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Abstract

This paper examines the issue of face, speaker and bi-modal authentication
in mobile environments when there is significant condition mismatch. We intro-
duce this mismatch by enrolling client models on high quality biometric samples
obtained on a laptop computer and authenticating them on lower quality biomet-
ric samples acquired with a mobile phone. To perform these experiments we de-
velop three novel authentication protocols for the large publicly available MOBIO
database. We evaluate state-of-the-art face, speaker and bi-modal authentication
techniques and show that inter-session variability modelling using Gaussian mix-
ture models provides a consistently robust system for face, speaker and bi-modal
authentication. It is also shown that multi-algorithm fusion provides a consistent
performance improvement for face, speaker and bi-modal authentication. Using
this bi-modal multi-algorithm system we derive a state-of-the-art authentication
system that obtains a half total error rate of 6.3% and 1.9% for Female and Male
trials, respectively.

Keywords: face authentication, speaker authentication, bi-modal authentication,
Gaussian mixture model, session variability, inter-session variability, total
variability, i-vector, fusion

1. Introduction

Mobile phones have become an integral part of many people’s daily life. They
are used not just for telephonic communication, but also to send and receive
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emails, take photos or even have video conversations. This has led to the mo-
bile phone being an inherently multimedia device, which often has a front-facing
camera in addition to the standard microphone. Hence, it forms an exciting new
device that allows researchers to explore the applicability of bi-modal (face and
speaker) authentication in challenging mobile phone environments.

This exciting challenge of bi-modal authentication in the mobile phone envi-
ronment has begun to receive more attention. An international competition was
organised in 2010 [1], where researchers evaluated state-of-the-art algorithms for
face and speaker authentication using Phase I of the MOBIO database [2]. In
this evaluation, enrolment was exclusively performed with mobile phone data. It
was shown that a combination of these systems produced an impressive bi-modal
authentication system. Since then other researchers have examined methods to
perform face [3, 4], speaker [5, 6] and bi-modal [7, 8] authentication in the chal-
lenging mobile phone environment.

A theme common to some of the prior work on biometric authentication in
a mobile environment is the idea of session variability modelling [5, 4], which
achieves state-of-the-art results for bi-modal authentication [8]. Session variabil-
ity modelling aims to estimate and suppress any variability such as audio or image
noise that may cause confusion between different observations of the same bio-
metric identity. In [5] session variability modelling was used to cope with audio
channel variability, while [4] introduced this concept to face authentication, where
its application was supposed to reduce the impact of pose and illumination vari-
ation. Finally, in [8] state-of-the-art face and speaker authentication systems that
used inter-session variability (ISV) modelling were combined to derive a state-
of-the-art bi-modal authentication system. However, this prior work applied ISV
modelling in the case of matched acquisition conditions, i.e., where biometric
test samples are acquired using the same device as employed for client model en-
rolment. Furthermore, they did not use the most recent advances such as toral
variability (TV) modelling, which has been applied to speaker [9] and face [10]
authentication.

In this paper we explore three issues of applying bi-modal authentication to
the challenging mobile phone environment. First, we examine the issue of mis-
matched conditions between enrolment and testing. In particular, we examine the
effect of enrolling users on high quality biometric samples acquired with a laptop
computer and then authenticating them using lower quality biometric samples ac-
quired with a mobile phone. As a significant contribution, we develop three new
protocols for the MOBIO database [2] with respect to prior work [1, 2, 4, 8] that
was exclusively using mobile phone data both for enrolment and testing.
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Second, we extend the work of [8] by examining the effectiveness of TV mod-
elling for bi-modal authentication. Third, we show the effectiveness of multi-
algorithm fusion to further improve the results for face, speaker and bi-modal
authentication in the mobile phone environment. The final outcome of this work
is the development of a state-of-the-art bi-modal (face and speaker) authentication
system that improves upon the previous state-of-the-art [8] with a relative perfor-
mance gain of 35% for Female and 27% for Male trials on the MOBIO database.

The remainder of this paper is structured as follows: In Section 2 we out-
line the employed face and speaker authentication systems, while Section 3 com-
bines these into bi-modal and multi-algorithm authentication systems. Section 4
presents the new protocols for the MOBIO database that are used in our experi-
ments, which we discuss in Section 5. Finally, Section 6 concludes the paper.

2. Face and speaker authentication systems

We examine the effectiveness of state-of-the-art Gaussian mixture model
(GMM) based approaches for face, speaker and bi-modal authentication. GMMs
have formed the basis of state-of-the-art speaker authentication systems for over
a decade [11, 9] and it was recently shown that incorporating session variability
modelling into a GMM system produces state-of-the-art results for face authen-
tication [12]. Also, the combination of GMM-based systems that use session
variability modelling produces a state-of-the-art bi-modal (face and speaker) au-
thentication system [8].

When using GMMs and session variability for speaker and face authentication,
the same underlying approach is taken. The main difference is how the feature
vectors are extracted from the image (face) and audio (speech) samples. Below
we describe the feature extraction process for both face and speaker authentica-
tion followed by a description of the GMM and the associated session variability
modelling approaches that we examine.

2.1. Feature extraction

Two separate feature extraction processes are used for image (face) and audio
(speech) data. For both modalities, a biometric sample O (image or audio) is
decomposed into a set O of K feature vectors (O = {o', 0%, --- ,0"}), where
each feature vector is of dimensionality M. This decomposition is performed in
the spatial domain for the image data, and in the time domain for the audio data.



2.1.1. Face-based features

For the image data, we rely on parts-based features that were proposed for the
task of face authentication in [13]. These features have since been successfully
employed by several researchers [14, 15]. The key idea is to decompose the face
image into a set of overlapping blocks before extracting a feature vector from
each of them. The feature vectors extracted from these blocks are then considered
as observations of the same signal (the same face), and can be modelled in a
generative way.

The feature extraction process is similar to the approach described in [16].
First, each image is rotated, scaled and cropped to 64 x 80 pixels such that the
eyes are 16 pixels from the top and separated by 33 pixels. Second, to reduce
the impact of illumination, each cropped image is preprocessed with the multi-
stage algorithm of Tan & Triggs [17], using their default parametrisation. Third,
12 x 12 blocks of pixel values are extracted from the preprocessed image using an
exhaustive overlap, leading to K = 3657 blocks per image. Fourth, pixel values of
each block are normalised to zero mean and unit variance, prior to extracting the
M + 1 lowest frequency 2D discrete cosine transform (2D-DCT) coefficients [13]
and removing the zero frequency coefficient as it is redundant. Fifth, the resulting
2D-DCT feature vectors are normalised to zero mean and unit variance in each
dimension with respect to the other feature vectors of the image. As in previous
work [16, 8], M was set equal to 44.

