of adaptation (supervised

or unsupervised) should be employed in subsequent research. Namely, the investigation into

the inherent language mismatch will be affected by the findings with respect to unsupervised

cross-lingual speaker adaptation.

4.2 Unsupervised Cross-Lingual Speaker Adaptation

As discussed previously, an additional challenge exists in the context of personalization of

speech-to-speech translation, that is, unsupervised cross-lingual speaker adaptation. To date,

research has only been conducted into unsupervised intra-lingual speaker adaptation [King

et al., 2008] and supervised cross-lingual speaker adaptation [Chen et al., 2009, Wu et al., 2009]

separately for speech synthesis.

In this section, two techniques, decision treemarginalization (see Section 4.2.1 for an overview)

and HMM state mapping (see Section 3.3.4 for an overview), are combined in order to achieve

unsupervised cross-lingual speaker adaptation and this combination is evaluated. In brief,

eight speaker adaptation systems (various combinations of supervised versus unsupervised,

intra-lingual versus cross-lingual) were built and their performance was compared using

objective and subjective evaluations.
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4.2.1 Decision TreeMarginalization

A simple and obvious method of conducting unsupervised speaker adaptation for speech

recognition is to transcribe adaptation data with a well-trained, speaker-independent, tri-

phone model-based speech recognizer and then to adapt these recognition models with the

resultant transcriptions in the supervised fashion. Thismethod can be also applied to unsuper-

vised speaker adaptation for speech synthesis. However, it is less straightforward for speech

synthesis, since we have to transcribe adaptation data at the word level using recognition

models and then to extract rich context-dependent labels using a speech synthesis front-end,

potentially introducing additional sources of error. As a result, the decision tree marginal-

ization technique [Dines et al., 2009] was proposed, by which speech synthesis models can

be used for transcribing adaptation data – in other words, adaptation data can be directly

associated with distributions of synthesis models.

Decision tree marginalization allows the derivation of speech recognition models from a rich

context-dependent speech synthesis model set according to given triphone labels. Hence, the

first stage is to train a conventional HMM-based speech synthesis system from scratch, in

which typically, each HMM state emission distribution is composed of a single Gaussian pdf

and decision trees for state tying are central phoneme-independent.

Normally, a synthesis model with new contexts can be generated by traversing the decision

trees of a synthesis model set according to a new context-dependent label and eventually

assigning one leaf node (i.e., one Gaussian pdf) to the context-dependent label. The basic

idea of decision tree marginalization is fairly straightforward in the sense that it generates a

triphone recognition model in almost the samemanner. The only difference from adding a

new synthesis model is that both children of a decision tree intermediate node of a synthesis

model set are traversed when the question associated with this intermediate node is irrelevant

to any triphone context. So finally a triphone label is associated with more than one leaf node,

which form a state emission distribution of multiple Gaussian components. In other words,

a triphone recognition model constructed by decision tree marginalization can be viewed

as a linear combination of context-dependent single Gaussian synthesis models. Nomodel

parameters (mean vectors and covariance matrices) are changed during the whole process.

Figure 4.1 visualizes the basic idea of decision tree marginalization by showing how to create a

recognition model for a triphone label “r-ih+z” from a tiny synthesis model set consisting

of merely five Gaussian distributions. It is apparent that p(ot |G1) and p(ot |G3) correspond
to Gaussian distributions in the synthesis model set. The prior probabilities, P (G1|r−ih+z)
and P (G3|r−ih+z), are defined as normalized occupation counts for G1 and G3 obtained

during the training stage of the synthesis model set [Dines et al., 2009], i.e., the summation

of P (G1|r−ih+z) and P (G3|r−ih+z) should be equal to one. With a well-trained synthesis

model set and such prior probabilities, a set of triphone recognition models can be easily

constructed.

The decision tree marginalization process described above is actually a special case. It can
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R_fricative?

Yes

No

R_unvoiced?

L_plosive?Syl_stressed?

G1

G2 G3

G4 G5

r-ih+z

p(ot |r−ih+z)= P (G1|r−ih+z) ·p(ot |G1)+P (G3|r−ih+z) ·p(ot |G3)
Figure 4.1 – Illustration of decision tree marginalization, showing how the new recognition
model “r-ih+z” is derived from the decision tree of a tiny speech synthesis system (“L_” /
“R_”: left/right phone context; “G1”∼“G5”: clustered state emission Gaussian distributions; ot :
the feature observation at time t )

be extended to marginalizing out an arbitrary set of contexts in order to create models from

a normal set of synthesis models. For instance, tonal monophonemodels can be created by

marginalizing out all the contexts that are unrelated to the base phone and tone information.

Apart frommarginalizing out non-triphone contexts to create recognition models, the follow-

ing experiments also involve marginalizing out English-specific contexts so as to construct

newmodels as per givenMandarin labels from a normal set of English models.

4.2.2 SystemDescription

Decision tree marginalization makes it possible to perform unsupervised intra-lingual speaker

adaptation and HMM state mapping makes it possible to perform supervised cross-lingual

speaker adaptation. It is thus expected that their combination should enable unsupervised

cross-lingual speaker adaptation.

HMM state mapping rules and eight synthesis systems were prepared on the basis of the two

average voices AV-ENG-US and AV-CMN-sc in order to verify the feasibility of the combination

of these two techniques. The eight synthesis systemswere paired, half of thembeing supervised

and the other half being unsupervised. Speech data for adaptation and evaluation was from

the pilot bilingual corpus (see Section 3.4.3) containing twomale native Mandarin speakers
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(H and Z ) comprising 40 adaptation and 22 test utterances each.

Table 4.1 – Naming rules of systems to be compared

Pattern of system names: (S/U) (1/2) - (D/T/M)

S/U supervised / unsupervised

1/2 cross-lingual / intra-lingual

D/T data mapping / transformmapping [Wu et al., 2009]

M Decision tree marginalization was used instead of HMM state
mapping. AV-CMN-sc was therefore unnecessary.

Following the rules in Table 4.1, the eight synthesis systems were named S2, S1-M, S1-T, S1-D,

U2, U1-M, U1-T and U1-D:

S2 A conventional supervised intra-lingual speaker adaptation system in English.

S1-M All the English-specific contexts were marginalized out first. In other words, only

language-independent questions were left in the decision trees of AV-ENG-US. As a

result, each of given Mandarin context-dependent labels was associated with more

than one English state distribution. ThenMandarin adaptation data could be treated as

English data for “intra-lingual” speaker adaptation on the English side.

S1-T A supervised cross-lingual speaker adaptation system using transform mapping, as

described in Section 3.3.4.

S1-D A supervised cross-lingual speaker adaptation system using data mapping, as described

in Section 3.3.4.

U2 An unsupervised intra-lingual speaker adaptation system in English. Recognition models

were constructed from AV-ENG-US through decision tree marginalization in order to

generate triphone labels of English adaptation data. Then model distributions of AV-

ENG-US were adapted in the supervised fashion.

U1-M All the non-triphone contexts of AV-ENG-USweremarginalized out and thenMandarin

adaptation data was recognized as if it were English data, thereby Mandarin adaptation

data getting associated with Gaussian pdfs of AV-ENG-US. Then model distributions of

AV-ENG-US were adapted in the supervised and “intra-lingual” fashion.

U1-T Speech recognition was performed with the help of decision tree marginalization on

AV-CMN-sc in order to obtain estimated triphone transcriptions ofMandarin adaptation

data. Once estimated triphone transcriptions of adaptation data were available, cross-

lingual speaker adaptation was conducted using transformmapping in the supervised

fashion.

U1-D The same approach as U1-T except that data mapping was used instead of transform

mapping.

Note that as decision tree marginalization was engaged in all the four unsupervised systems
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as well as S1-M, their transforms were estimated over multiple Gaussian component models

instead of single Gaussian models.

The CSMAPLR [Nakano et al., 2006, Yamagishi et al., 2009a] algorithm and all the 40 adaptation

utterances were used to adapt the eight synthesis systems. Global variances were calculated

on the adaptation data. A simple phoneme loop was adopted as the language model for

recognition, for there was no language model trained along with the acoustic, average voice

synthesis models. The average phoneme error rate was around 75%. It is hypothesized that

besides the effect of the simple language model, this high phoneme error rate was due to the

fact that (i) the models for recognition were actually derived from the average voice synthesis

models by decision tree marginalization and (ii) only a single decision tree per emitting state

per stream instead of central phoneme-specific decision trees was constructed for state tying

during the training stage of these synthesis models (in other words, multiple phonemes may

correspond to the same state distribution for synthesis). However, the underlying purpose of

recognition here was to associate adaptation data with distributions of these synthesis models

rather than produce correct transcriptions of adaptation data.

4.2.3 Objective Evaluation

Mel-cepstral distortion as well as the RMSE and correlation coefficient (CorrCoef) of F0 was

calculated on all the 22 test sentences for objective evaluation. The results are presented in

Table 4.2.

Table 4.2 – Objective evaluation results (supervised versus unsupervised)

MCEP F0

MCD (dB) RMSE (Hz) CorrCoef

H Z H Z H Z

the average voice 8.55 8.78 26.0 35.9 0.46 0.49

S2 6.36 6.40 11.8 09.6 0.46 0.56

U2 6.49 6.61 13.0 14.0 0.47 0.54

S1-T 7.58 7.48 20.0 12.6 0.47 0.51

U1-T 7.59 7.74 21.1 16.5 0.48 0.53

S1-D 6.97 7.02 19.5 12.6 0.47 0.51

U1-D 6.92 6.94 22.7 17.3 0.48 0.55

S1-M 6.77 6.85 25.9 22.3 0.48 0.54

U1-M 6.74 6.83 25.1 21.0 0.48 0.53

Table 4.2 confirms that the performance of unsupervised adaptation is comparable to that of

supervised adaptation nomatter which approach was applied in spite of the high phoneme
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error rates that were recorded. According to Table 4.2, the following observations can be made:

(1) Intra-lingual systems S2 and U2 provide the best performance, which makes sense as

there was not any kind of mismatch.

(2) It is not surprising that S1-T and U1-T provide worse performing spectrum adaptation,

because the transforms were estimated onMandarin model distributions but used to adjust

English synthesis model parameters. There was obvious mismatch between the transforms

and the English synthesis models.

(3) In contrast, for S1-D and U1-D where data mapping was used, mapping rules were

applied to the Mandarin adaptation data before transform estimation. Since transforms were

directly estimated onMandarin data and English model distributions, there was no mismatch

between the resulting transforms and the English synthesis models. Mel-cepstral distortion

thus decreased.

(4) In S1-M and U1-M, without any explicit state mapping rules, the Mandarin adaptation

data was directly associated with Gaussian pdfs of the English average voice synthesis models

by prior phonetic knowledge and in anML-based data-driven manner, respectively. This can

be regarded as a “soft” mapping process. So S1-M and U1-M could be slightly better than S1-D

and U1-D in terms of spectrum adaptation performance.

(5) Unfortunately, the great prosody distinction between English andMandarin meant F0

adaptation was not nearly as effective in the case of cross-lingual adaptation.

4.2.4 Subjective Evaluation

Initially speech samples for subjective evaluation were synthesized with adapted pitch con-

tours, but unnatural pitch patterns resulting from unsupervised cross-lingual speaker adap-

tation were perceived. In addition, Table 4.3 confirms that the prosody of English (i.e. stress-

timed & atonal) is distinct from that of Mandarin (i.e. syllable-timed & tonal). Hence, pitch and

duration of utterances to be subjectively evaluated were synthesized from the English average

voice AV-ENG-US. Then each synthesized pitch contour was shifted such that its mean F0

value was equal to that of the corresponding bilingual speaker (H or Z ). So our listening test

merely focused on the performance of spectrum adaptation.

Table 4.3 – F0 statistics (Unit: Hz)

Speaker Language Mean StD Min Max

H Mandarin 137.9 25.2 72.9 236.3

H English 128.7 11.8 64.1 222.6

Z Mandarin 117.9 15.4 58.1 182.1

Z English 112.0 10.3 59.3 186.1
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The listening test consisted of two sections: naturalness and speaker similarity. In the natu-

ralness section, a listener was presented with a natural utterance first and then utterances

synthesized by the eight systems as well as vocoded speech in random order. Having listened

to a synthesized utterance, the listener was requested to score what he/she heard on a 5-point

scale of 1 through 5, where 1 meant “completely unnatural” and 5 meant “completely natural”.

The speaker similarity section was designed in the same fashion, except that a listener was

requested to listen to an additional utterance which was synthesized directly from AV-ENG-US

and the 5-point scale was such that 1 meant “sounds like a totally different person” and 5

meant “sounds like exactly the same person”.

Twenty listeners participated in our listening test. Because of the anonymity of our listening

test, only two native English speakers can be confirmed among the 20 listeners. The results

in Figure 4.2 and Figure 4.3 suggest that unsupervised cross-lingual speaker adaptation is

comparable to or sometimes better than the supervised case in terms of naturalness. It is noted

that in the case of intra-lingual speaker adaptation with speaker Z ’s English adaptation data,

the supervised system S2 outperformed the unsupervised one U2. This is probably because

speaker Z speaks Mandarin-accented English while speaker H has a more natural English

accent. In order to avoid the potential effect of non-standard English accents 1, only speaker

H was involved in the speaker similarity evaluation.
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Figure 4.2 – Naturalness score (speaker H)

It is observed from both objective and subjective evaluation results that for speaker H , *1-D

and *1-M followed the intra-lingual adaptation systems closely while *1-T evidently underper-

formed. Reviewing the analysis of Table 4.2, we note the state emission pdfs of *1-D, *1-M and

the intra-lingual systems for transform estimation were all in English, which was the output

language, and that the difference was just the language of their respective adaptation data. By

contrast, both the state emission pdfs and adaptation data of *1-T for transform estimation

were in Mandarin, which was not the output language. Hence, it would appear that the use

1. As mentioned previously, a foreign accent might be considered a part of speaker identity.
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Figure 4.3 – Naturalness score (speaker Z )

of model distributions of the output language for estimation of adaptation transforms in the

cross-lingual setting leads to the best results. In other words, the language of adaptation data

is less important than that of a model set to be adapted.