2.1.2. Speaker-based features

For the audio data, observations are extracted at equally-spaced time instants
using a sliding window approach. First, audio segments are denoised using the
Qualcomm-ICSI-OGI front end [18]. Second, voice activity detection (VAD) is
performed jointly using the normalised log energy and the 4 Hz modulation en-
ergy [19]. The aim of the 4 Hz modulation energy is to discriminate speech from
other audio sources such as noise and music. An adaptive threshold is applied
on both the 4 Hz modulation energy and the normalised log energy. In our ex-
periments, this approach provided a relative improvement of up to 16% compared
to the common energy-based VAD. Third, 19 mel frequency cepstrum coefficient
(MFCC) and log energy features together with their first- and second-order deriva-
tives are obtained by computing 24 filter bank coefficients over 20 ms Hamming
windowed frames every 10 ms. This results in acoustic feature vectors of di-
mensionality M = 60. Finally, feature normalisation based on cepstral mean and
variance normalisation (CMVN) is applied on the remaining speech. The number
of feature vectors K extracted from each audio sample depends on the duration of
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the sample and the number of segments that the VAD classifies to be speech.

2.2. GMM-based modelling

We use the same generative probabilistic framework that models the observed
feature vectors using Gaussian mixture models (GMMs) for both image (face) and
audio (speech) modalities. GMMs have been successfully applied first to speaker
authentication [20, 11] and then to face authentication [13, 21, 14, 15, 16]. One of
the main challenges with GMMs is to reliably estimate a client model with limited
enrolment data. This enrolment process is sensitive to the conditions, in which
the data was captured. To address this issue, several session variability modelling
techniques built on the GMM baseline have been proposed that constrain client
models to be in a restricted subspace. In this work, we consider two approaches
to session variability modelling, inter-session variability (ISV) modelling [22]
and total variability (TV) modelling [9]. Both methods were initially proposed
for speaker authentication [22, 9] before being applied to face authentication [12,
10]. In the remainder of this section, we first describe the GMM baseline system,
followed by the more advanced ISV and TV techniques.

2.2.1. Gaussian mixture modelling

The distribution of the observed feature vectors (face or speech) is modelled
using a GMM. A GMM is the weighted sum of C' multi-variate Gaussian compo-
nents N:

P(0|Ogmm) = ch (03 e, Ze) (1)

where Ognm = {We, e, Xete=q1,...c} are the parameters of this distribution: the
weights, the means and the covariance matrices, respectively.

To use GMMs for authentication we need to learn a GMM S; for each subject
¢ from a set of enrolment samples. One of the main challenges is that the number
of enrolment images or audio recordings per client is usually limited, possibly to
a single sample. In practice, it has been shown that for both speaker [11] and
face authentication [14, 15] an efficient enrolment method is to use a subject-
independent prior GMM M, called the universal background model (UBM), and
to adapt this prior to the enrolment samples of the subject 7 to generate the client
model §;. The UBM M is learnt beforehand by maximising the likelihood of
observations extracted from a large independent training set of several identities
using the iterative expectation-maximisation (EM) algorithm [23]. Afterwards,
adaptation is achieved by using maximum a posteriori (MAP) estimation [20],



where only the means of the UBM are updated, as this has been shown to be
efficient for both modalities [20, 14, 15]. As in previous work [11, 14, 15, 16]
GMMs are assumed to have diagonal covariance matrices.

A convenient and compact representation of mean-only MAP adaptation and
other session variability modelling techniques is the GMM super-vector notation.
This notation consists of grouping the parameters of the various Gaussian compo-
nents of a GMM (weights, means or covariance matrices) into single large vectors
or matrices. For instance, the mean super-vector m of the UBM M is obtained
by concatenating the means . of all its components: m = [p], pul, -+ u&] T
In [22] it was shown that mean-only MAP adaptation can then be written as:

si=m-+d,;, 2)

where s; is the mean super-vector of the GMM S and d; is a client-specific offset
for subject ¢. This offset d; is given by:

by
d; = Dz, with D = /= 3)
T

where X is the variance super-vector of the UBM (recalling that covariance matri-
ces are assumed to be diagonal), 7 is a relevance factor that provides a weight for
the prior UBM when performing MAP adaptation [20] and z; is a latent variable,
which is assumed to be normally distributed A/ (0, I). In the following, since only
the means of the UBM are adapted, we will use s; and m to describe the client
model S; and the UBM M, respectively, by abusing the notation.

Scoring. Once a client model is enrolled, a test sample O; (also called a probe
sample) is authenticated against the model s; by calculating a log-likelihood ra-
tio (LLR) score with respect to the UBM m [11]:

K

Pgmm (O, 8i) = Z [log (p (of | 8;)) —log (p (oi€ | m))] : 4)

k=1

With higher hgmm (O, s;) values, the probability increases that the observations
O, extracted from the sample O, were produced by the client model s;.
Recently, a linear approximation of Eq. (4), known as linear scoring [24], has
been adopted in the speaker authentication literature and has also been applied
to face authentication [16]. It relies on the mean centralised first order sufficient
statistics of the UBM given the observations Oy, as given in Equation (9) of [12].
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This approximation was shown [24] to be orders of magnitude more efficient with
no significant degradation in performance.

As a final step, we also perform zt-score normalisation [25] due to the con-
sistent performance improvements that this gives for both face [16] and speaker
authentication [26].

2.2.2. Inter-session variability modelling

One problem of the GMM mean-only MAP adaptation approach is that the
client model s; can be difficult to estimate reliably with limited enrolment data
as it is sensitive to the conditions in which the data was captured. Part of the
reason for this is that there is no explicit model to capture and suppress detrimen-
tal variations such as audio or image noise. Session variability modelling aims
to estimate and suppress the effects of within-client variations in order to create
more discriminant client models. For the face modality, within-client variations
include variations of pose, illumination or expression of samples of a given sub-
ject, whereas for the speaker modality variations are, amongst others, caused by
the sensor (microphone) or the environment (background noise or acoustic condi-
tions).

Inter-session variability (ISV) modelling [22] and joint factor analysis (JEA)
[27] are two session variability modelling techniques, used in the context of a
GMM-based system, that have been successfully applied to both speaker [22, 28,
26] and face authentication [4, 12]. Both techniques aim to estimate session vari-
ation like audio or image noise in order to compensate for it. This compensation
for the estimated session variation is the key difference between ISV and the clas-
sic mean-only MAP adaptation. Note that for these experiments we have not
examined JFA as it was shown empirically that ISV outperforms JFA for both
speaker [8] and face [8, 12] authentication.

As in [22] it is assumed that session variability results in an additive offset to
the mean super-vector s; of the client model. This offset can be added directly to
the normal mean-only MAP adaptation representation. Given the j-th biometric
sample O, ; of subject ¢ the mean super-vector p; ; of the GMM that best repre-
sents this biometric sample is:

pij=m+Ux;; + Dz, (5

where U is a subspace that constrains the possible session effects, x; ; is its as-
sociated latent session variable (x; ; ~ N (0, I)), while D and z; represent the
client-specific offset in the same manner as for mean-only MAP adaptation, which
is given in Egs. (2) and (3).



The model enrolment of a client is performed in the following manner. Given
a session subspace U, which is learnt by maximising the likelihood of the training
data, the latent variables x; ; and z; are jointly estimated using MAP. Afterwards,
the session varying part is suppressed by retaining only the client-specific infor-
mation:
sl(-isv) =m+ Dzi(isv) . (6)
For details on how to jointly estimate the latent variables and how to train the
subspace U, readers are referred to [12].

Scoring. ISV relies on a LLR score similar to Eq. (4). The main differences are
that the session offsets of the enrolment samples have been compensated while
generating the client model, and that session offsets of the probe sample O, are
estimated prior to scoring. This means that the latent session variables x;; and
Zubm,; Of the observed feature vectors O; = {o;, 07, - - - ,0{*} extracted from a
biometric sample O, are first estimated, before computing a LLR score:

Kt
his (Or8:) = 3 |1og (p (of | 5: + Umy))
= @)

~10g (p (of | m + Un,))|

In practice, simplifications have been proposed to speed up the process in [24],
which consists of first approximating the session offset Ux; ; of the client model,
with the session offset U @ypm ¢, and then using the linear scoring approximation
as for the GMM-baseline.

Finally, as with the GMM baseline, we perform zt-score normalisation.

2.2.3. Total variability modelling

In [29] it was shown that JFA can fail to separate between-client and within-
client variations into two different subspaces. This is potentially caused by the
high dimensionality of the GMM mean super-vector space.

To address this issue, an alternative technique called toral variability (TV)
modelling was developed for speaker authentication [30, 31] and later applied
to face authentication [10]. This framework is built on the GMM approach and
relies on the definition of a single subspace that contains both identity and session
variabilities. In particular, it aims to extract low-dimensional factors w; ;, so-
called i-vectors, from biometric samples O; ;. More formally, the TV approach
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Figure 1: I-VECTOR PROCESSING TOOL CHAIN. This figure shows the steps of the i-vector
processing tool chain. Each preprocessing and session compensation step is optional.

can be described in the GMM mean super-vector space by:
pij=m+Tw,;, ()

where T is the low-dimensional total variability subspace and w; ; the low-dimen-
sional i-vector, which is assumed to follow a normal distribution N (0, I).

The TV subspace T’ is learnt by maximising the likelihood over a large training
set. This algorithm is similar to the one used to estimate the identity (between-
class) subspace in JFA [32], with one major difference: while JFA jointly consider
the samples coming from a given subject, TV treats them as if they have been pro-
duced by different identities, which is an advantage when large unlabelled training
datasets are used. In addition, the extraction of i-vectors requires the estimation
of a covariance matrix 3, to model the residual variability that is not captured by
the subspace T'.

In contrast to ISV, TV does not explicitly perform session compensation. TV
is just a front-end that extracts a low dimensional i-vector w; ; from each sample
O, ; based on the total variability of the training set. As such, it is likely to
capture both client-specific and session-specific information. Hence, TV requires
to use separate session compensation and scoring techniques after the extraction
of i-vectors. Additionally, a set of preprocessing algorithms have been proposed
to map i-vectors into a more adequate space [33, 34, 10]. Possible variants of
preprocessing, session compensation and scoring methods have been employed
and combined in different manners [30, 31, 10]. Some of them are summarised in
Fig. 1 and described in the remainder of this section.

I-vector preprocessing. First, i-vector whitening was proposed in [33, 10] and
shown to boost classification performance. Whitening consists of normalising the
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i-vector space such that the covariance matrix of the i-vectors, of a training set, is
turned into the identity matrix. This is performed by applying:
w " = W (wi; — @) | ©)

— . .. . hit d . .
where w is the mean of a training set of i-vectors, wz(vjv itened) the whitened i-vector,

and W the whitening transform. This transform W is computed as the Cholesky
decomposition of X! = WWT7, where X is the covariance matrix of a training
set of i-vectors.

Another efficient preprocessing technique is i-vector length normalisation [34,
10], which aims at reducing the impact of a mismatch between training and test
i-vectors. It consists of mapping the i-vectors into a unit hypersphere:

(linorm) _ w;,; (10)
" il

which is very effective when using session compensation or scoring methods that
assume Gaussian-like distributions.

Session compensation. A set of session compensation techniques have been pro-
posed for both speaker [31] and face [10] authentication. Linear discriminant
analysis (LDA) [35] is a popular algorithm that aims at learning a linear pro-
jection maximising between-class variations while minimising within-class vari-
ations. The projection matrix A is learnt from a training set of i-vectors extracted
from samples coming from several identities, by first computing the between-class
and within-class scatter matrices:

J;
Sw = Z Z (w;; — w;) (w;; — w,;)" (11)
i =1
Sp=>_Ji(w; —w) (w; — w)" (12)

where J; is the number of i-vectors from client ¢, w; is the mean of this client-
specific i-vectors, and w the means of all i-vectors in the training set. Next, LDA
maximises the ratio of the determinants of these two scatter matrices. The solution
is found by solving the generalised eigenvalue decomposition Sgv = ASyv.
We then retain the nyq, eigenvectors with the greatest eigenvalues to build the
projection matrix A. An i-vector w; j is projected into the LDA space by:

w!™ = ATw, ;. (13)

i?j
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Within-class covariance normalisation (WCCN) is a technique initially intro-
duced for SVM-based speaker authentication [36]. It has since be successfully
applied to i-vectors for both speaker [30] and face authentication [10]. It aims to
normalise the within-class covariance matrix of a training set of i-vectors. Given
the within-class scatter matrix from Eq. (11) and the number of identities /V in the
training set, the WCCN linear transform B can be computed using the Cholesky
decomposition of:

1 —1
—S = BB". 14
< N W) (14)
An i-vector w; ; is projected into the corresponding WCCN space by:
w = BTw,; . (15)
Scoring. Once session compensation has been performed, any scoring technique
might be employed for authentication purposes. Cosine similarity scoring [9, 10]

is a simple and efficient method used to estimate how close a (normalised) i-vector
w; extracted from a probe sample O, is to the i-vector w; representing a client ::

Wy - W;

hcosine (wt7 wz) - (16)

[[w[[|ews ]|
Another technique commonly applied in the i-vector space is probabilistic
linear discriminant analysis (PLDA) [37, 38, 39]. PLDA is a probabilistic frame-
work that incorporates both between-class and within-class information and, there-
fore, performs session compensation. In addition, considering the authentication
problem, this probabilistic approach allows the generation of LLR scores.
More formally, PLDA assumes that the j-th i-vector of client ¢ is generated
by:
w; ; = th + Gk@j + € i, (17)

where F' and G are the subspaces describing the between-class and within-class
variations, respectively, h; and k; ; are the associated latent variables, which are
assumed to be normally distributed A/ (0, I), and €; ; represents the residual noise,
which is supposed to follow a Gaussian distribution N (0, 3,).