3.9 2.3 2.1 1.9 2.2 1.22.2 2.1 2.0 2.2
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

vocoder intra *1-D *1-T *1-M average 
voice

supervised unsupervised

95% confidence interval

Figure 4.4 – Speaker similarity score (Mandarin reference uttered by speaker H)

The results in Figure 4.4 were obtained according to the application scenario of personalized

speech-to-speech translation – speaker similarity is compared between natural speech in the

input language and synthesized speech in the output language. This figure shows unsuper-

vised speaker adaptation is comparable to the supervised case in terms of speaker similarity.

However, Figure 4.5, where both natural and synthesized speech samples were in English,

shows an interesting contrast in that supervised adaptation outperformed the unsupervised

case. We attribute this phenomenon to human perception being affected by different cues,

some of which do not transfer across languages. Namely, because the prompt of a natural

English utterance was the same as that of synthesized ones, and thus they were uttered with
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Figure 4.5 – Speaker similarity score (English reference uttered by speaker H)

close prosody, the listeners couldmore easily perceive how similar/dissimilar a synthetic voice

was to a natural one, and tended to grade supervised adaptation with higher scores. In the case

shown by Figure 4.4, the language differencemade it more difficult for the listeners to compare

a synthesized utterance with a natural one. The listeners did not think either synthetic voices

(obtained in the supervised or unsupervised fashion) sounded more similar/dissimilar to the

natural one. This explanation needs to be confirmed by further experiments and analysis.

The contrast between Figure 4.4 and Figure 4.5 is consistent with the conclusion of speaker

discrimination experiments in Section 3.5.3, i.e., judging the similarity between two voices

across both languages and speech types is a challenging task for listeners. Nevertheless, this

difficulty could be considered a merit: It desensitizes human perception of speaker similarity

so that it indirectly eases the development of an automated personalized speech-to-speech

translator to some extent.

4.3 Impact ofMismatchbetweenAdaptation&Synthesis Languages

Theprevious section demonstrates that the performance of unsupervised cross-lingual speaker

adaptation is comparable to that of the supervised fashion in terms of spectrum adaptation in

the scenario of personalized speech-to-speech translation. In addition, the comparability be-

tween supervised and unsupervised cross-lingual speaker adaptation is also observed in [Oura

et al., 2010], where unsupervised adaptation was achieved by employing standard speech

recognition models. In the remainder of this thesis, adaptation experiments were performed

only in the supervised fashion, since these results indicate that the accuracy of adaptation

labels is not the key determining factor in the effectiveness of cross-lingual speaker adaptation.

Therefore the focus of research in this chapter moves on to the investigation into the impact

of the language mismatch in cross-lingual speaker adaptation.
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Cross-lingual speaker adaptation has an inherent challenge aside from the obvious lack of

correspondence between adaptation data and average voice synthesis models. This challenge

lies in the fact that we would like to apply adaptation algorithms such as maximum likelihood

linear transformation [Gales, 1998], so that maximizing the likelihood of given adaptation data

in an input language should also generalize to an increase of the likelihood (as well as objec-

tive/subjective synthesis quality) of unseen adaptation data in an output language. Although

in practice adaptation algorithms employed to date have been found to work acceptably well

(see [Wu et al., 2009] and Section 4.2), they make no such guarantee of generalization. The fact

that conventional adaptation algorithms do not typically factor out speaker characteristics

from other characteristics such as channel, noise, accent and language could be a major

hindrance to such generalization.

Alleviating the influence of the language mismatch factor should improve the performance of

HMM state mapping-based cross-lingual speaker adaptation and eventually make it compara-

ble to that of intra-lingual adaptation. However, it is firstly necessary to clarify how this factor

impacts cross-lingual speaker adaptation. An investigation of the effects of languagemismatch

on cross-lingual speaker adaptation is detailed in this section in order to fully understand the

underlying mechanism and to discover potential directions for further improvements.

As mentioned in Section 3.3.4, state mapping rules are established on the basis of two sets of

average voice synthesis models that are speaker-independent in order to preclude effects of

speaker-specific information. The underlying assumption here is that the two sets of average

voice synthesis models have an identical “voice” and overlapping acoustic space. This as-

sumption may not be necessarily true, since the training procedure of average voice synthesis

models in the EM fashion cannot guarantee such consistency, which highly depends on the

method of model initialization and training corpora themselves. Such potential inconsistency

between two sets of average voice synthesis models is considered one of the contributing

factors to language mismatch that are looked into in this section.

4.3.1 Various Implementations of State Mapping-Based Cross-Lingual Speaker
Adaptation

A set of experiments involving four ways of utilizing HMM state mapping rules constructed

over two sets of average voice synthesis models was designed for the purpose of finding out

how the language mismatch between average voice synthesis models and adaptation data

affected cross-lingual speaker adaptation. The two approaches proposed in [Wu et al., 2009]

were employed:

Datamapping

1. Establish a set of HMM state mapping rules Md over the two sets (Sin and Sout) of

average voice state distributions of the input and output languages:

Md

(
Si
in

)
= S j

out, Si
in ∈Sin, S j

out ∈Sout. (4.1)
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This direction of mapping rules is aimed at guaranteeing each adaptation data

segment is assigned a state distribution in Sout.

2. Associate all the adaptation data segments in the input language with state distri-

butions in the output language according to Md.

3. Perform “intra-lingual” speaker adaptation on the side of the output language.

In brief, this proceduremeans transferring adaptation data in the input language to the output

language side and then estimating transforms on the side of the output language. Figure 3.1

on page 40 visualizes the key point of data mapping.

Transformmapping

1. Establish a set of HMM state mapping rules Mt over the two sets (Sin and Sout) of

average voice state distributions of the input and output languages:

Mt

(
S j
out

)
= Si

in, Si
in ∈Sin, S j

out ∈Sout. (4.2)

This direction of mapping rules is aimed at guaranteeing each state distribution in

Sout is assigned a transform.

2. Perform intra-lingual speaker adaptation on the side of the input language.

3. Associate each of the state distributions in the output language with a transform

obtained in Step 2 according to Mt.

In brief, this procedure means estimating transforms on the side of the input language and

then transferring the resulting transforms to the output language side. Figure 3.2 on page 41

visualizes the key point of transformmapping.

In order to obtain a full picture of the influence of the language mismatch between aver-

age voice synthesis models and adaptation data, two other methods of utilizing HMM state

mapping rules are proposed:

Regression class treemapping

1. According to the state mapping rules Mt

(
S j
out

)
= Si

in, add each state distribution

in the output language S j
out into the regression class which the state distribution in

the input language, Mt

(
S j
out

)
, belongs to.

2. Remove state distributions in the input language from regression classes of the

input language, and then remove empty regression class tree leaf nodes of the

input language.

3. Like the data mapping approach, associate adaptation data in the input language

with average voice state distributions in the output language.

4. Estimate transforms over average voice state distributions in the output language

and the regression class tree structure of the input language.
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Conceptually, this is equivalent to transferring the regression class tree structure of the input

language to the output language side and then estimating transforms on the output language

side. Figure 4.6 visualizes the key point of regression class tree mapping.

×

×

input language (Lin)
average voice

output language (Lout)
average voiceLin adaptation data 

in a target voice

Figure 4.6 – Regression class tree mapping manner for cross-lingual speaker adaptation. Small
cylinders denote adaptation data segments.

Distributionmapping

1. According to the state mapping rules Md
(
Si
in

)= S j
out, add each state distribution

in the input language Si
in into the regression class which the state distribution in

the output language, Md
(
Si
in

)
, belongs to.

2. Remove state distributions in the output language from regression classes of the

output language, and then remove empty regression class tree leaf nodes of the

output language.

3. Estimate transforms over average voice state distributions in the input language

and the regression class tree structure of the output language.

4. As transforms are associated with regression classes rather than state distributions,

average voice state distributions in the output language are assigned transforms

automatically.

Conceptually, this is equivalent to transferring average voice state distributions in the input

language to the output language side and then estimating transforms on the output language

side. Figure 4.7 visualizes the key point of distribution mapping.

As a summary, Table 4.4 presents the languages which the state distributions (StateDist), regres-

sion class trees (RegTree) and adaptation data (AdaptData) involved in the above-mentioned

implementations are derived from.
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×

input language (Lin)
average voice

output language (Lout)
average voiceLin adaptation data 

in a target voice

Figure 4.7 – Distribution mapping manner for cross-lingual speaker adaptation. Small cylin-
ders denote adaptation data segments that are moving from the input language to the output
language.

Table 4.4 – Overview of languages involved in the different implementations

For transform estimation For synthesis

AdaptData StateDist RegTree StateDist

transformmapping Lin Lin Lin Lout

distribution mapping Lin Lin Lout Lout

data mapping Lin Lout Lout Lout

regression class tree mapping Lin Lout Lin Lout

4.3.2 Isolating Sources of LanguageMismatch

On the surface, language mismatch in the context of cross-lingual speaker adaptation refers to

the mismatch between the language of adaptation data (Ldata, i.e., the input language) and

that of average voice state emission pdfs for synthesis (Lsyn
pdf, i.e., the output language). This is

however a vague description. In effect, languagemismatch in cross-lingual speaker adaptation

occurs in four possible ways:

1. between Ldata and Ladapt
pdf during transform estimation

2. between Ldata and Ladapt
reg during transform estimation

3. between Lsyn
pdf and Ladapt

pdf during synthesis

4. between Lsyn
pdf and Ladapt

reg during synthesis
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Ladapt
pdf and Ladapt

reg refer to the languages of average voice state emission pdfs and the regres-

sion class tree that are used for transform estimation, respectively. Table 4.5 presents where

language mismatch occurs in each of the four approaches described in Section 4.3.1.

Table 4.5 – Language mismatch overview (“×”: mismatched; “◦”: matched)

Ldata Lsyn
pdf

Ladapt
pdf Ladapt

reg Ladapt
pdf Ladapt

reg

transformmapping ◦ ◦ × ×
distribution mapping ◦ × × ◦

data mapping × × ◦ ◦
regression class tree mapping × ◦ ◦ ×

intra-lingual ◦ ◦ ◦ ◦
pseudo intra-lingual † ◦ × ◦ ×

† This is almost the same as the intra-lingual setting, except that its regression class
tree is replaced purposely with one from another synthesis system in a different
language. Also see Section 4.3.3 for more information.

As a result, the four implementations described in Section 4.3.1 as a whole can comprehen-

sively reflect the impact of language mismatch in state mapping-based cross-lingual speaker

adaptation. The impact is quantified and analyzed in the following subsection.

4.3.3 Setup of Main Speaker Adaptation Experiments

The two average voices AV-ENG-US and AV-CMN-sc were used in the experiments in this

section. Speech data for adaptation and evaluation was DATA-ADP-CMN-100/DATA-DEV-

ENG-100 and DATA-TEST-ENG-25 uttered by the male native Mandarin speaker MMh, who

has a reasonably natural English accent. The CSMAPLR [Nakano et al., 2006, Yamagishi et al.,

2009a] algorithm was used and all the CSMAPLR transforms were estimated for six iterations.

Global variances for synthesis were calculated on DATA-ADP-CMN-100. The main focus was

on cross-lingual adaptation of mel-cepstrum and thus mel-cepstrum distortion was employed

as the objective measure of adaptation performance.

Experiments on Intra-Lingual Speaker Adaptation

There is no language mismatch in intra-lingual speaker adaptation (see the fifth row of Ta-

ble 4.5). Consequently, adaptation should behave in a “normal” fashion: It should reduce

mel-cepstrum distortion of synthesized speech and provide further improvements as more

regression class-specific transforms are estimated, given enough adaptation data. Several sets

of transforms were estimated for confirmation and subsequent comparison. The description

of experiments in the intra-lingual setting is as follows:
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1. Each HMM stream was assigned a single transform. So there was only one global trans-

form for mel-cepstrum adaptation.

2. Each state of each HMM stream was assigned a single transform. So there were five

global transforms in all for mel-cepstrum adaptation.

3. Transforms in various quantities were estimated by setting different thresholds of trans-

form generation.
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Figure 4.8 – Mel-cepstral distortion of the intra-lingual speaker adaptation systems using
DATA-ADP-CMN-100 or DATA-DEV-ENG-100 in MMh’s voice

It can be confirmed from the two solid lines in Figure 4.8 that a larger number of transforms can

better characterize the voice of a target speaker in the intra-lingual context. Since transforms

generated by distribution mapping were effectively estimated over average voice synthesis

models in Mandarin, Mandarin speech was also synthesized with these transforms for further

analysis. This is the pseudo intra-lingual case, as its Ladapt
reg is English. It is involved for evaluating

the impact of the source of a regression class tree (i.e., whether to be generated from synthesis

models in the input or output language), given all else is matched.

Experiments on Cross-Lingual Speaker Adaptation

Cross-lingual speaker adaptation in the form of the four HMM state mapping-based imple-

mentations detailed in Section 4.3.1 was carried out. In each case, adaptation transforms
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were generated in various quantities, as what was previously done for intra-lingual speaker

adaptation. Objective evaluation results of cross-lingual speaker adaptation experiments are

presented in Figure 4.9.
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Figure 4.9 – Mel-cepstral distortion of the cross-lingual speaker adaptation systems using
DATA-ADP-CMN-100 in MMh’s voice

4.3.4 Analysis of the Influence of LanguageMismatch

Overall Impact

The seven polylines in Figures 4.8 and 4.9 can be divided into three groups:

(a) All the polylines in Figure 4.8:

All the intra-lingual speaker adaptation systems had similar behaviour, though the

deliberate misuse of an English regression class tree in the pseudo intra-lingual system

introduced the mismatches between Ldata and Ladapt
reg and between Lsyn

pdf and Ladapt
reg that

resulted in worse adaptation performance.

(b) Polylines 1 and 2 in Figure 4.9:

These results pertain to cross-lingual speaker adaptation using state emission pdfs

mapped from the English average voice models for both transform estimation and

speech parameter generation. Both systems gave the lowest MCD values and did not
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appear to be impacted by the regression class tree structure.

(c) Polylines 3 and 4 in Figure 4.9:

These English synthesis systems used adaptation transforms estimated over state emis-

sion pdfs of the Mandarin average voice models. The worst performance was achieved

with the distribution mapping system, which involved language mismatch during both

transform estimation and synthesis.

It is apparent that the different sources of language mismatch can have a significant impact

on cross-lingual speaker adaptation. The most severe mismatch appears to be that between

the distributions used to estimate adaptation transforms and those to which the transforms

are applied during synthesis (i.e., between Ladapt
pdf and Lsyn

pdf). The language mismatch related to

regression class tree structure appears to be less severe and less predictable in their severity.

Influence of the Number of Transforms

Polyline 4 in Figure 4.9 and Polyline 2 in Figure 4.8 actually correspond to the same transforms,

which were applied to English (cross-lingual speaker adaptation) and Mandarin (intra-lingual

speaker adaptation) synthesis respectively. The monotonically decreasing Polyline 2 in Figure

4.8 is what we would expect (and desire) from using an increasing number of transforms.

However, when the same transforms were applied to synthesizing English speech, quite

different behaviour is noted – the performance was firstly improved and then degraded after

a certain number of transforms was estimated (see Polyline 4 in Figure 4.9). Likewise, the

performance of data and regression class tree mapping, corresponding to Polylines 1 and

2 in Figure 4.9, was degraded immediately when more than one transform per state were

estimated. This behaviour can be explained in terms of over-fitting.

When adapting average voice synthesis models, the resulting combination of models and

transforms should match adaptation data. In the speaker adaptation scenario, transforms

would ideally be learning only speaker-dependent characteristics to transform average voice

models to speaker-dependent models, but in practice, language-dependent characteristics

are also captured. In the case of transformmapping, whereby transforms are estimated over

average voicemodels in the input language, speaker-only characteristics are better captured in

the transforms since there is no language mismatch during transform estimation. As a result,

usingmultiple regression class-specific transforms can be beneficial up to a certain point, after

which the transforms becomemore and more language-specific and adaptation performance

is degraded. In the case of data and regression class tree mapping, there is inherent language

mismatch between average voice distributions for transform estimation and adaptation data.

Hence, transforms immediately begin to be strongly influenced by this mismatch and using

multiple regression class-specific transforms is immediately detrimental.

Despite the apparent advantage of transformmapping better taking advantage of multiple

regression class-specific transforms, it still performs worse than data and regression class tree

mapping. It would appear that transformmapping, while capturing fewer characteristics of
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the input language, is less suitable for adapting models in the output language. Thus, data

mapping and regression class tree mapping seem to provide the best way forward, but the

challenge will be to develop techniques that are able to take advantage of a larger quantity of

adaptation data by using regression class-specific transforms. Primarily, this would require a

means to separate the effects of language and speaker mismatches that are both captured at

present.

4.3.5 Subjective Evaluation

In this study we have been mainly interested in objective measures, as they relate to the

adaptation criterionmost closely and thus should be amore sensitive reflection of the impacts

of language mismatch. Nonetheless, objective measures generally only weakly correlate with

human perception [Gray Jr. and Markel, 1976, Barnwell III, 1980, Yamagishi et al., 2010a]. We

performed an informal listening test for confirmation.

In the case of intra-lingual speaker adaptation, we noted speech quality was always good

and that with an increasing number of regression class-specific transforms speaker similarity

improved. The fact that the target speaker MMh did not have an American accent (to match

the average voice models) made the use of a regression class tree particularly important –

His own accent became noticeable when enough regression class-specific transforms were

estimated. In all cases of cross-lingual speaker adaptation, speaker similarity was noticeably

worse than that in intra-lingual speaker adaptation. For transform mapping, voice quality

was maintained, but speaker similarity was poor. For data mapping and regression class tree

mapping, speaker similarity was better, but voice quality was degraded (a “muddy” quality

that reflects the adaptation towards Mandarin). Furthermore, synthesized speech became

distorted as more regression class-specific transforms were estimated, which confirms the

results obtained from the objective evaluations.

4.3.6 Follow-Up 1: Effects of the Quantity of Adaptation Data

The effects of the quantity of adaptation data on cross-lingual speaker adaptation are also

worth investigating. Since data mapping using global transforms provides the best adaptation

performance amongst all the cross-lingual systems, the effects of the quantity of adaptation

data was looked into by conducting another datamapping experiment using global transforms:

AV-ENG-US was adapted with different quantities of adaptation utterances from DATA-ADP-

CMN-100 in MMh’s voice. Objective evaluation results on DATA-TEST-ENG-25 are presented

in Figure 4.10. Due to the size of our bilingual corpus, no more than 100 adaptation utterances

could be used.

Figure 4.10 shows a rough trend that more adaptation data helps to improve cross-lingual

adaptation performance. Unfortunately, the use of global transforms limits the benefits of

using more adaptation data, which can be seen in the very small improvements that were
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Figure 4.10 – MCDwith respect to various quantities of adaptation utterances
Mel-cepstral distortion with respect to various quantities of adaptation utterances

achieved. These results further justify the need for developing new techniques which can

take advantage of a large quantity of adaptation data and a regression class tree in transform

estimation.

4.3.7 Follow-Up 2: Effects of the Number of Iterations of Transform Estimation

It has been demonstrated that multiple regression class-specific transforms in the data

mapping-based system captured more undesirable language information than a single global

transform did and thus led to worse adaptation performance. Thus it is realized that likewise,

re-estimating a certain number of transforms iteratively could also add more undesirable

language information in a data mapping-based system.

An experiment was carried out in order to verify the impact of the number of transform

estimation iterations. Cross-lingual speaker adaptation by data mapping was carried out on

the average voice AV-ENG-UK with adaptation data DATA-ADP-CMN-100 and DATA-ADP-

DEU-100 in 20 speakers’ voices. Two sets of CSMAPLR transforms for the synthesis of DATA-

TEST-ENG-25, one containing a single global transform and the other containing multiple

regression class-specific transforms, were estimated for one to six iterations in turn. Mel-
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cepstral distortion on the test data set DATA-TEST-ENG-25 was calculated for the 20 target

speakers and is presented in Figure 4.11.

As we anticipated, estimating adaptation transforms by data mapping in an iterative manner

is detrimental to cross-lingual speaker adaptation most of the time. In particular, as Figure

4.11 shows, mel-cepstral distortion on DATA-TEST-ENG-25 consistently increases (i) when

the input language is substantially phonologically distinct from the output language (e.g.,

Mandarin to English adaptation), regardless of whether a global or multiple regression class-

specific transforms are estimated, and (ii) even when the languages are much closer (e.g.,

German to English adaptation) if multiple regression class-specific transforms are estimated.

4.4 Conclusions

Twomain issues have been covered in this chapter. Firstly, the possibility of employing cross-

lingual speaker adaptation in the unsupervised fashion in the context of personalized speech-

to-speech translation was investigated.

Unsupervised cross-lingual speaker adaptation was implemented by combining recently de-

veloped decision tree marginalization and HMM state mapping techniques. It was observed

that unsupervised cross-lingual speaker adaptation was comparable to the supervised fashion

in terms of spectrum adaptation in the scenario of personalized speech-to-speech transla-

tion, even though automatically obtained transcriptions of adaptation data had a very high

phoneme error rate. This is what was hoped for – In subsequent research on personalization

of speech-to-speech translation, researchers can simply focus on the supervised fashion.

Then we move on to the second issue, i.e., the investigation of how language mismatch de-

grades HMM state mapping-based cross-lingual speaker adaptation. In this chapter, it is

demonstrated how the various sources of language mismatch impacted the different adapta-

tion systems. From these results, it can be concluded that though HMM state mapping is an

effective method to relate two different languages, it remains sensitive to the negative impacts

of language mismatch. Reducing this mismatch is thus a key to advancing the state of the

art. Currently, HMM state mapping rules are always constructed based on the minimum K-L

divergence criterion. Alternative mapping criteria have not been investigated.

Moreover, the impacts of the number of regression class-specific transforms and the quantity

of adaptation data on cross-lingual speaker adaptation have been investigated. It was found

that the performance of cross-lingual speaker adaptation was degraded whenmany regression

class-specific transforms are estimated. From the results of this part of study, it becomes clear

that current approaches are largely unable to take advantage of a large quantity of adaptation

data, mainly because the language mismatch between average voice synthesis models and

adaptation data introduces too much unwanted language-specific information. In order to

better reduce the negative impact of language mismatch and in so doing enable the effective

use of a regression class tree, it is necessary to introduce new techniques that model speaker
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Figure 4.11 – Mel-cepstral distortion of data mapping systems on DATA-TEST-ENG-25 with
respect to the number of iterations of transform estimation. The blue and red polylines
correspond to estimating a single global and multiple regression class-specific transforms,
respectively.
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characteristics and inherent differences between languages separately, or to find a newmethod

of growing a regression class tree.

Lastly, it is found in both investigations that the data mapping approach outperforms the

transform mapping approach. Consequently, only the data mapping approach will be in-

vestigated in the following work. It was also found that estimating adaptation transforms

iteratively in the data mapping approach is detrimental to the performance of cross-lingual

speaker adaptation. Thus, in the experiments in Chapter 5 only a single iteration of transform

estimation is employed, unless otherwise stated.

The contributions presented in this chapter were originally published in the following confer-

ence papers:

– Hui LIANG, John DINES and Lakshmi SAHEER, “A Comparison of Supervised and Unsuper-

vised Cross-Lingual Speaker Adaptation Approaches for HMM-Based Speech Synthesis”,

Proc. of ICASSP, pp. 4598–4601, March 2010.

– Hui LIANG and John DINES, “An Analysis of Language Mismatch in HMM State Mapping-

Based Cross-Lingual Speaker Adaptation”, Proc. of Interspeech, pp. 622–625, September

2010.
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5 Data-Driven Adaptation Framework
Using Phonological Knowledge

In the previous chapter, HMM state mapping with the K-L divergence as a measure of the

similarity between state distributions has been shown to be a simple and effective technique

that enables cross-lingual speaker adaptation for text-to-speech synthesis. Meanwhile, the

weakness of this technique is also noticeable: it constructs state mapping rules only based on

means and variances of HMM state distributions, ignoring any other information that may

positively contribute to state mapping construction, for example, the phoneme(s) which an

HMM state represents. In this chapter, a jointly data-driven and phonological knowledge-

guided approach that produces enhanced state mapping rules is presented: HMM state

distributions derived from the input and output languages are clustered according to broad

phonetic categories using a decision tree, and state mapping rules are then constructed only

within each resultant phonologically consistent cluster as per the minimum K-L divergence

criterion.

Apart from this, the previous chapter showed that regression class trees which followed the

decision tree structure for state tying provided minimal benefits and usually resulted in degra-

dation of synthesis quality. Thus the basic idea of the jointly data-driven and phonological

knowledge-guided approach is also applied to regression class tree growth as well: HMM state

distributions from the output language are clustered according to broad phonetic categories

using a decision tree, which is then directly used as a regression class tree for cross-lingual

speaker adaptation.

In this chapter, HMM state mapping is presented from the data mapping perspective since

the previous chapter has shown a preference for this approach, though the proposed jointly

data-driven and phonological knowledge-guided approachmay equally generalize to other

statemapping approaches as well. Adaptation of spectrum, which is the dominant component

of speaker identity [Türk and Arslan, 2003], is the focus of this research.

There exists a potential confusion in this chapter: Two sets of decision trees are touched upon

here, one of which is obtained in the normal training stage of synthesis models while the other

is generated during the enhancement of state mapping rules by the jointly data-driven and
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Chapter 5. Data-Driven Adaptation Framework Using Phonological Knowledge

phonological knowledge-guided approach. The two sets of decision trees are involved for

completely distinct purposes. Furthermore, the trees derived for enhanced state mapping

rules are also distinct from those derived for enhanced regression classes.

5.1 Preliminary Investigations

First of all, two preliminary experiments were carried out, in order to test the hypothesis on

the sub-optimality of the minimum K-L divergence criterion for determining state mapping

rules between average voice synthesis models of two languages.

5.1.1 Optimality of Purely KLD-Based State Mapping Construction

It is natural to question the optimality of the minimum KLD criterion for state mapping con-

struction, since it is purely data-orientedwithout taking any other potentially useful knowledge

into consideration. To test its optimality, a cross-lingual speaker adaptation experiment in

the data mapping manner was conducted: State mapping rules between AV-ENG-US and

AV-CMN-sc were constructed and then AV-ENG-US was adapted with DATA-ADP-CMN-100

in speaker MMh’s voice. A slight difference in this experiment was that this time HMM state

mapping rules defined by the k-th best match in the output language were used for each state

in the input language, instead of always selecting the best match satisfying the minimum KLD

criterion (i.e., k ≡ 1).

Table 5.1 – Results obtained under the k-th best match criterion for cross-lingual speaker
adaptation in the data mapping manner

k MCD (dB) k MCD (dB)

1 7.67 10 7.76

2 7.64 20 7.98

3 7.64 30 8.16

4 7.64 40 8.38

5 7.80 50 8.48

Ten values of k were evaluated in turn and corresponding mel-cepstral distortion was cal-

culated on DATA-TEST-ENG-25. Measurements in Table 5.1 show that while mel-cepstral

distortion does generally increase with increasing k, this is only apparent for k > 5. This phe-

nomenon suggests that while the K-L divergence is an effective measure of model distribution

similarity, there may exist additional latent factors that can be combined with it to achieve

more effective state mapping rules.
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5.1. Preliminary Investigations

5.1.2 Introduction of Phonological Knowledge into StateMapping Construction

Having demonstrated that the minimum KLD criterion may not be optimal for constructing

HMM statemapping rules, it was hypothesized that themost significantmissing factor was the

potential lack of phonological consistency in the constructed mapping rules. For example, a

state representing vowels could bemapped to a state representing consonants whenminimum

KLD is the only criterion. Obviously this kind of mapping rule does not make much sense.

Hence, such undesirable state mapping rules may be avoided by taking advantage of the

knowledge of underlying phoneme categories.