The parameters Op4, = {F, G, 3.} of this model are learnt using an EM
algorithm over a training set of i-vectors. Once the model has been trained, given
an i-vector w; extracted from a probe sample O; and an i-vector w; representing
a client ¢, authentication can be achieved by computing the LLR score:

p(w;, w; | ©)
w; | ©)p(w; | ©)

hplda (wtawi> = p( (18)
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Here, p(w;, w; | ©) is the log-likelihood that the i-vectors w; and w; share the
same latent identity variable h; and, hence, are coming from the same client,
whereas p(w; | ©)p(w; | ©) is the log-likelihood that the i-vectors w; and w;
have different latent identity variables h, and h; and, therefore, are from different
clients. For details on how to estimate these likelihoods and how to train the
parameters ©,q,, readers are referred to [37, 38, 39].

Finally, recent work [40] on speaker recognition at NIST SRE 2012! has
shown that the duration mismatch between enrolment and test speech segments
can tremendously affect the accuracy of the system. To cope with this variabil-
ity, [40] proposed to truncate the speech signal into shorter segments. Then the
i-vectors of the truncated versions together with the i-vectors of the original sig-
nals are used to train the PLDA. We also evaluate this technique on the MOBIO
database (see Section 5.6).

3. Bi-modal and multi-algorithm authentication systems

Several fusion strategies are known in the literature [41]. They can be classi-
fied into three main categories:

Low-level fusion which is also known as data fusion, combines multiple sources
of raw data to produce new raw data. The major problem of this fusion
method comes with non-balanced dimensionalities of data from the multiple
sources.

Intermediate-level fusion or feature level fusion combines various features that
might come from several raw data sources or even from the same raw data.
The drawback of feature-level fusion is that synchronisation between modal-
ities [42] is required, which is not provided in the MOBIO database.

High-level fusion which is also called decision level fusion, late fusion or score
fusion, combines decisions from several systems. This fusion strategy is
very flexible and can be used for multi-modal (face and speaker) or multi-
algorithm (for instance combining GMM and ISV) fusion. High-level fu-
sion methods include majority voting methods, fuzzy logic based meth-
ods [43], and statistical methods.

In this work we choose the high-level fusion approach due to its ease of use for
both multi-modal [8] and multi-algorithm [44, 45, 46] fusion.

'http://www.nist.gov/itl/iad/mig/srel2.cfm
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3.1. Linear logistic regression

We take the well-known statistical linear logistic regression approach, which
has been successfully employed for combining heterogeneous speaker and face
authentication classifiers [44, 45, 46] and for bi-modal (face and speaker) authen-
tication [8].

Linear logistic regression combines a set of () classifiers using the sum rule.
Let the probe O; be processed by () classifiers, each of which produces an output
score h, (O, s;). These scores are fused using a linear combination:

Q
hiusion (O, 81, 8) = Bo + Y Byhg (O, 81) , (19)
q=1

where 8 = [y, b1, ..., Bo] are the fusion weights (also known as regression coef-
ficients).

The coefficients 3 are computed by estimating the maximum likelihood of the
logistic regression model on the scores of the development set. Let A}, be the set
of true client access trials, i. e., the set of pairs € = {Oy, s;}, where the identity
of the test sample O, and of the client s; is the same. Let furthermore Xy, be the
set of impostor trials, i.e., the set of pairs € = {Oy, s;}, where the identities of
the test sample O, and of the client s; are different. Let X = Xjpe U Xjpp. The
objective function to maximise is:

L(ﬁ) = - Z log (1 + €xp <_ywhfusion (33, /8))) ) (20)

xeX
where:
1, if Xirve
%={+"w€ - @1

=1, ifx € Xy

The maximum likelihood estimation procedure converges to a global minimum.
In our work, this optimisation is done using the conjugate-gradient algorithm [47].

This approach performs best when the scores of the classifiers are statistically
independent of each other. For this reason we measure the independence and,
therewith, the complementary nature of our classifiers. We use the scatter plots
(see Fig. 8) and the relative common error (RCE):

11 1
RCE = CE 22
XmaX{TEl’TEQ’ TEQ}’ 22)
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where CE is the number of common errors between the () classifiers and TE,
is the total number of errors of the ¢'" subsystem. The lower RCE is, the more
independent the classifiers are.

In this work we evaluate the effectiveness of both bi-modal and multi-algo-
rithm fusion. This leads to a number of different system combinations, which we
outline in Fig. 2. The top row of Fig. 2 displays the three different bi-modal fusion
systems, while the bottom row shows the two different multi-algorithm fusion
systems and the bi-modal multi-algorithm fusion approach that we examine.

F-GMM ' s F-1SV F-TV —
FUSION e B-GMM FUSION  jmmmB-ISV Fusion  jeB-TV
S-CMM s S-ISV STV —
(a) (b) (c)
F-GMM S-GMM s P-GMM s
S-CMM '
. . F-1SV .
F-ISV — FuSlOn b - AL L S-ISV — FuSIOn e S-ALL S-ISV FUSIOn b B-ALL
F-TV
F-TV S-TV
— — S-TV

(d) (e) (f)

Figure 2: FUSION STRATEGIES. This figure displays different fusion strategies used in this
paper: (a) - (c) bi-modal fusion strategies, (d) - (e) multi-algorithm fusion strategies, (f)
bi-modal multi-algorithm fusion.

4. Database and protocols

The MOBIO database [2] is a unique bi-modal, face and speaker, database as
it was captured almost exclusively using mobile phones. It consists of over 61
hours of audio-visual data of 150 people captured within twelve distinct sessions
that are usually separated by several weeks. The users answered a set of questions,
which varied in type, including:

1. short response questions (p) such as “what is your address”,
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2. free speech questions, where the user speaks about any subject for approxi-
mately 10 seconds (f) or about 5 seconds (r), and

3. pre-defined text (1) that the user read out.

All of this data was captured on a mobile phone, except for the first session, where
data was obtained using both a mobile phone and a laptop computer. One of the
unique attributes of this database is that the acquisition device was held by the
user, rather than being in a fixed position. As such, the microphone and camera
are not fixed and used in an interactive and uncontrolled manner. This presents
several challenges such as high variability of pose and illumination conditions,
high variations in the quality of speech, and variability in terms of acoustics as
well as illumination and background. Exemplary images of one identity are given
in Fig. 3.

This challenging mobile phone database has been used to evaluate several face
and speaker authentication systems [1] as well as bi-modal authentication sys-
tems [7, 8]. The database provides a well defined protocol, which was initially
described for the full database in [4]. This protocol separates the clients of the
database into three non-overlapping partitions for training, development (DEV)
and evaluation (EVAL). The performance is measured in a gender-dependent
manner (Female and Male, respectively). An overview of this initial protocol,
which we refer to as mobile-0, is provided in Table 1. A limitation of this previ-
ously defined protocol is that only the lower quality biometric data acquired from
the mobile phone was used, while the higher quality laptop data were ignored.