Taking the case of k = 1 in Table 5.1 (i.e., the baseline data mapping approach), state distri-

butions of AV-ENG-US and AV-CMN-sc were categorized according to seven broad phoneme

categories (silence, vowel 1, plosive, fricative, affricate, approximant and nasal) and then state

mapping rules were constructed under the minimum KLD criterion within each of the seven

categories. A state was assigned to a phoneme category, providing that one of the central

phone contexts to which the state had been tied belonged to the category. Thus, it was possible

for a state to be a member of more than one phoneme category. Figure 5.1 visualizes the

difference between the baseline and this simple phonological knowledge-guided approach.

input language (Lin)
average voice

output language (Lout)
average voice

Lin adaptation data 
in a target voice

(a) baseline method

input language (Lin)
average voice

output language (Lout)
average voice

Lin adaptation data 
in a target voice

e.g. vowel

e.g. fricative

e.g. plosive

(b) phonological knowledge-guided

Figure 5.1 – HMM state mapping construction for cross-lingual speaker adaptation in the data
mapping manner. The dashed lines refer to state mapping rules.

AV-ENG-US was adapted using DATA-ADP-CMN-100 in speaker MMh’s voice and the new set

of state mapping rules. Thenmel-cepstral distortion was calculated on DATA-TEST-ENG-25.

Objective evaluation results are presented in Table 5.2.

Table 5.2 clearly shows that phonological knowledge can help to improve state mapping rules

constructed under the minimum KLD criterion. This finding indicates that phonologically

less meaningful mapping rules are harmful in practice and should be eliminated. Therefore,

1. The reason why there was only one category for vowels is that unlike consonants, there does not exist any
apparent gap in the vowel quadrilateral (see Appendix B). It is less straightforward how to categorize vowels
appropriately, especially those like /æ/, /I/, /U/, etc.
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Table 5.2 – Objective evaluation results of data mapping systems using different methods of
state mapping construction

Method of state mapping construction MCD (dB)

minimum KLD criterion only 7.67

phonological knowledge-guided 7.48

the investigation of further means to exploit phonological knowledge was pursued as detailed

in the remainder of this chapter.

5.2 Data-Driven & Phonological Knowledge-Guided StateMapping

Construction

In the previous section, a naive grouping of average voice state distributions was applied based

on phonologically consistent clusters, such that state mapping rules were constructed under

the minimum KLD criterion, but within each of these clusters. Hence an HMM state in the

input language could only be mapped to its phonologically consistent counterpart in the out-

put language and vice versa. Previous evidence is noted that usually purely knowledge-based

approaches are not as effective, for instance, the manual phoneme mapping construction

betweenMandarin and English presented in [Wu et al., 2008]. Preferably, a method of intro-

ducing phonological knowledge should be developed in a data-driven manner. As a result,

decision tree-based state clustering is employed in the thesis work in a similar fashion to that

in synthesis model training. Well-trained HMM state distributions of average voice synthesis

models in the input and output languages are grouped using a decision tree such that each leaf

node of the tree is a phonologically consistent cluster. Optimization of this tree is performed

such that the MCD of development data in the output language is minimized.

5.2.1 Question Design

Out of a huge number of phonetic and prosodic contexts used inHMM-based speech synthesis,

the most important ones for spectrummodelling are assumed to be the triphone part – left

phoneme, central phoneme and right phoneme. Consequently, the triphone contexts are

considered an essential factor for grouping average voice state distributions of the input and

output languages. In addition, we continue to use the seven broad phoneme categories based

on articulation manners that are commonly shared across languages: silence, vowel, plosive,

fricative, affricate, approximant and nasal. Thus, for triphone contexts there are a total of 21

questions (listed in Table 5.3) for the decision tree-based state clustering/grouping.

A state distribution belongs to a particular category if any context-dependent model to which

the state is tied belongs to this category. Therefore, a state may be associated with multiple

questions. For example, a state distribution is associated with both questions “C_affricate”
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Table 5.3 – All the questions used in the jointly data-driven and phonological knowledge-
guided approach

Left phoneme Central phoneme Right phoneme

Silence L_silence C_silence R_silence

Vowel L_Vowel C_Vowel R_Vowel

Plosive L_Plosive C_Plosive R_Plosive

Fricative L_Fricative C_Fricative R_Fricative

Affricate L_Affricate C_Affricate R_Affricate

Approximant L_Approximant C_Approximant R_Approximant

Nasal L_Nasal C_Nasal R_Nasal

and “C_plosive” if it is tied to context-dependent phones *-ch+*, *-k+* and *-p+*.

A table of mapping from phonemes in German, American English, British English andMan-

darin Chinese to the seven phoneme categories can be found in Appendix A.

5.2.2 Question Selection Criterion

Several criteria have been employed in decision tree-based clustering during synthesis model

training for selecting the best question to split a node, such as maximum likelihood [Young

et al., 1994] andminimum description length [Shinoda andWatanabe, 2000]. Nonetheless, the

goal of speech synthesis is to generate speech as close as natural speech, which is only achieved

indirectly through optimization criteria like maximum likelihood or minimum description

length.

The minimum generation error criterion was proposed [Wu andWang, 2006] to more directly

target the goal of speech synthesis. “Generation error” refers to the distortion of generated

speech parameters from corresponding natural speech parameters, which can be defined as

an objectivemetric (e.g., mel-cepstral distortion). Theminimum generation error criterion has

been applied to training synthesis model parameters [Wu andWang, 2006] as well as decision

tree-based state clustering [Wu et al., 2006]. According to this criterion, the question selected

to split a decision tree node should be the one which minimizes a predefined measure of

distortion over a particular set of speech data (the training data set of synthesis models or a

new set of development data) – this idea is used in the jointly data-driven and phonological

knowledge-guided approach to grow decision trees for state mapping construction.

Mel-cepstral distortion is chosen to measure generation error and is minimized on devel-

opment data in the output language based on adaptation of synthesis models using data in

the input language. Therefore a bilingual corpus is required in the jointly data-driven and

phonological knowledge-guided approach. The bilingual corpus does not need to be large as

it is not used for model training like in [Qian et al., 2009].
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5.2.3 Procedure for Enhancing HMMStateMapping Construction

Bilingual data from a fixed number of speakers is selected such that adaptation data in the

input language is used to estimate adaptation transforms and development data in the output

language is used for optimization according to the MGE criterion. A separate set of test data

is retained, which has no intersection with training, adaptation or development data. The

overall procedure can be summarized as follows:

1. Form N root nodes by pooling all average voice state distributions from the input and

output languages for each of the N HMM emitting states.

2. Find the next non-terminal leaf node X across the N decision trees in the manner of

breadth-first search (see Figure 5.2).

1

76

2

98

3

1110

4 5
state 2 state 3 state 4 state 5 state 6

node X

Figure 5.2 – Breadth-first search in enhanced HMM state mapping construction

3. Find the best split for leaf node X under the MGE criterion. If either of the following

conditions is true, X is considered a terminal leaf node. Otherwise X is split using the

selected question.

(a) One or both child nodes contain state distributions from only one language;

(b) The best split produces an MCD reduction less than threshold εΔMCD (εΔMCD > 0).

4. Go back to Step 2 or stop when all leaf nodes are terminal leaves. For instance, the

decision tree of state 4 may end up looking like Figure 5.3.

11

3

distribution of Lin

distribution of Lout

Figure 5.3 – Imaginary final structure of the decision tree of state 4

In order to find the best split for a node X in Step 3 above, average voice state distributions

belonging to X are categorized according to every question and the improvement is found by:

1. Recalculating state mapping rules between the input and output languages based on

each of the possible node splits;

2. Performing cross-lingual speaker adaptation in the normal data mapping manner using

these newly formedmapping rules in X ’s child nodes;
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3. Calculating MCD on held-out development data. The question producing the greatest

reduction is selected.

This procedure is visualized in Figure 5.4, where node 3 in Figure 5.2 is taken as an example.

Ques 1 Ques 21

3 3

CLSA, synthesis, 
MCD calcula�on

CLSA, synthesis, 
MCD calcula�on

Ques i

max. MCD reduc�on

3

Figure 5.4 – Procedure of finding the best question to split a decision tree node under the MGE
criterion for HMM state mapping construction

As [Wu andWang, 2006] and [Wu et al., 2006] report, MGE is a remarkably time-consuming

optimization criterion, especially when it is used for decision tree-based clustering. Fortu-

nately, as there are merely 21 questions altogether in the proposed jointly data-driven and

phonological knowledge-guided approach, the computational cost is still manageable. Note

that the proposed approach degenerates into the conventional state mapping construction if

none of the N root nodes are split (i.e., no phonologically consistent clusters are created).

5.3 Data-Driven&PhonologicalKnowledge-GuidedRegressionClass

Tree Construction

In previous experiments it was demonstrated that regression class trees derived using the

usual approaches based on either state tying [Yamagishi et al., 2004] or Euclidean clustering
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[Young et al., 2009, Chapter 9] did not lead to effective cross-lingual speaker adaptation. Thus

it is proposed to apply the jointly data-driven and phonological knowledge-guided approach

elaborated in Section 5.2 to regression class tree growth. The same question set, question

selection criterion and principle of growing a tree can be applied. HMM state mapping rules

are fixed while a regression class tree is generated by the jointly data-driven and phonological

knowledge-guided approach. The overall procedure can be summarized as follows:

1. Form the root node of a regression class tree by pooling all the average voice state

distributions of the output language.

2. Find the next non-terminal leaf node Y of the regression class tree in the manner of

breadth-first search.

3. Find the best split for non-terminal leaf node Y under the MGE criterion:

(a) Split Y according to each of the valid questions (“valid” means that a question

does not produce a child containing no state distributions);

(b) Perform cross-lingual speaker adaptation with the current regression class tree

structure;

(c) Calculate MCD on held-out development data.

The question producing the greatestMCD reduction exceeding threshold εΔMCD (εΔMCD >
0) is selected for splitting Y . Otherwise Y is considered a terminal leaf node.

4. Go back to Step 2 or stop growing the regression class tree when all leaf nodes are

terminal leaves.

This procedure is visualized in Figure 5.5.

1

32

Ques 1 Ques 21

3 3

CLSA, synthesis, 
MCD calcula�on

CLSA, synthesis, 
MCD calcula�on

Ques i

3

max. MCD reduc�on

54

now trying to

split node 3

regression class tree that is 
being generated

76

Figure 5.5 – Procedure of finding the best question to split a node of a regression class tree
under the MGE criterion
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Note that the above approach degenerates into cross-lingual speaker adaptation based on a

single global transform if no split that reduces MCD on the root node is produced. In such

cases, the ability to transfer speaker-specific information between the particular pair of input

and output languages via the state mapping technique will be limited, as we would expect for

two very disparate languages.

5.4 Speaker-Dependent Experiments

5.4.1 Experimental Setup

The two average voices AV-ENG-US and AV-CMN-sc were used in speaker-dependent 2 exper-

iments, Mandarin and English being the input and output languages respectively. The two

average voices were adapted by the CSMAPLR [Nakano et al., 2006, Yamagishi et al., 2009a]

algorithm for only one iteration. Global variances for synthesis were calculated on adaptation

data.

Speakers and Speech Data

Three male (MMh, MM3 andMM6) and two female (MF2 andMF7) speakers were selected for

speaker-dependent experiments. MF2 is a truly bilingual speaker of Mandarin and English,

and the remaining four are native Mandarin speakers. MMh, MF7 andMM3 have reasonably

natural English accents but MM6’s English is strongly Mandarin-accented. Therefore, only

MF2, MMh, MF7 and MM3 were considered training speakers of enhanced state mapping

rules. Adaptation data of the five speakers was the set DATA-ADP-CMN-100. Development data

of the four training speakers was the set DATA-DEV-ENG-100. Test data of the five speakers

was the set DATA-TEST-ENG-25.

Systems for Comparison

Four groups of experiments were conducted. Within each group, state mapping rules for

mel-cepstra between AV-ENG-US and AV-CMN-sc were derived from one of the four training

speakers by means of the jointly data-driven and phonological knowledge-guided approach

while those for logF0, band aperiodicity and duration were still constructed under only the

minimum KLD criterion. Then all these mapping rules were used for cross-lingual adaptation

of the American English average voice AV-ENG-US towards each of the four remaining speakers.

εΔMCD was set to 0.0005dB. The baseline systemmerely involved the minimum KLD criterion

in construction of state mapping rules for all the streams of the state emission pdfs.

In these speaker-dependent experiments, only global transform-based adaptation was in-

vestigated. Investigation of regression class-based adaptation is provided in the following

2. “Speaker-dependent” in this section means HMM state mapping rules are enhanced on the basis of develop-
ment data from a single speaker.
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section.

5.4.2 Objective Evaluation

Original recordings of DATA-TEST-ENG-25 of the five speakers were aligned using the average

voice models AV-ENG-US and speech samples for objective evaluation were synthesized

using the resulting durations. Results of objective evaluation of the four groups of cross-

lingual speaker adaptation experiments are presented in Figure 5.6 and Table 5.4. These MCD

measurements were calculated on the entire test data set of each of the five speakers.
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Figure 5.6 – Mel-cepstral distortion in relation to the leaf node count during decision tree gen-
eration. Crosses indicate minimums on the curves. “TrnSpkr_dev” refers to the development
data of respective training speakers. “_test” refers to test data. The six points on the vertical
axis in each sub-figure come from the baseline.

It can be seen from Figure 5.6 that enhanced mapping rules constructed on the development

data of a single bilingual speaker consistently provide improvement on his/her own test data.

When applying such mapping rules to other target speakers, it is observed that the MCD

curves of these target speakers still have a nearly monotonically decreasing tendency. In other
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Table 5.4 – MCD reduction in dB produced by the jointly data-driven and phonological
knowledge-guided approach, i.e., the difference of the leftmost and rightmost values on
each curve in Figure 5.6.

Training speaker Data set MCD reduction Data set MCD reduction

MF2_dev 0.36 MF2_test 0.39

MF2 MMh_test 0.20 MM3_test 0.14

MF7_test 0.16 MM6_test 0.05

MMh_dev 0.29 MF2_test 0.21

MMh MMh_test 0.26 MM3_test 0.14

MF7_test 0.16 MM6_test 0.06

MM3_dev 0.21 MF2_test 0.26

MM3 MMh_test 0.16 MM3_test 0.21

MF7_test 0.13 MM6_test 0.02

MF7_dev 0.23 MF2_test 0.23

MF7 MMh_test 0.17 MM3_test 0.11

MF7_test 0.25 MM6_test 0.09

words, mapping rules constructed from a single speaker still maintain a degree of speaker

independence. The exception is MM6, who received the least MCD reduction among all the

speakers. This result may come from the fact that MM6 has the most pronounced foreign

accent when speaking English. State-of-the-art cross-lingual speaker adaptation techniques

are not effective at transferring accent information so that the average voice synthesis models

in natural American English retain their American accent even after adaptation. The MCD

measurements on his English test data thus inherently give lower reductions due to the

disagreement in accent between the natural and synthesized utterances. These scores are less

reliable and misleading, as discussed in Section 3.5.1.

5.4.3 Impact of Phonological Knowledge on StateMapping Rules

A total of 2975 mapping rules were constructed, one for each of the states in the Mandarin

average voice AV-CMN-sc. Figure 5.7 shows how k varies under the data-driven use of phono-

logical constraints (see the definition of k in Section 5.1.1). Two common traits are observed

across the four histograms in this figure.

Firstly, the bars corresponding to k = 1 are significantly taller than any others andmapping

rules are concentrated in the range of k < 20. Thus, the minimum KLD criterion continues

to play a dominant role and KLD remains as a good measure of phonological similarity of

context-dependent model distributions from two different languages.

Secondly, a significant proportion (with a minimum of 59.9%) of state mapping rules were
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Figure 5.7 – Histogram of the KLD rank (k) using the jointly data-driven and phonological
knowledge-guided approach

selected with k �= 1 after phonological constraints were introduced. Therefore, it is also evident

that the minimum KLD criterion on its ownmay not be sufficient, as suggested by the initial

analysis in Section 5.1.1. It is also interesting to note from both Table 5.4 and Figure 5.7 that

the proposed approach has the most impact on the truly bilingual speaker MF2, in terms of

the number of changed mapping rules, MCD reduction and providing the best generalization

to other speakers (except MM6, as discussed previously).

5.4.4 Questions Used for Root Node Splitting

Onemeans to analyze the generalization of the proposed jointly data-driven and phonological

knowledge-guided approach is to consider the questions that have yielded the greatest MCD

reduction. Table 5.5 shows the questions associated with the root node of each decision tree

(which also gave the greatest MCD reduction) for each of the training speakers.

It is interesting to see that most questions chosen by the proposed approach are shared

across speakers, thereby confirming that phonological constraints plays a remarkably speaker-

independent role in enhancing state mapping rules.
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Table 5.5 – Root node questions for emitting states at each of the five positions (2∼6) in an
HMM

MF2 MMh MM3 MF7

State 2 L_nasal L_nasal L_nasal L_nasal

State 3 C_nasal C_nasal C_vowel C_nasal

State 4 C_nasal C_nasal C_affricate C_affricate

State 5 R_fricative C_affricate C_nasal C_affricate

State 6 L_silence L_plosive L_plosive L_silence

5.4.5 Subjective Evaluation

Subjective evaluation was performed in the form of AB and ABX listening tests for natural-

ness and speaker similarity, respectively. All of the speech samples were selected from the

experiment group corresponding to the top-left sub-figure in Figure 5.6, since MF2 seems to

provide the best generalisation to other speakers. Using the baseline and the proposed jointly

data-driven and phonological knowledge-guided approach, five sentences from DATA-TEST-

ENG-25 were synthesized for each of the five speakers. Note that unadapted duration models

of the English average voice AV-ENG-US were used. The evaluation comprised a total of 50

AB/ABX comparisons. Original reference speech in the speaker similarity test was in English

since this should lead to better discrimination between systems, as discussed previously.

Subjective evaluation results are shown in Figure 5.8.
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Figure 5.8 – Subjective evaluation results of the jointly data-driven and phonological
knowledge-guided approach using MF2-dependent state mapping rules. Whiskers indicate
95% confidence intervals.

From informal listening, it is noted that speaker similarity was not greatly impacted by the

proposed approach, but naturalness was improved (speech was produced with less “muffled”

characteristics by the proposed approach). This observation is reflected in Figure 5.8.
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5.5 Speaker-Independent Experiments

The effectiveness and generalization across speakers of jointly data-driven and phonological

knowledge-guided state mapping construction have been demonstrated in Section 5.4. It

has been also confirmed that while KLD is a good objective function for determining state

mappings, the minimum KLD criterion on its ownmay produce phonologically inconsistent

associations between states, thereby leading to sub-optimal results. In this section we examine

enhanced state mapping rules on speech data of multiple bilingual speakers and the use of a

regression class tree in the speaker adaptation process.

5.5.1 Experimental Setup

Three average voices were used in the speaker-independent 3 experiments: AV-ENG-UK, AV-

CMN-gp and AV-DEU. The input language was either German or Mandarin Chinese. The

output language was always British English. Mandarin and German were chosen as input

languages as they are “far from” and “close to” English respectively. This should give some

insights into the extent to which the dissimilarity of input and output languages can affect the

performance of cross-lingual speaker adaptation. All of the speaker-independent cross-lingual

speaker adaptation experiments were performed using the CSMAPLR [Nakano et al., 2006,

Yamagishi et al., 2009a] algorithm, transforms being estimated from one iteration. Global

variances for synthesis were calculated on adaptation data.

TenMandarin-English speakers (Chinese) and ten German-English (Germans) speakers were

used in the speaker-independent experiments. They were grouped as shown in Table 5.6.

The groupings were used for cross validation since the number of available bilingual training

speakers was limited.

Table 5.6 – Grouping of speakers in speaker-independent experiments. For each language
pair, each time four speaker groups were used as the training partition and the two leftover
speakers were test speakers.

Group ID 1 2 3 4 5

male Germans GM1 GM2 GM3 GM6 GM7

female Germans GF1 GF2 GF4 GF6 GF7

Group ID 6 7 8 9 0

male Chinese MMh MM3 MM4 MM5 MM7

female Chinese MF1 MF2 MF4 MF5 MF7

Adaptation data was either DATA-ADP-CMN-100 or DATA-ADP-DEU-100 for Mandarin and

German speakers respectively. Development data was DATA-DEV-ENG-100 and test data was

3. “Speaker-independent” in this section means HMM state mapping rules and regression class trees are
enhanced on the basis of development data frommultiple speakers.
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DATA-TEST-ENG-25.

5.5.2 Effect of the Number of Transforms

First of all, the experiments in Section 4.3 that employed the conventional data mapping

approach were repeated: the British English average voice AV-ENG-UK was adapted with

either DATA-ADP-CMN-100 or DATA-ADP-DEU-100 with various regression class occupation

thresholds 4 that have the effect of adjusting the number of resulting transforms. The regres-

sion class tree followed the decision tree structure of AV-ENG-UK [Yamagishi et al., 2004].

Adaptation performance is presented in Figure 5.9 in the form of mel-cepstral distortion.

In intra-lingual speaker adaptation, it is accepted that more adaptation data leads to im-

proved synthesis quality via the estimation of more regression class-specific transforms. As

Figure 5.9 clearly shows, this is not the case in cross-lingual speaker adaptation: the MCD

curves never have a decreasing tendency and the optimal number of transforms varies as the

phonological/acoustic similarity between input and output languages varies. When the two

languages are modestly different (e.g., German to English), a regression class tree that follows

the decision tree structure for state tying could be of help to a certain extent. In more extreme

cases (e.g., Mandarin to English), there seems to be no benefit from the generation of multiple

regression classes. It can be hypothesized that given sufficient adaptation data, the number

of transforms that produces the smallest MCD in HMM state mapping-based cross-lingual

speaker adaptation might be a measure of the phonological/acoustic similarity between two

languages.

5.5.3 Systems for Analysis of the Proposed Approach

Experiments were conducted in the form of 5-fold cross validation with gender balance

maintained. There were always four male and four female speakers (i.e., four speaker groups

in Table 5.6) in the training partition and one male and one female speakers (i.e., the leftover

speaker group) in the test partition.

In each experiment, enhanced state mapping rules for mel-cepstra between English and

German/Mandarin were derived from the training partition by the proposed jointly data-

driven and phonological knowledge-guided approach, while those for logF0, band aperiodicity

and duration were still constructed under the minimum KLD criterion. These mapping rules

were used for cross-lingual adaptation of the British English average voice AV-ENG-UK towards

each of the test speakers.

Likewise, the proposed approach to growing a regression class tree formel-cepstra was applied

4. These thresholds were 20000, 15000, 12000, 10000, 8000, 7500, 6000, 5000, 3500, 2460, 1500, 1000, 750, 650,
550 and 450. Among all these thresholds, 2460 is the one by default in the HTS-2010 system [Yamagishi and Watts,
2010], which is 1.5 times the size of a transformation matrix plus a transformation vector and is empirically a good
choice.
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Figure 5.9 – MCD with respect to the number of transforms. A cross refers to the minimum
and a circle refers to the transform generation threshold being equal to 2460.

to the training partition of each experiment. Global transforms were employed for logF0, band

aperiodicity and duration. The resulting regression class tree and global transforms were used

for cross-lingual adaptation of AV-ENG-UK towards each of the test speakers.

Four settings (S-m1, S-m2, S-r1 and S-r2) were evaluated in the speaker-independent experi-

ments that are described in Table 5.7. εΔMCD was set to 0.0005dB. The four settings in Table 5.7

with a grey background were used as system contrasts.

5.5.4 Objective Evaluation

Original recordings of development and test data of the 20 speakers were aligned using the

English average voice AV-ENG-UK and speech samples for objective evaluation were synthe-
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Table 5.7 – Settings of speaker-independent experiments

System ID State mapping construction Regression class tree growth

S-m1 proposed approach

C-m1 minimum KLD criterion
global transform

S-m2 proposed approach

C-m2 minimum KLD criterion
decision trees from AV-ENG-UK†

S-r1 proposed approach

C-r1
minimum KLD criterion

global transform

S-r2 proposed approach

C-r2
proposed approach

global transform

† The transform generation threshold was set to 2460.

sized using resultant durations. Results of objective evaluation on the development data set

are presented in Tables 5.8 and 5.9.

Table 5.8 shows that in comparison with mapping rules between Mandarin and English, a

significantly larger proportion of state mapping rules between German and English remained

unchanged after the proposed approach was applied, which suggests that the state mapping

rules between German and English constructed under the minimum KLD criterion were more

reliable than those betweenMandarin and English. This is also reflected in the fact that MCD

reduction concerning Mandarin and English was greater than that concerning German and

English. These phenomena demonstrate that the phonological similarity of the input and

output languages impacts on the effectiveness of the minimum KLD criterion in creating links

between the two languages.

Table 5.9 shows that the proposed jointly data-driven and phonological knowledge-guided

approach could reduceMCDby enhancing the regression class tree structure, especially for the

language pair of German and English. When the language pair was Mandarin and English, the

proposed approach could only produce negligible MCD reductions and very small regression

class trees. These results suggest that the proposed approach also can be used to control the

appropriate number of transforms, depending on the phonological similarity of two languages.

They also strengthen the finding in Section 5.5.2 that a global transform is sufficient when the

input and output languages are substantially phonologically distinct: In this circumstance, it

would be enough to apply the proposed approach to state mapping construction only and to

use a global transform in adaptation.

In Figures 5.10, 5.11, 5.12 and 5.13, objective results on the test data of the two test speakers of

each fold of the cross-validation experiments are presented for a comparative analysis.

Figures 5.10 and 5.11 confirm that the best solution in the case of Mandarin and English
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Figure 5.10 –MCDmeasurements in relation to the number of transforms in various conditions.
The five speakers are male Chinese. The leftmost point on each red curve indicates the result
of S-m1 and the leftmost point on each blue curve indicates the result of C-m1. The solid black
horizontal lines indicate the results of S-m2 and the dashed black horizontal lines indicate the
results of C-m2.

96



5.5. Speaker-Independent Experiments

0 3 6 9 12 15 18

7.3

7.4

7.5

  number of transforms (MF1)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

S−r1 S−r2

0 3 6 9 12 15 18

6.8

6.9

7

  number of transforms (MF2)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

S−r1 S−r2

0 3 6 9 12 15 18

8.05

8.1

8.15

8.2

8.25

8.3

  number of transforms (MF4)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

S−r1 S−r2

0 3 6 9 12 15 18
7.8

7.9

8

8.1

  number of transforms (MF5)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

S−r1 S−r2

0 3 6 9 12 15 18

7.3

7.4

7.5

  number of transforms (MF7)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

S−r1 S−r2

Figure 5.11 –MCDmeasurements in relation to the number of transforms in various conditions.
The five speakers are female Chinese. The leftmost point on each red curve indicates the result
of S-m1 and the leftmost point on each blue curve indicates the result of C-m1. The solid black
horizontal lines indicate the results of S-m2 and the dashed black horizontal lines indicate the
results of C-m2.
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Table 5.8 – MCD (dB) on the development data of the training partition & the percentage of
mapping rules that remained unchanged

Language Lin = German, Lout = British English

Training speaker groups 1-2-3-4 1-2-3-5 1-2-4-5 1-3-4-5 2-3-4-5 average

C-m1 6.04 6.13 6.08 6.07 6.08 6.08

S-m1 5.93 6.04 5.98 6.00 5.99 5.99

difference 0.11 0.09 0.10 0.07 0.09 0.09

% of unchanged mappings 50.2% 56.8% 45.5% 49.3% 52.1% 50.8%

C-m2 5.93 6.04 6.00 5.99 6.00 5.99

S-m2 5.82 5.94 5.88 5.91 5.92 5.89

difference 0.11 0.09 0.12 0.09 0.08 0.10

% of unchanged mappings 54.4% 47.6% 45.5% 54.2% 60.0% 52.3%

Language Lin = Mandarin, Lout = British English

Training speaker groups 6-7-8-9 6-7-8-0 6-7-9-0 6-8-9-0 7-8-9-0 average

C-m1 7.07 7.09 7.04 7.06 7.08 7.07

S-m1 6.96 6.97 6.91 6.93 6.97 6.95

difference 0.11 0.12 0.13 0.13 0.10 0.12

% of unchanged mappings 39.4% 25.6% 29.3% 35.7% 22.8% 30.6%

C-m2 7.19 7.22 7.17 7.19 7.23 7.20

S-m2 7.06 7.08 6.99 7.02 7.10 7.05

difference 0.13 0.14 0.18 0.17 0.13 0.15

% of unchanged mappings 41.7% 46.1% 41.7% 47.5% 42.4% 43.9%

was achieved by only applying the jointly data-driven and phonological knowledge-guided

approach to state mapping construction and using a global transform in adaptation. This is

understandable. Firstly, one purpose of using a regression class tree in speaker adaptation is

to capture speaker information in adaptation data at an increasingly finer grained level by

dividing and clustering model distributions according to their proximity in the model space

into different regression classes and then estimating respective transforms for these classes.