4.1. Evaluation protocols

In this work we extend the MOBIO protocol [2] and define three novel proto-
cols that explore mismatched conditions by making use of the laptop data®. The
mismatched conditions that we wish to investigate are the specific cases of en-
rolling a user with high quality biometric samples (for instance acquired from
a laptop computer) and then compared, or tested, using lower quality biometric
samples obtained using a mobile phone.

mobile-1 is identical to a mobile-0, except that it includes the laptop data in
the training set. This ensures that the same training data is being used for

2The MOBIO database (videos, still images, eye locations and the four evaluation protocols)
are available for free at http://www.idiap.ch/dataset/mobio
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Figure 3: MOBIO DATABASE EXAMPLES. This figure shows one image of the MOBIO
database captured with a laptop on the left, and seven other images of the same iden-
tity captured with a mobile phone with significantly varying acquisition conditions.

mobile and laptop evaluation (the next protocol that we present). It provides
an additional 1, 050 training samples compared to mobile-0. Enrolment and
testing is conducted using only mobile phone data. Please see Table 2 for
more details.

laptop-1 contains the same training data as mobile-1, but enrolment is performed
exclusively using laptop data, while testing is conducted exclusively with
mobile phone data. See Table 3 for details on the kind of data used in this
protocol.

laptop-mobile-1 also consists of the same training data as mobile-1. Here, enrol-
ment is performed using both mobile and laptop data, while testing is still
conducted exclusively on mobile phone data, see Table 4 for details.

4.2. Evaluation criteria

To measure the accuracy of the presented authentication systems, we use two
different evaluation criteria that were previously defined in [2]. These measures
are the half total error rate (HT'ER) and detection error trade-off (DET) plots.

The HTER is used to represent the performance of an authentication system
on the unbiased evaluation partition as a single number. To compute the HTER, a
threshold @ is defined on the development partition at the intersection point of the
false acceptance rate (FAR) and the false rejection rate (FRR). The correspond-
ing FAR (or FRR) value of the development partition at this threshold 6 is known
as the equal error rate (EER). The threshold is applied to the evaluation partition
(Drvar,) to obtain the HTER:

FAR(6, Drvar) + FRR(6, Dgvar)
2 Y

which is the average of the FAR and the FRR at 6. Finally, we provide a complete

overview of the system performances using a DET plot [48], which outlines the

miss probability (FRR) versus the probability of false acceptance (FAR) on the
evaluation set.

HTER =

(23)
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Table 1: THE MOBILE-0 PROTOCOL. This table gives an overview of the data used in the
(original) mobile-0 protocol of the MOBIO database.

Phase I Phase 11
laptop data mobile data mobile data mobile data Nb. Nb.
Set session-01 session-01 sessions 02-06 sessions 07-12 videos/client | videos
videos/client videos/client (videos/client)/sess. | (videos/client)/sess.
Train - Sp+10f+5r+11 Sp+10f+5r+11 Sp+5f+11 192 9600
Enrol - S5p - - 5 500
Test - - 10f + 5r 5t 105 10500

Table 2: THE MOBILE-1 PROTOCOL. This table gives an overview of the data used in the

(novel) mobile-1 protocol for the MOBIO database.

Phase [ Phase II
laptop data mobile data mobile data mobile data Nb. Nb.
Set session-01 session-01 sessions 02-06 sessions 07-12 videos/client | videos
videos/client videos/client (videos/client)/sess. | (videos/client)/sess.
Train | Sp+10f+5r+11 | Sp+10f+5r+11 S5p+10f+5r+ 11 Sp+5f+11 213 10650
Enrol - S5p - - 5 500
Test - - 10f + 5r 5f 105 10500

Table 3: THE LAPTOP-1 PROTOCOL. This table gives an overview of the data used in the

(novel) laptop-1 protocol for the MOBIO database.

Phase I Phase 11
Set laptop data mobile data mobile data mobile data Nb. Nb.
session-01 session-01 sessions 02-06 sessions 07-12 videos/client | videos
videos/client videos/client (videos/client)/sess. | (videos/client)/sess.
Train | Sp+10f+5r+11 | S5p+10f+5r+11 Sp+10f+5r+ 11 Sp+5f+11 213 10650
Enrol 5p - - - 5 500
Test - - 10f + 5r 5f 105 10500

Table 4: THE LAPTOP-MOBILE-1 PROTOCOL. This table gives an overview of the data used
in the (novel) laptop-mobile-1 protocol of the MOBIO database.

Phase [ Phase II
laptop data mobile data mobile data mobile data Nb. Nb.
Set session-01 session-01 sessions 02-06 sessions 07-12 videos/client | videos
videos/client videos/client (videos/client)/sess. | (videos/client)/sess.
Train | Sp+10f+5r+11 | Sp+10f+5r+11 Sp+10f+5r+ 11 Sp+5f+11 213 10650
Enrol 5p Sp - - 10 1000
Test - - 10f + 5r 5f 105 10500
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5. Experimental Results

In this section, we evaluate the accuracy of the uni-modal and bi-modal au-
thentication systems described in Sections 2 and 3, across the four protocols de-
fined in Section 4. Global observations are first highlighted in Section 5.1. A
detailed comparison between GMM, ISV and TV systems is presented in Sec-
tion 5.2. Bi-modal and multi-algorithm experiments are examined in Sections 5.3
and 5.4, respectively, and the results are compared with other state-of-the-art face
and speaker authentication fusion systems. The results obtained on the four proto-
cols are presented and summarised in Section 5.5. Section 5.6 presents the results
of gender-dependent systems and the use of extended training set. We present
both the EER on the DEV set and the HTER on the EVAL set. Results for the
best systems for each modality are highlighted in bold. We also distinguish the
best uni-modal single algorithm systems by highlighting them in bold italics.

To make the comparison simple and the results reproducible we used the same
parameters throughout the experiments and conducted all experiments with the
open-source Bob toolbox? [49] to implement all of our systems. GMMs are com-
posed of 512 Gaussian components and the UBMs are trained in the following
manner: 25 iterations of k-means clustering are performed to initialise the UBM
and then 100 iterations of maximum likelihood estimation are executed. For ISV,
the rank ngy of the subspace U is set to 50 for speaker authentication system (S-
ISV) and 160 for face authentication system (F-ISV), 10 iterations are performed
to train the subspace U. For TV, the rank nr of the subspace T is set to 400, and
25 iterations are done for the subspace training. When using LDA with i-vectors
the projection matrix A is limited to nyg, = 200 dimensions. For PLDA, the ranks
ng and ng of the subspaces F' and G are both set to 50. In addition, the cohort
set for zt-normalisation is selected from the training data: two thirds are used for
t-norm and the remaining third is used for z-norm. For t-models, we used one
model per session (instead of one model per client), as in [4]. This copes with the
limited number of clients in the cohort.