Secondly, adaptation algorithms like CMLLR blindly handle all kinds of mismatch (in terms

of speaker, language, recording environment, etc) between synthesis models and adaptation

data with a single set of transforms. Thus as the number of adaptation transforms increase,

more Mandarin-specific information that had no relation to speaker identity is inadvertently

captured from adaptation data. Given the substantial difference between Mandarin and

English, it is not surprising that the quality of synthesized English is degraded immediately

after the number of adaptation transforms grew.

As for German and English, Figures 5.12 and 5.13 show that the proposed jointly data-driven

and phonological knowledge-guided approach can be applied to state mapping construction
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Figure 5.12 –MCDmeasurements in relation to the number of transforms in various conditions.
The five speakers are male Germans. The leftmost point on each red curve indicates the result
of S-m1 and the leftmost point on each blue curve indicates the result of C-m1. The solid black
horizontal lines indicate the results of S-m2 and the dashed black horizontal lines indicate the
results of C-m2.
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Figure 5.13 –MCDmeasurements in relation to the number of transforms in various conditions.
The five speakers are female Germans. The leftmost point on each red curve indicates the
result of S-m1 and the leftmost point on each blue curve indicates the result of C-m1. The
solid black horizontal lines indicate the results of S-m2 and the dashed black horizontal lines
indicate the results of C-m2.
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Table 5.9 – MCD (dB) on the development data of the training partition & the number of
regression class tree leaves

Language Lin = German, Lout = British English

Training speaker groups 1-2-3-4 1-2-3-5 1-2-4-5 1-3-4-5 2-3-4-5 average

C-r1 6.04 6.13 6.08 6.07 6.08 6.08

S-r1 5.87 6.00 5.94 5.93 5.95 5.94

difference 0.17 0.13 0.14 0.14 0.14 0.14

# of regression classes 19 9 18 14 14 14.8

C-r2 5.93 6.04 5.98 6.00 5.99 5.99

S-r2 5.79 5.92 5.86 5.86 5.87 5.86

difference 0.15 0.12 0.13 0.13 0.12 0.13

# of regression classes 14 12 12 12 12 12.4

Language Lin = Mandarin, Lout = British English

Training speaker groups 6-7-8-9 6-7-8-0 6-7-9-0 6-8-9-0 7-8-9-0 average

C-r1 7.07 7.09 7.04 7.06 7.08 7.07

S-r1 7.05 7.07 7.01 7.03 7.07 7.05

difference 0.02 0.02 0.03 0.03 0.01 0.02

# of regression classes 8 7 9 13 2 7.8

C-r2 6.96 6.97 6.91 6.93 6.97 6.95

S-r2 6.95 6.97 6.91 6.91 6.97 6.94

difference 0.01 0.00 0.01 0.02 0.01 0.01

# of regression classes 6 1 4 3 2 3.2

first and then to regression class tree growth, producing a further MCD reduction in most

cases. The regression class trees in the case of German and English were larger and produced

greater MCD reductions, compared with those in the case of Mandarin and English. This

demonstrates that owing to the phonological and acoustic similarity of German to English,

adaptation algorithms are better able to utilize greater quantities of adaptation data given an

appropriate regression class tree. Figures 5.12 and 5.13 also show: (1) theMCD scores produced

by applying the proposed approach to both state mapping construction and regression class

tree growth (S-r2, the red curves) are more likely to decrease further than those produced by

applying the proposed approach to regression class tree growth only (S-r1, the blue curves); (2)

when using enhanced state mapping rules, enhanced regression class trees generated by the

proposed approach (S-r2, the red curves) eventually produced MCD scores smaller than those

the regression class tree following the decision tree structure of AV-ENG-UK produced (S-m2,

the solid black horizontal lines), except for the speaker GM7. Thus it is concluded that the

best andmost robust approach for German and English should be the combination of state

mapping enhancement and regression class tree enhancement by the proposed approach.
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5.5.5 Iterative Enhancement

The jointly data-driven and phonological knowledge-guided approach can be applied to state

mapping enhancement and regression class tree enhancement iteratively in an alternating

fashion. Namely, using the regression class tree obtained in the i -th iteration, state mapping

rules can be enhanced again and then this regression class tree from the i -th iteration can

continue to grow in the (i+1)-th iteration.

There are two methods of enhancing state mappings in the (i+1)-th iteration based on the

regression class tree from the i -th iteration:

1. Construct state mapping rules from scratch. This method is denoted by “M-0” here-

inafter.

2. Construct state mapping rules by extending the decision tree that has produced en-

hanced mapping rules in the i -th iteration. This method is denoted by “M-ext” here-

inafter.

In the case of Mandarin-to-English adaptation, this is unlikely to have any impact due to the

small size of the regression class trees obtained in the first iteration. However, results of the

German-to-English adaptation suggest some potential. Hence bothM-0 andM-ext were tested

in the second iteration for the language pair of German and English. MCDmeasurements after

the second iteration of state mapping enhancement are listed in Table 5.10.

Table 5.10 – MCD (dB) on the development data of the training partition & the percentage
of mapping rules that remained unchanged after state mapping enhancement in the second
iteration

Language Lin = German, Lout = British English

Training speaker groups 1-2-3-4 1-2-3-5 1-2-4-5 1-3-4-5 2-3-4-5 average

baseline† 5.79 5.92 5.86 5.86 5.87 5.86

using M-0
5.77 5.91 5.85 5.85 5.85 5.85

64.7% 73.6% 65.8% 64.2% 56.6% 65.0%

using M-ext
5.77 5.89 5.85 5.85 5.84 5.84

91.2% 86.9% 91.7% 84.7% 79.4% 86.8%

† The baseline results are the outcome of S-r2 (i.e., from the first iteration).

Then the enhanced statemapping rules obtained in the second iterationwere used to continue

to grow regression class trees obtained in the first iteration. MCD measurements after the

second iteration of regression class tree growth are listed in Table 5.11.

It is observed that the further improvements given by state mapping enhancement and re-

gression class tree enhancement in the second iteration are negligible, no matter whether

M-0 or M-ext was employed. Consequently, it can be confirmed that a single iteration of state

mapping construction and regression class tree growth by the proposed approach is sufficient
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5.5. Speaker-Independent Experiments

Table 5.11 – MCD (dB) on the development data of the training partition and the number of
regression class tree leaves after regression class tree growth in the second iteration

Language Lin = German, Lout = British English

Training speaker groups 1-2-3-4 1-2-3-5 1-2-4-5 1-3-4-5 2-3-4-5 average

baseline† 14 12 12 12 12 12.4

using M-0
5.77 5.91 5.85 5.85 5.85 5.85

16 13 12 14 14 13.8

using M-ext
5.77 5.89 5.85 5.85 5.84 5.84

16 14 12 12 13 13.4

† The baseline results are the outcome of S-r2 (i.e., from the first iteration).

for German and English.

5.5.6 Subjective Evaluation

Naturalness and speaker similarity of speech which was synthesized by the proposed jointly

data-driven and phonological knowledge-guided approach applied to both state mapping

construction and regression class tree growth (i.e., system S-r2) were assessed in the form of

AB and ABX tests respectively. The three systems to be compared against were a conventional

intra-lingual speaker adaptation system, C-m1 (i.e., using the minimum KLD criterion plus a

single global transform) and C-m2 (i.e., using the minimum KLD criterion plus a regression

class tree following the decision tree structure of AV-ENG-UK). Each listener was presented

with 60 utterance pairs in total: 3 (pairs)×10 (test speaker groups)×2 (tests). The sentence

of each pair was randomly selected from the 25 test sentences in DATA-TEST-ENG-25. All

the natural and synthesized stimuli were in English and durationmodels of the UK English

average voice were used in the synthesis of all these stimuli. Subjective evaluation results can

be found in Figure 5.14.

Firstly, it is noted that the jointly data-driven and phonological knowledge-guided approach

mainly improved naturalness of synthesized speech in the speaker-independent experiments,

as observed in the previous speaker-dependent experiments in Section 5.4. Thinking back on

the speaker discrimination experiments in Section 3.5.3, we hypothesize that a limiting factor

in these experiments is the quality of speech generated by cross-lingual speaker adaptation,

which hinders listeners’ judgement of speaker identity.

Secondly, it is observed that applying the proposed approach to both state mapping construc-

tion and regression class tree growth produced a significantly better system than using the

minimum KLD criterion and a regression class tree following the decision tree structure for

state tying. The proposed approach can automatically generate a suitable regression class tree

structure for cross-lingual speaker adaptation so that input language-specific information
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Figure 5.14 – Results of subjective evaluations on the jointly data-driven and phonological
knowledge-guided approach. Whiskers indicate 95% confidence intervals.

from adaptation data can be suppressed as much as possible. The contrast between Figures

5.14a and 5.14c appears to suggest that the jointly data-driven and phonological knowledge-

guided approach is more effective for a pair of languages which are more phonologically

dissimilar.

Lastly, Figure 5.14 shows that intra-lingual speaker adaptation still outperformed cross-lingual

speaker adaptation, which suggests that the language mismatch problem has not yet been

resolved although the jointly data-driven and phonological knowledge-guided approach

alleviated some of the negative effects.

5.6 Conclusions

A jointly data-driven and phonological knowledge-guided approach was proposed in this

chapter. It was applied to HMM state mapping construction such that phonologically in-
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5.6. Conclusions

consistent state mapping rules can be avoided. It was also applied to regression class tree

growth such that the appropriate size of a regression class tree and phonologically consistent

transform grouping can be achieved automatically.

The proposed approach was firstly applied in a speaker-dependent setting. It was found that

enhanced mapping rules constructed by the proposed approach still maintained a degree

of speaker independence, even when trained on speech data of a single speaker. While KLD

remains a goodmeasure of phonological similarity of context-dependent models from two

different languages, the minimum KLD criterion on its ownmay not be sufficient. It is also

apparent that training speakers’ proficiency in their non-native languages is important. A

high level of proficiency can potentially produce better state mapping rules, in other words, a

greater MCD reduction.

The effectiveness and generality of the proposed approach was then demonstrated on two

language pairs (German & English, Mandarin & English) in a speaker-independent setting. It

was further found that the less phonologically similar the input and output languages were,

the less effective theminimumKLD criterion was for creating links between the two languages.

The phonological/acoustic similarity of the input language to the output language also has

a significant impact on the size of a regression class tree that can be grown by the proposed

approach. It continues to be observed that a large regression class tree is of much less use in

the current state mapping-based cross-lingual speaker adaptation framework.

The iterative enhancement under theMGE criterion shows rapid convergence. This appears to

suggest that there is limited room to improve the simple HMM state mapping technique with

the K-L divergence as a measure of state distribution similarity. An explicit step to separate

language information from speaker characteristics in adaptation transforms is necessary.

In addition, it is noted that given sufficient amount of adaptation data, the number of trans-

forms that produces the smallest MCD in HMM state mapping-based cross-lingual speaker

adaptation may be a measure of the phonological/acoustic similarity between two languages.

This hypothesis needs to be examined once bilingual speech data in other language pairs are

available.

The contribution presented in this chapter was originally published in the following papers:

– Hui LIANG and John DINES, “Phonological Knowledge Guided HMM State Mapping for

Cross-Lingual Speaker Adaptation”, Proc. of Interspeech, pp. 1825–1828, August 2011.

– Hui LIANG and John DINES, “Jointly Data-Driven and Phonological Knowledge-Guided

Enhancement of State Mapping Based Cross-Lingual Speaker Adaptation”, submitted to

IEEE Transactions on Audio, Speech and Language Processing.
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6 Hierarchical Transformation Frame-
work

A data-driven and phonological knowledge-guided approach was proposed in Chapter 5 to

tackle the language mismatch between average voice synthesis models and adaptation data

by enhancing the processes of HMM state mapping construction and regression class tree

growth. While providing improvements, experiments showed that further effort is necessary

in order to achieve the performance of intra-lingual adaptation in cross-lingual scenarios.

Since the findings in Chapter 4 led to the conclusion that new techniques that model speaker

characteristics and inherent differences between languages separately should be introduced

into cross-lingual speaker adaptation, research on this direction is conducted in this chapter.

In particular, a two-layer hierarchical transformation framework is investigated.

In this chapter, cross-lingual speaker adaptation experiments are conducted by data mapping

through state mapping rules constructed under the minimum K-L divergence criterion. In

case a regression class tree is involved, it follows the decision tree structure from state tying

[Yamagishi et al., 2004]. In order to simplify the analysis, state mapping rules and regression

class trees generated by the jointly data-driven and phonological knowledge-guided approach

are not incorporated, though it would be trivial to do so.

6.1 Two-Layer Hierarchy

Relevant work has been carried out. For example, the speaker and language factorization

technique proposed in [Zen et al., 2012] is effectively a two-layer hierarchical transformation

framework. However, it involves cluster adaptive training and cluster-dependent decision

trees besides CMLLR. It is of interest whether language and speaker characteristics can be

captured separately using only linear transforms (CMLLR or CSMAPLR) for cross-lingual

speaker adaptation.

Previous work confirmed the possibility of the separation of speaker characteristics from

age (an adult voice to a child voice) [Karhila et al., 2012], accent [Smit and Kurimo, 2011],

or environmental characteristics [Seltzer and Acero, 2011] using only CMLLR/CSMAPLR
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Chapter 6. Hierarchical Transformation Framework

transforms. Their common hierarchy operates in a way that in the training stage, transforms

of the non-speaker layer were estimated alone first and then employed as parent transforms

to estimate those of the speaker layer; in the recognition/synthesis stage, the transforms of the

speaker layer were applied to recognition/synthesismodels first, then those of the non-speaker

layer were applied to the adapted models, and finally recognition/synthesis was performed

with the twice-adapted models.