5.1. Global observations

Looking at the results provided in Tables 5, 6, 7, and 8, two general trends are
emerging throughout the results. First, error rates on female clients are higher than

3Bob is a free signal processing and machine learning toolbox originally developed at Idiap
Research Institute. The total variability system was incorporated especially for this paper. You
can download Bob from: http://www.idiap.ch/software/bob
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(a) Speech duration in MOBIO (b) Speech duration in NIST SRE 2012

Figure 4: MOBIO vs. NIST SRE 2012. This figure compares the distributions of the
speech duration (in seconds) over the probe files after applying VAD between the MOBIO
database and the NIST SRE 2012 data.

on male clients. This might be due to the fact that the training set contains more
men than women. Second, comparing the results of face authentication (Face) and
speaker authentication (Speaker) systems, it is obvious that error rates of Face
systems are lower than error rates of Speaker systems. This is possibly caused by
the fact that speech segments are relatively short. Indeed, the average duration of
the MOBIO probes after VAD is 7.9 s (see their distribution in Fig. 4(a)), whereas
the average duration of the probes after VAD in NIST SRE 2012 is 91.5 s (see
Fig. 4(b)).

5.2. Comparison of the modelling techniques

To be comparable with previous work [12, 8], our analysis focuses on the
results of the mobile-0 experiments, which are summarised in Table 5. However,
similar conclusions might be drawn from the experiments on the other protocols
that are given in Tables 6, 7 and 8.

It can be seen that F-ISV and S-ISV (rows 2 and 7) outperform F-GMM and
S-GMM (rows 1 and 6). This is also shown in [8]. Apparently, except for a few
cases TV (rows 3, 4, 8, 9) provides superior performance to the standard GMM
approach.

However, the comparison between ISV and TV is not so simple, although
usually ISV provides similar or better performance. For Speaker, S-TV and S-
ISV are comparable, even though S-ISV is slightly better. For Face, F-ISV is
significantly better than F-TV. The DET curves plotted in Fig. 5 and Fig. 6 support
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Table 5: PERFORMANCE SUMMARY ON MOBILE-0. This table reports the EER (%) on DEV
and HTER (%) on EVAL obtained with the mobile-0 protocol using gender independent
(Gl) training.

Modelling Scoring Female Male
technique technique DEV | EVAL | DEV | EVAL
F-GMM linear scoring + zt-norm 8.20 17.92 8.49 10.81 1
° F-ISV linear scoring + zt-norm 5.41 10.63 3.45 6.54 2
] PLDA 16.60 19.34 10.12 11.94 3
= | FTV cosine scoring 1095 | 1616 | 555 | 899 | 4
F-ALL logistic regression 5.03 11.62 2.77 6.06 5
S-GMM linear scoring + zt-norm 17.94 17.68 13.41 12.12 6
E S-1SV linear scoring + zt-norm 12.22 16.23 10.40 10.36 7
s PLDA 12.59 17.36 11.31 11.11 8
& | STV cosine scoring 1593 | 2358 | 1266 | 1287 | o
S-ALL logistic regression 9.21 14.65 7.31 7.89 10
= B-GMM linear scoring + zt-norm 4.50 12.32 3.69 4.80 11
3 B-ISV linear scoring + zt-norm 2.01 7.16 1.59 2.42 12
E B-TV PLDA (speaker) + cosine (face) 4.29 9.93 2.29 3.77 13
) B-ALL logistic regression 1.43 6.30 0.92 1.89 14

Table 6: PERFORMANCE SUMMARY ON MOBILE-1. This table reports the EER (%) on DEV
and HTER (%) on EVAL obtained with the mobile-1 protocol using gender independent
(GI) training.

Modelling Scoring Female Male
technique technique DEV | EVAL | DEV | EVAL
F-GMM linear scoring + zt-norm 8.24 18.13 8.41 10.79 1
° F-ISV linear scoring + zt-norm 5.61 11.25 3.41 6.46 2
3 PLDA 16.63 19.23 9.71 11.57 3
= | FETV cosine scoring 1232 | 1625 | 603 | 1009 | 4
F-ALL logistic regression 5.67 11.85 2.90 6.27 5
S-GMM linear scoring + zt-norm 17.73 17.73 13.21 12.05 6
E S-1SV linear scoring + zt-norm 11.43 16.02 10.16 10.35 7
s PLDA 13.86 18.18 12.86 10.86 8
& | STV cosine scoring 2402 | 2953 | 1198 | 1278 | o
S-ALL logistic regression 9.94 14.43 7.38 7.68 10
= B-GMM linear scoring + zt-norm 4.23 12.35 3.53 4.68 11
32 B-ISV linear scoring + zt-norm 2.17 7.61 1.55 2.43 12
% B-TV PLDA (speaker) + cosine (face) 5.03 9.43 3.97 4.15 13
M B-ALL logistic regression 1.64 6.32 0.75 2.06 14
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Table 7: PERFORMANCE SUMMARY ON LAPTOP-1. This table reports the EER (%) on DEV
and HTER (%) on EVAL obtained with the laptop-1 protocol using gender independent
(Gl) training.

Modelling Scoring Female Male
technique technique DEV | EVAL | DEV | EVAL
F-GMM linear scoring + zt-norm 18.78 20.79 13.02 16.59 1
° F-ISV linear scoring + zt-norm 12.65 12.91 6.83 9.55 2
3 PLDA 19.52 21.84 11.74 15.77 3
= | FTV cosine scoring 1862 | 1642 | 901 | 1224 | 4
F-ALL logistic regression 11.86 11.73 5.47 8.87 5
S-GMM linear scoring + zt-norm 19.05 19.80 16.39 16.06 6
E S-1SV linear scoring + zt-norm 13.00 18.43 12.78 13.54 7
s STV PLDA 12.70 20.14 13.61 11.89 8
S cosine scoring 18.73 25.27 14.72 14.71 9
S-ALL logistic regression 9.36 16.24 8.85 9.04 10
= B-GMM linear scoring + zt-norm 8.89 12.16 6.07 7.83 11
3 B-ISV linear scoring + zt-norm 3.60 7.47 3.03 4.52 12
E B-TV PLDA (speaker) + cosine (face) 7.41 10.46 4.88 5.61 13
M B-ALL logistic regression 291 6.83 1.82 3.37 14

Table 8: PERFORMANCE SUMMARY ON LAPTOP-MOBILE-1. This table reports the EER (%)
on DEV and HTER (%) on EVAL obtained with the laptop-mobile-1 protocol using
gender independent (Gl) training.