In order to improve state mapping-based cross-lingual speaker adaptation, Peng et al. pro-

posed to estimate a global transform which minimized the K-L divergence between distri-

butions of average voice synthesis models in the input and output languages, aiming to

compensate for the actual differences in terms of voice characteristics between the two model

sets [Peng et al., 2010]. At the synthesis stage, the global transform was applied to the average

voice models in the output language before target speaker-specific transforms obtained in

the intra-lingual manner on the side of the input language were applied. Although the global

transform was meant to compensate for the difference of voice characteristics, the language

mismatch between the two sets of average voice models was also captured in the global

transform. The fact that their baseline built by normal transformmapping [Wu et al., 2009]

outperformed the proposed approach, presumably, implies that the average voice models in

the output language were adapted towards the input language by the global transform in the

synthesis stage. Their work provides a clue that the layer handling language mismatch should

be probably involved only in the training stage, i.e., the language characteristics of average

voice models in the output language should be maintained in the synthesis stage. This clue

results in a distinction from the hierarchy employed in [Karhila et al., 2012, Smit and Kurimo,

2011, Seltzer and Acero, 2011], where there were still two respective layers for speaker and

age/accent/environment characteristics in the recognition/synthesis stage.

Lin adaptation data 
in a target voice

Average voice 
models in Lout

Speaker layer
(target voice )

Language layer

“adaptation data in Lout”

(a) Step 2 – speaker layer training by CMLLR/CSMAPLR

Lout test data in a 
target voice

Average voice 
models in Lout

Speaker layer
(target voice )

(b) Step 3 – param-
eter generation

Figure 6.1 – Two-layer hierarchy for cross-lingual speaker adaptation
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6.2. Language Layer Training

The previous work discussed above has made the two-layer hierarchy for cross-lingual speaker

adaptation clearer, especially how it should function in the stages of speaker transform training

and parameter generation in a target voice. The two steps are illustrated in Figure 6.1.

6.2 Language Layer Training

The key problem is how to estimate transforms of the language layer. Namely, how to achieve

Step 1 is the goal of this section.

6.2.1 Direct Estimation

The work in [Smit and Kurimo, 2011] involved an approach whereby transforms of the accent

layer were trained over speaker-independent models and accented data frommultiple speak-

ers, using a large number of regression classes. The purpose of the accent layer is synonymous

with the estimation of transforms of the language layer in this chapter, as illustrated in Figure

6.2.

Lin adaptation data
(speaker 1)

Average voice 
models in Lout

Language layer

Lin adaptation data
(speaker N)

Lin adaptation data
(speaker 2)

Figure 6.2 – Direct language layer training by CMLLR/CSMAPLR

In order to verify the feasibility of this approach, a system was built according to the following

steps:

1. Construct state mapping rules based on AV-ENG-US and AV-CMN-sc;

2. Estimate transforms of the language layer by CSMAPLR over AV-ENG-US and SPEECON

(the training data of AV-CMN-sc) using the resultant mappings;

3. Estimate speak-specific transforms usingDATA-ADP-CMN-100 andDATA-TEST-ENG-25

in MF2’s, MMh’s, MM3’s and MF7’s voices, and synthesize speech with adapted models,

as Figure 6.1 shows.

Another two systems were also built for comparison: (1) adapting AV-ENG-US with DATA-

DEV-ENG-100 in the intra-lingual fashion; (2) adapting AV-ENG-US with DATA-ADP-CMN-100
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by the normal data mapping approach. All the systems used regression class tree-based

adaptation (i.e., multiple transforms were estimated) and the same regression class tree was

employed for both layers and all the systems. As SPEECON is quite a large corpus, 1018

transforms of the language layer were generated for mel-cepstrum.

Table 6.1 – Mel-cepstral distortion (dB) comparison in direct estimation of the language layer

Speaker ID MF2 MMh MM3 MF7

hierarchical (Fig. 6.2) 8.38 8.63 8.87 9.43

data mapping 7.78 7.67 8.21 8.39

intra-lingual 6.65 6.32 7.41 7.51

Objective evaluation results can be found in Table 6.1. The MCD measurements indicate

that directly estimating transforms of the language layer is not appropriate. In fact, what was

captured by such a language layer is not clear. This is not an issue in the work in [Smit and

Kurimo, 2011]. Since their accent layer was applied to models in the recognition stage, it was

not necessary to fully factorize speaker and accent information. In the case of cross-lingual

speaker adaptation, the language layer should capture only language characteristics in order

that the speaker layer estimated in Step 2 can be applied independently of the language layer

for synthesis in Step 3.

6.2.2 Estimation in a Speaker-Adaptive Fashion

Compared with Figure 6.2, the speaker layer is added into Figure 6.3. Estimating the language

layer in a speaker-adaptive fashion as shown in Figure 6.3 could be of help since it is more

likely that the language layer in Figure 6.3 captures only language characteristics.

Average voice 
models in Lout

Speaker layer
(speaker 2)

Language layer

Lin adaptation data
(speaker 1)

Lin adaptation data
(speaker N)

Lin adaptation data
(speaker 2)

Speaker layer
(speaker 1)

Speaker layer
(speaker N)

Figure 6.3 – Language layer training by CMLLR/CSMAPLR in a speaker-adaptive fashion. Blue
rounded rectangles denote speaker-specific transforms obtained in intra-lingual speaker
adaptation in the output language.
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Two difficulties are present in this speaker-adaptive approach: (1) it requires speaker-specific

transforms estimated in intra-lingual speaker adaptation in the output language, thereby a

bilingual corpus in N training speakers’ voices being necessary; (2) the language layer needs to

be estimated on adapted synthesis models with full covariance matrices. In the initial research

in this chapter, the second difficulty is avoided by diagonalizing the full covariance matrices,

though it is possible to use full covariance matrices directly [Ghoshal et al., 2010].

In order to verify the feasibility of this approach, a simple experiment was conducted: rather

than using adaptation data from N speakers, only the test speaker in Step 2 was involved for

training the language layer. As a result, it should make the performance of the hierarchical

transformation framework very close to that of intra-lingual speaker adaptation on this test

speaker’s data.

This experiment was conducted using average voice synthesis models AV-ENG-US and AV-

CMN-sc as well as speech data DATA-ADP-CMN-100 and DATA-DEV-ENG-100 in MMh’s voice,

according to the steps shown in Figure 6.3 and Figure 6.1. This time only global transforms

were estimated by CSMAPLR for both layers. Mel-cepstral distortion was calculated on his

data DATA-TEST-ENG-25 (see Table 6.2).

Table 6.2 – Mel-cepstral distortion (dB) comparison in speaker-dependent estimation of the
language layer

Speaker ID MMh

data mapping 7.44

hierarchical (Fig. 6.3) 6.84

intra-lingual 6.54

It is clear that this approach is comparable to intra-lingual speaker adaptation even though

diagonalization of adapted covariance matrices was employed. Basically this result suggests

that the two-layer hierarchical transformation framework for cross-lingual speaker adaptation

should be constructed with three steps which are illustrated in Figures 6.3, 6.1a and 6.1b

respectively.

6.2.3 Speaker-Independent Estimation

The above experiments has helped to determine how a two-layer hierarchy for cross-lingual

speaker adaptation should function. In order to obtain a speaker-independent language layer

that works for target speakers unseen in the training data of the language layer, multiple

training speakers are needed as Figure 6.3 shows.

DATA-ADP-CMN-100 in ten speakers’ voices (MM1, MM3, MM4, MM5, MM7, MF1, MF2, MF4,

MF5 andMF7, thus gender-balanced) was used for language layer training according to Figure

6.3. After transforms of the language layer were obtained, DATA-ADP-CMN-100 and DATA-
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TEST-ENG-25 in five speakers’ voices (MM3, MF2, MF7, MMh andMM6 1) were used for target

speaker-specific transform estimation and speech parameter generation according to Figure

6.1. The adaptation algorithm was CSMAPLR. The two layers shared the same regression class

tree. Objective evaluation results are presented in Table 6.3.

Table 6.3 – Mel-cepstral distortion (dB) comparison in speaker-independent estimation of the
language layer

number of transforms of the
1 136 691 930

intra- data

language layer for MCEP lingual mapping

MF2
Global 7.19 6.99 6.91 6.89 6.81 7.61

RegTree 7.49 7.26 6.96 6.89 6.65 7.78

MM3
Global 7.99 7.88 7.81 7.80 7.62 8.14

RegTree 8.17 8.10 7.82 7.75 7.41 8.21

MF7
Global 8.17 8.01 7.89 7.88 7.60 8.39

RegTree 8.31 8.29 8.01 7.96 7.51 8.39

MMh
Global 7.37 7.40 7.41 7.43 6.54 7.44

RegTree 7.69 7.75 7.67 7.68 6.32 7.67

MM6
Global 7.78 7.76 7.77 7.78 7.17 7.72

RegTree 7.98 8.03 7.88 7.88 6.87 7.80

a “Global” means only one transform was estimated for mel-cepstrum for each
speaker in Step 2. “RegTree” means regression class-specific transforms were
estimated for mel-cepstrum for each speaker in Step 2.

The test speakers, MF2, MM3 andMF7, were actually training speakers of the language layer.

Table 6.3 shows that the language layer was beneficial to their voices and could make the per-

formance of cross-lingual speaker adaption comparable to that of intra-lingual adaptation. In

addition, their MCDmeasurements consistently decrease as transforms of the language layer

becomemore specific. This demonstrates once again that the two-layer hierarchy designed in

Figures 6.3 and 6.1 should be appropriate.

For MMh and MM6 who were not present in Step 1, Table 6.3 shows that transforms of the

language layer had neither positive nor negative impact. Presumably, the lack of generalization

is caused by the limited number of training speakers for estimation of the language layer. It is

also possible that there may not exist a set of universal transforms of the language layer that

applies to every single target speaker and it would be necessary to select training speakers

of the language layer carefully. In any case, speech data needs to be recorded from a large

number of bilingual speakers for more in-depth analysis.

1. MM6’s spoken English is heavily accented but there are only a limited number of good bilingual speakers in
this bilingual corpus. So objective evaluation was still performed on his English test data.
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6.3. Summary

6.3 Summary

Initial research was conducted into the hierarchical transformation framework for state

mapping-based cross-lingual speaker adaptation. A two-layer hierarchy was designed, where

one layer captures target speaker-specific characteristics and the other compensates for the

mismatch between the input and output languages. This hierarchy was found to be promising

to make the performance of cross-lingual speaker adaptation comparable to that of intra-

lingual adaptation. Unfortunately, due to the shortage of bilingual speakers, especially fluent

bilingual speakers with natural-sounding accents in both languages, an optimal method for

the estimation of speaker-independent transforms of the language layer has not yet been

confirmed. Further investigation will be required using a corpus with a significant number of

good bilingual speakers.

The experimental results presented in this chapter have not yet been published elsewhere.
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7 Conclusions

First of all, experiments were conducted in the thesis to investigate (i) the ability of people

to discriminate between speakers across languages, (ii) unsupervised cross-lingual speaker

adaptation and (iii) the effect of the inherent problem of languagemismatch on statemapping-

based cross-lingual speaker adaptation. Then a data-driven and phonological knowledge-

guided approach for alleviating the negative effect of languagemismatchwas proposed. Finally,

a two-layer hierarchy aimed at capturing speaker characteristics and language information

separately was examined. The original research work is summarized below.

7.1 Summary of Contributions

The main contributions of the thesis work to the state of the art of cross-lingual speaker

adaptation for speech synthesis include the following:

(1) Exploring the ability of people to distinguish between speakers across different languages

Firstly, the ability of people to distinguish between speakers across different languages was

explored in this thesis. Experimental results show that the difference in language between two

utterances leads to additional difficulty in discriminating between speakers, in comparison

to the intra-lingual setting without such difference. Aside from that, the quality of synthe-

sized speech is found to play a significant role in distinguishing between speakers. It leads

to even more noticeable difficulty than language difference. Therefore it is concluded that

differentiating between speakers across languages is an achievable task, but this becomes

very difficult in the context of personalized speech-to-speech translation for the moment (i.e.,

when difference in language is combined with that in speech type), given the current quality of

speech synthesized through cross-lingual speaker adaptation. Thus the main future research

should be focused on how to improve synthesis quality.

(2) Examining unsupervised cross-lingual speaker adaptation for personalized speech-to-

speech translation
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The possibility of employing cross-lingual speaker adaptation in the unsupervised fashion

was investigated. Both objective and subjective evaluation results demonstrate that the perfor-

mance of unsupervised cross-lingual speaker adaptation is comparable to that of supervised

cross-lingual speaker adaptation. Hence themajor difficulty in building a personalized speech-

to-speech translator does not lie in the use of unsupervised adaptation.

(3) In-depth analysis of the impacts of the language mismatch between adaptation data and

synthesis models

The impacts of undesirable language information that adaptation transforms capture as

a result of the language mismatch between adaptation data and average voice synthesis

models were analyzed. The HMM state mapping technique requires two sets of average voice

synthesis models in the input and output languages, respectively. Depending on how to

utilize HMM state mapping rules, adaptation transforms can be estimated over synthesis

model distributions in either language. Meanwhile, a regression class tree can be also derived

from either language. Experimental results show that it is preferable to estimate transforms

directly over synthesis model distributions in the output language. The language from which a

regression class tree is derived appears to be of secondary importance.

It is also revealed that there appears to be little advantage to estimating multiple adaptation

transforms via a regression class tree. In contrast, regression class-specific adaptation trans-

forms are actually detrimental to the performance of cross-lingual speaker adaptation. The

greater number of regression class-specific transforms that are generated, the greater the

degradation to adaptation performance. It can be concluded that language information needs

to be eliminated or reduced from transforms that are meant for speaker adaptation only.

(4) Jointly data-driven and phonological knowledge-guided enhancement under the mini-

mum generation error criterion

The approach of jointly data-driven and phonological knowledge-guided enhancement under

the minimum generation criterion was proposed in this thesis. It was applied to both HMM

state mapping construction and regression class tree growth. This approach guarantees that

state mapping rules are always meaningful in the phonological sense and automatically gener-

ates a regression class tree with an appropriate structure. TheminimumKLD criterion is found

to be sub-optimal for state mapping-based cross-lingual speaker adaptation and it is observed

that its reliability depends on the phonological/acoustic similarity between the input and

output languages. The usefulness of a regression class tree in cross-lingual speaker adaptation

for speech synthesis is observed being also dependent on the phonological/acoustic similarity

between the input and output languages. This gives some insight into the phonological/a-

coustic similarity of two languages. Furthermore, improved experimental results (i.e., MCD

reductions) demonstrate the effectiveness and generalization across speakers of the proposed

approach when it is applied to HMM state mapping construction and regression class tree

growth.
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7.2. Limitations and FutureWork

(5) Two-layer hierarchical transformation framework

A two-layer hierarchical transformation framework was developed. The two layers of linear

transforms are applied in such a way as to capture speaker characteristics and language

information respectively. How this hierarchy should operate was investigated and determined:

firstly, estimate transforms in the intra-lingual manner on the output language side; secondly,

estimate the language layer based on adaptation data in the input language and synthesis

models adapted by these intra-lingual transforms; thirdly, estimate target speaker-specific

transformswith those of the language layer used as parent transforms; lastly, synthesize speech

using only the target speaker-specific transforms. Consequently, the challenge is restricted to

the estimation of a speaker-independent language layer.

7.2 Limitations and FutureWork

Apart from the contributions mentioned above, some limitations of the thesis work can be

noted in the previous chapters. They could be considered directions of future research related

to cross-lingual speaker adaptation.

Firstly, the thesis work was focused on cross-lingual adaptation of spectral features, since

spectrumwas considered the dominant aspect that contributed to speaker identity. In fact,

prosodic patterns of a particular speaker in different languages may share common traits and

thus contribute to speaker identity, although each language has its own prosodic patterns. It is

worth investigating cross-lingual adaptation of prosodic features, more specifically, pitch and

duration.

Secondly, only 21 questions were involved in the proposed data-driven and phonological

knowledge-guided approach. This question set can be extended. For example, unlike cate-

gories concerning consonants, there was only one category with respect to vowels. It is worth

investigating how to split this vowel category into finely grained ones according to articulatory

features (mostly the tongue and lip positions), i.e., how to partition the vowel quadrilateral

appropriately. Furthermore, this approach may be applied to cross-lingual adaptation of

prosodic features as well.

Thirdly, the data-driven and phonological knowledge-guided approach did not considerably

alleviate the negative effect of language mismatch. As it has been concluded earlier, language

information needs to be separated from transforms which are meant for speaker adaptation

only. A two-layer, hierarchical adaptation framework that captures language information

and speaker characteristics by separate sets of linear transforms deserves to be investigated.

Currently how such a hierarchy should be established and trained has been determined based

on a limited number of good bilingual speakers. The estimation of a speaker-independent

language layer needs to be further investigated in the future when a larger bilingual corpus

containing more speakers with natural-sounding accents in both languages is available.
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Chapter 7. Conclusions

Fourthly, the state-of-the-art techniques forHMMstatemapping construction has been always

based on the assumption that the two sets of average voice synthesis models in the input

and output languages respectively have identical voice characteristics and overlapping model

space. This assumption is scarcely true, since the training procedure of average voice synthesis

models in the EM fashion cannot guarantee such consistency, which highly depends on the

method of model initialization and training corpora themselves. Research that addresses the

inconsistency between two sets of average voice synthesis models deserves to be undertaken.

Lastly, the experiments on human perception of speaker identity in this thesis were mainly

focused on listeners’ perception of other speakers’ voices. It would be interesting to take into

account listeners’ perception of their own voices.
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A Appendix – Phonemes and Their Cate-
gories for Question Design

Each phoneme of all the four languages (or accents) was considered to belong to one of the

seven categories: silence, vowel, plosive, fricative, nasal, affricate and approximant. Questions

for HMM state mapping construction and regression class tree growth using the minimum

generation error criterion were designed according to the phoneme-category relationship.

A.1 American English

57 phonemes were employed for American English and they cover all the seven categories

[Fitt, 2000].

Table A.1 – Phonemes in American English and their categories

Unilex Symbol Word Example IPA Symbol Category

@ about /@/ vowel

# (a period of silence) — silence

a map /æ/ vowel

aa1 cock /A/ vowel

aer1 require /aI~/ vowel

ai line /aI/ vowel

ar party /A~/ vowel

b boat /b/ plosive

ch cheese /Ù/ affricate

d does /d/ plosive

dh this /D/ fricative

e dress /e/ vowel

eh man /æfi / vowel

ei1 make /eI/ vowel

eir1 where /e~/ vowel

f font /f/ fricative
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Appendix A. Appendix – Phonemes and Their Categories for Question Design

Table A.1 – Phonemes in American English and their categories (continued)

Unilex Symbol Word Example IPA Symbol Category

g gun /g/ plosive

h hair /h/ fricative

hw white /û/ fricative

i kid /I/ vowel

ir near /I~/ vowel

iy city /i/ vowel

jh engine /Ã/ affricate

k cat /k/ plosive

l enclose /l/ approximant

l! able /l
"
/ approximant

lw feel / l&/ approximant

m mark /m/ nasal

m! multilingualism /m
"

/ nasal

n not /n/ nasal

n! heaven /n
"
/ nasal

ng sing /N/ nasal

oi boy /OI/ vowel

oo1 water /6:/ vowel

or horse /O~/ vowel

ou1 goat /oU/ vowel

ow house /aU/ vowel

owr1 hour /aU~/ vowel

p purr /p/ plosive

pau (a short pause) — silence

r road /ô/ approximant

@r water /@~/ vowel

@@r1 nurse /3~/ vowel

s set /s/ fricative

sh shoe /S/ fricative

t tooth /t/ plosive

tˆ better /R/ plosive

th thank /T/ fricative

u put /U/ vowel

uh love /2/ vowel

ur1 jury /U~/ vowel

uw food /u:/ vowel

v vote /v/ fricative

w wet /w/ approximant

y yes /j/ approximant
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A.2. Mandarin

Table A.1 – Phonemes in American English and their categories (continued)

Unilex Symbol Word Example IPA Symbol Category

z zoo /z/ fricative

zh usually /Z/ fricative

A.2 Mandarin

51 phonemes were employed for Mandarin and they cover all the seven categories. This

Mandarin phoneme set was kindly provided by Nokia, a partner of the EMIME project.

Table A.2 – Phonemes in Mandarin and their categories

Symbol Pinyin/Character Example IPA Symbol Category

A jiang (江) /A/ vowel

a lai (來) /a/ vowel

a2 fa (發) /a:/ vowel

a3 kua (跨) /A:/ vowel

ae quan (圈) /œ/ vowel

e nei (內) /e/ vowel

E qian (錢) /E/ vowel

E_r bie (別) /E:/ vowel

f fang (放) /f/ fricative

I zai (在) /I/ vowel

i min (民) /i/ vowel

i: li (李) /i:/ vowel

i2 si (四) /1:/ vowel

i3 shi (是) /1~:/ vowel

j yun (雲) /j/ approximant

kh ke (可) /kh/ plosive

Mk guo (國) /k/ plosive

Ml li (李) /l/ approximant

Mm min (民) /m/ nasal

Mn nei (內) /n/ nasal

Mp bu (不) /p/ plosive

Mt dui (對) /t/ plosive

N jiang (江) /N/ nasal

n2 min (民) /n
"
/ nasal

o bo (剝) /O:/ 1 vowel

1. right after an initial (mainly /p/, /ph/, /m/ and /f/)
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Appendix A. Appendix – Phonemes and Their Categories for Question Design

Table A.2 – Phonemes in Mandarin and their categories (continued)

Symbol Pinyin/Character Example IPA Symbol Category

o2 tuo (脫) /O:/ 2 vowel

ph peng (彭) /ph/ plosive

s suo (所) /s/ fricative

s@ zhen (真) /7/ vowel

s1 (when no initial exists) 3 — silence

s2 xing (型) /C/ fricative

s3 shuo (說) / s/ fricative

s7 ze (則) /7:/ vowel

sil (a period of silence) — silence

sp (a short pause) — silence

s@r er (爾) /7~:/ vowel

th tong (同) /th/ plosive

ts ze (則) /
>
ts/ affricate

ts2 jia (加) /
>
tC/ affricate

ts3 zhong (中) /
>
t s/ affricate

tsh ce (側) /
>
tsh/ affricate

tsh2 qia (恰) /
>
tCh/ affricate

tsh3 chong (衝) /
>
t sh/ affricate

U long (龍) /U/ vowel

u liu (劉) /u/ vowel

u: bu (不) /u:/ vowel

w wo (我) /w/ approximant

x hao (好) /x/ fricative

y yun (雲) /y/ vowel

y: ju (據) /y:/ vowel

z2 ren (人) / z/ fricative

A.3 British English

52 phonemes were employed for UK English and they cover all the seven categories [Fitt, 2000].

Table A.3 – Phonemes in British English and their categories

Unilex Symbol Word Example IPA Symbol Category

@ about /@/ vowel

2. after the glide /w/
3. This happens when a Pinyin transcription begins with “a”, “o” or “e”.
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A.3. British English

Table A.3 – Phonemes in British English and their categories (continued)

Unilex Symbol Word Example IPA Symbol Category

# (a period of silence) — silence

a map /æ/ vowel

aa bar /A:/ vowel

ai line /aI/ vowel

b boat /b/ plosive

ch cheese /Ù/ affricate

d does /d/ plosive

dh this /D/ fricative

e dress /e/ vowel

ei make /eI/ vowel

eir where /e@/ vowel

f font /f/ fricative

g gun /g/ plosive

h hair /h/ fricative

i kid /I/ vowel

i@ near /I@/ vowel

ii bee /i:/ vowel

iy city /i/ vowel

jh engine /Ã/ affricate

k cat /k/ plosive

l enclose /l/ approximant

l! able /l
"
/ approximant

lw feel / l&/ approximant

m mark /m/ nasal

m! multilingualism /m
"

/ nasal

n not /n/ nasal

n! heaven /n
"
/ nasal

ng sing /N/ nasal

o lot /6/ vowel

oi boy /OI/ vowel

oo horse /O:/ vowel

ou goat /@U/ vowel

ow house /aU/ vowel

p purr /p/ plosive

pau (a short pause) — silence

r road /ô/ approximant

@@r nurse /3:/ vowel

s set /s/ fricative

sh shoe /S/ fricative
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Table A.3 – Phonemes in British English and their categories (continued)

Unilex Symbol Word Example IPA Symbol Category

t tooth /t/ plosive

th thank /T/ fricative

u put /U/ vowel

uh love /2/ vowel

ur jury /U@/ vowel

uu food /u:/ vowel

uw actual /u/ vowel

v vote /v/ fricative

w wet /w/ approximant

y yes /j/ approximant

z zoo /z/ fricative

zh usually /Z/ fricative

A.4 German

58 phonemes were employed for German and they cover six categories (except “affricate”).

This German phoneme set [Pucher et al., 2010], in which an affricate is split into a plosive

and a fricative, was kindly provided by the Telecommunications Research Center Vienna

(Forschungszentrum Telekommunikation Wien, FTW), Austria.

Table A.4 – Phonemes in German and their categories

Symbol Word Example IPA Symbol Category

a Nacht /a/ vowel

a6 schwarz /a5
“
/ vowel

ah Flughafen /a:/ vowel

ah6 Jahr /a:5
“
/ vowel

Ahn Appartement /Ã:/ vowel

aI obgleich /aI/ vowel

aU Stau /aU/ vowel

b Bein /b/ plosive

C natürlich /ç/ fricative

ch Nacht /x/ fricative

d Deich /d/ plosive

E stechen /E/ vowel

E6 Stern /E5
“
/ vowel

eh Chemie /e:/ vowel

Eh6 Entwertung /e:5
“
/ vowel
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A.4. German

Table A.4 – Phonemes in German and their categories (continued)

Symbol Word Example IPA Symbol Category

f fast /f/ fricative

g Gunst /g/ plosive

GS (a glottal stop) 4 — silence

h Hand /h/ fricative

I episch /I/ vowel

I6 Gehirn /I5
“
/ vowel

ih geliebt /i:/ vowel

ih6 Niere /i:5
“
/ vowel

j Jahr /j/ approximant

k Kunst /k/ plosive

l Löwe /l/ approximant

m mein /m/ nasal

N Ding /N/ nasal

n nein /n/ nasal

O noch /O/ vowel

O6 Nord /O5
“
/ vowel

oh Angebot /o:/ vowel

oh6 temporär /o:5
“
/ vowel

OY deutsch /OY/ vowel

p Pein /p/ plosive

P2h Döschen /ø:/ vowel

P2h6 Störung /ø:5
“
/ vowel

P6 Sänger /5/ vowel

P9 Töchter /œ/ vowel

P96 Börse /œ5
“
/ vowel

pau (a short pause) — silence

r Demokrat /K/ 5 approximant

s Kunst /s/ fricative

S waschen /S/ fricative

schwa waschen /@/ vowel

sil (a period of silence) — silence

t Kunst /t/ plosive

U Kunst /U/ vowel

U6 Kurden /U5
“
/ vowel

uh Buch /u:/ vowel

4. It is the glottal stop before a vowel with which a word begins (e.g., “Ost”), or the glottal stop before such a
word when it comprises a part of a compound word (e.g., “Nordost”).

5. This IPA symbol itself represents a fricative. This phoneme was considered an approximant because of the
question set employed during the German average voice training.
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Table A.4 – Phonemes in German and their categories (continued)

Symbol Word Example IPA Symbol Category

uh6 Geburt /u:5
“
/ vowel

v was /v/ fricative

Y Gebüsch /Y/ vowel

Y6 Gewürz /Y5
“
/ vowel

yh grün /y:/ vowel

yh6 verschnüren /y:5
“
/ vowel

z Hase /z/ fricative

Z Genie /Z/ fricative
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B Appendix – Vowel Quadrilateral

The vowel quadrilateral is a part of the IPA chart 1 revised to 2005.

Figure B.1 – Vowel quadrilateral

1. http://www.langsci.ucl.ac.uk/ipa/IPA_chart_(C)2005.pdf
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