Modelling Scoring Female Male
technique technique DEV | EVAL | DEV | EVAL
F-GMM linear scoring + zt-norm 8.15 17.46 7.65 10.43 1
° F-ISV linear scoring + zt-norm 5.24 10.44 3.21 5.99 2
S PLDA 14.97 17.55 8.06 11.45 3
= | FETV cosine scoring 1089 | 1426 | 575 | 867 | 4
F-ALL logistic regression 5.24 10.32 2.34 5.54 5
S-GMM linear scoring + zt-norm 15.04 15.98 11.42 10.55 6
E S-1SV linear scoring + zt-norm 9.31 15.18 8.17 9.40 7
3 PLDA 10.95 15.54 10.40 9.40 8
& | STV cosine scoring 1989 | 2631 | 11.03 | 1227 | o
S-ALL logistic regression 7.30 12.48 5.68 6.39 10
= B-GMM linear scoring + zt-norm 3.08 9.69 2.10 4.24 11
32 B-ISV linear scoring + zt-norm 1.22 6.37 1.11 2.26 12
% B-TV PLDA (speaker) + cosine (face) 4.07 7.25 2.14 3.41 13
M B-ALL logistic regression 1.11 6.32 0.64 1.77 14

21



Female — Evaluation set
¢4 S-GMM © O SISV S-TV ~ BHE S-ALL
50 —ToT ‘ : :

Male — Evaluation set
94— S-GMM OO SISV S-TV B8 S-ALL

50

401 401

201 201

10F 10f

False Rejection Rate (%)
False Rejection Rate (%)

0.5F

0. i i i H i i i 0. i i i H i i i
bl 05 1 2 5 10 20 40 50 %).1 05 1 2 5 10 20 40 50
False Acceptance Rate (%) False Acceptance Rate (%)

Figure 5: DET CURVES FOR SPEAKER. This figure shows performances of GMM, ISV, TV
and the multi-algorithm fusion on mobile-0 for both Male and Female.

this observation. In these curves we can see some intersection between the ISV
and TV curves and between the GMM and TV curves. These curves also show
that the systems are well calibrated (close to straight lines with angles close to
45 °) especially the ISV and TV systems.

The observation that ISV is at least as good as TV for speaker authentication
is strange because TV is considered to be a state-of-the-art speaker authentica-
tion approach [9]. We believe that TV is limited by a lack of data needed to
train the several steps such as: learning the TV matrix, whitening, LDA, WCCN
and PLDA. For this reason we explore the use of additional training data in Sec-
tion 5.6.

5.3. Bi-modal authentication

The bi-modal ISV system (B-ISV) outperforms both the B-GMM and B-TV
systems. In Table 5 (rows 11, 12, and 13) and in the DET curves in Fig. 7 it can be
seen that B-ISV clearly outperforms B-TV. The error rates drop significantly for
all bi-modal systems. For example, on the Female mobile-0 protocol the HTER
of the ISV system drops from 10.6% (F-ISV) and 16.2% (S-ISV) to 7.2% (B-
ISV), a relative performance gain of 33% compared to the best uni-modal system.
The results on the Male mobile-0 protocol are even more impressive with the
HTER of the ISV system dropping from 6.5% (F-ISV) and 10.4% (S-ISV) to
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Figure 6: DET CURVES FOR FACE. This figure displays performances of GMM, ISV, TV and
the multi-algorithm fusion on mobile-0 for both Male and Female.

2.4% (B-ISV), a relative performance gain of 63% compared to the best uni-modal
system. This improvement can be explained by the fact that image and audio
modalities are complementary: when Face fails to take the right decision because
of image variability (illumination, head pose, etc.), Speaker is available to rescue,
and vice versa.

5.4. Multi-algorithm fusion

The fusion of multiple algorithms (GMM, ISV and TV) consistently outper-
forms single systems, as shown in Table 5 (rows 5, 10 and 14). For example, the
HTER of the Speaker system on the Male mobile-0 protocol drops from 10.4%
(for ISV) to 7.9%, which corresponds to a relative improvement of 24%. The
impact of the multi-algorithm fusion is higher for Speaker than Face because
Speaker obtains a relative improvement of on average 19% compared to 3% for
Face (the average is taken across all four protocols). We attribute this larger gain
in performance for Speaker to the fact that TV has comparable results with ISV
for Speaker but not for Face; TV performs much worse than ISV for Face. Fi-
nally, we note that the best bi-modal multi-algorithm fusion (B-ALL) outperforms
the best uni-modal Face (F-ALL) and Speaker (S-ALL) systems with a relative
improvement of up to 69% and 76%, respectively (for Male trials).

To explore the reason for the performance gains from multi-algorithm fusion
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Figure 7: DET CURVES FOR BI-MODAL. This figure shows performances of GMM, ISV, TV
and the multi-algorithm fusion on mobile-0 for both Male and Female.

we examine scatter plots of the scores for the ISV, GMM and TV systems. Fig. 8
shows scatter plots that relate the ISV scores to GMM scores and TV scores to
ISV scores for the Speaker system on the Male mobile-0 protocol. The scatter
plots indicate that fusing TV and ISV scores is the best strategy since the overlap
between impostor and real client access classes is lower than for ISV and GMM.
The small overlap can be explained by the fact that the scoring methods used for
TV are significantly different from the ones used for ISV and GMM. This is sup-
ported by the observation that ISV and GMM scores are more correlated (linear
distribution of the points) than TV and ISV scores (more wide-spread distribu-
tion).

In Table 9 we present the relative common error (RCE) of all of the multi-
algorithm fusion systems. Apparently, ISV and TV have the lowest percentage of
common errors: RCE = 31.6%, followed by TV and GMM with: RCE = 35.4%,
while ISV and GMM have the highest common error: RCE = 54.7%. This result
confirms that TV is the most helpful system for multi-algorithm fusion. Another
finding of this table is that the fusion of the three systems is better (RCE = 21.7%)
than the fusion of any two systems. It can also be seen that having a low percent-
age of relative common errors leads to an improved HTER, see row 3 of Table 9.
Similar finding are obtained for Face and the bi-modal fusion systems as given in
Table 9, though the improvement is not as significant as for Speaker since TV for
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Figure 8: SCORE SCATTER PLOTS. This figure displays scatter plots of scores obtained with
each two Speaker systems.

Table 9: MULTI-ALGORITHM FUSION. This table displays common errors (CE), relative
common errors (RCE) and half total error rates (HTER) on the Male mobile-0 protocol.

Measure | GMM & ISV | GMM & TV | ISV& TV | GMM & ISV & TV
E CE 9994 4827 4676 3253 |
S | RCE (%) 65.05 4425 42.18 32.39 2
& | HTER (%) 10.17 9.36 7.90 7.89 3
R CE 5309 4371 2675 2385 4
2 | RCE (%) 79.95 45.56 40.29 35.92 5
= | HTER (%) 6.47 7.72 6.20 6.06 6
3 CE 2899 1509 1001 361 7
£ | RCE %) 73.13 40.55 26.90 23.14 8
& | HTER (%) 2.36 2.76 1.99 1.89 9

Face is not as good as for Speaker.

To better understand why multi-algorithm fusion significantly improves the
results for Speaker, we group the audio probe files into three clusters depending
on their duration as seen in Table 9(b). Fig. 9(a) displays the HTER of each of the
groups. Although S-ISV is the best average system, Fig. 9(a) shows that S-TV is
better for short duration (< 5 s) segments. Interestingly, S-GMM is performing
better on relatively long duration (> 10 s) segments (this might be due to threshold
tuning on DEV). Hence, S-TV performs better on the 22.6% audio samples that
are less than 5s, while S-GMM leads on the 26.6% of audio samples longer 10s.
We believe that these two observations are the major reasons for multi-algorithm
fusion providing a significant boost in performance for Speaker.
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Figure 9: DURATION IMPACT ON MODELLING ALGORITHMS. This figure shows performances
of the Speaker algorithms on different speech durations and the distributions of speech
duration of the Male mobile-0 protocol.
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Comparison with existing work. By performing bi-modal multi-algorithm fusion
we are able to develop a state-of-the-art bi-modal, face and speaker, authentication
system. In Fig. 10 we compare our system against the results obtained in [2,
8] on the same mobile-0 protocol. This figure shows that we obtain a relative
improvement of 35% and 27% on Female and Male, respectively, compared to the
results of [8].

Speaker: results on mobile-0

B McCool et al. [2]
2001 Bl Motlicek et al. [8]
[0 B-ALL

bLL

DEV-Female = EVAL-Female DEV-Male EVAL-Male

Figure 10: COMPARISON WITH EXISTING WORK. This figure displays HTER of B-ALL, [2]
and [8] on the mobile-0 protocol.

5.5. Comparison of the protocols

Fig. 11 displays the impact on enrolment condition mismatch on speaker, face
and bi-modal authentication. It shows that GMM and ISV are significantly af-
fected by changing the enrolment conditions (between mobile-1 and laptop-1),
whereas TV seems to be more robust to these changes. Indeed, for Male clients
the F-GMM, S-GMM and B-GMM systems have a relative performance degra-
dation of 54%, 33% and 67%, respectively, while F-ISV, S-ISV and B-ISV loose
47%, 30% and 86%, respectively. By contrast the F-TV, S-TV and B-TV systems
have a relative performance decrease of only 9%, 21% and 35%, respectively. An-
other interesting result is that the degradation of Face systems is higher than on
Speaker systems. This shows that Face is more affected by condition mismatch
of high versus low image quality (see Fig. 3) and is an issue that deserves further
investigation.

On the other hand, adding enrolment data as done in the laptop-mobile-1 pro-
tocol improves authentication in all systems of Speaker and Face, even though
the additional laptop data is quite different to the mobile phone data. In Figs. 11(a)
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Figure 11: BEHAVIOUR ON THE DIFFERENT PROTOCOLS. This figure shows HTER of the
modelling techniques across the different protocols.

and 11(b) the laptop-mobile-1 protocol outperforms the other protocols through-
out. Interestingly, the bi-modal systems are reaching a performance plateau, since
the results on the laptop-mobile-1 are comparable to the results on mobile-0 and
mobile-1 protocols (see Fig. 11(c)).

5.6. Additional training data

In this section we examine two issues that relate to the limited amount of train-
ing data available with MOBIO. These issues are: 1) the use of gender-independent
models versus gender-dependent models and 1i) the performance difference be-
tween ISV and TV. For speaker authentication, gender-dependent models are usu-
ally derived as they provide improved performance [31, 26]. However, for MO-
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Table 10: GENDER-INDEPENDENT VS. GENDER-DEPENDENT TRAINING. This table re-
ports EER (%) on DEV and HTER. (%) on EVAL on protocol mobile-0 using gender-
independent (GI) or gender dependent (GD) training.

Modelling Scoring Gl Female GD
technique technique DEV T BEVAL | DEV | EVAL
° F-ISV linear scoring + zt-norm 5.41 10.63 6.52 12.63 1
S F-TV cosine scoring 10.95 16.16 10.53 16.22 3
= F-ALL logistic regression 5.03 11.62 4.75 9.90 3
E S-1SV linear scoring + zt-norm 12.22 16.23 12.55 13.50 4
3 S-TV PLDA 12.59 17.36 20.83 22.04 5
& S-ALL logistic regression 9.21 14.65 11.53 13.70 6
3 B-ISV linear scoring + zt-norm 2.01 7.16 3.32 8.48 7
g B-TV PLDA (speaker) + cosine (face) 4.29 9.93 6.61 11.39 8
3 B-ALL logistic regression 143 6.30 2.28 7.92 9

BIO we found that with limited data, gender-independent models provided similar
or better performance, see Table 10. In addition, current state-of-the-art speaker
authentication systems use TV [9], but in our experiments TV does not provide
better results than ISV. We attribute this lack of performance to the limited amount
of data available with MOBIO. To explore both of these issues we use an external
database to train gender-dependent models including: UBM, subspaces (subspace
U for ISV and subspace T' for TV), whitening, LDA and WCCN.

We conducted an experiment with additional audio data to train a gender-
dependent Female model. The external data were collected from the Voxforge
speech dataset.* The new audio training set contains 78 female clients, 65 of
which belong to Voxforge.

The impact of extending the training data is examined in Table 11 for TV
modelling. It can be seen that using more data reduces the EER and HTER from
20.3% and 21.1% to 14.8% and 18.7% respectively. It also shows that the main
improvement is obtained on PLDA (row 1) with a relative performance gain of
18% (The HTER drops from 41.5% to 33.8%). Table 11 also shows that the
duration variability [40] described in Section 2.2.3 is also helpful in the case of
additional training data. In contrast to the performance gains of S-TV, S-ISV is
not improved by adding external training data as can be seen in Fig. 12.

“http://www.voxforge.org This dataset was selected because of its similarity with
MOBIO (short duration segments, different sessions of the same client, etc.). However, since the
dataset is mainly dedicated to speech recognition (ASR) and is updated on the fly, it tolerates errors
especially in the client identities, which could limit its usability for speaker authentication.
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Figure 12: EXTENDED TRAINING DATA. This figure shows the impact of extended training
data on the Female mobile-0 protocol using gender-dependent (GD) training.

Table 11: EXTENDED TRAINING SETS IN I-VECTORS PREPROCESSING. This table provides
EER (%) on DEV and HTER (%) on EVAL for different combinations of i-vector pre-
processing steps on the Female mobile-0 protocol using gender-dependent (GD) training.

. . MOBIO Extended

Scoring 1—vectqr training set training set

method | processsing DEV | EVAL | DEV | EVAL
- 40.48 41.47 33.61 33.84 1
Whitening 22.07 21.23 16.93 20.09 | 2

PLDA | Whitening +Lnorm 25.36 23.50 18.16 2064 | 3
Whitening + Lnorm + LDA 22.17 23.01 16.24 19.20 4
Whitening + Lnorm + LDA + WCCN 20.32 21.24 14.77 18.66 5
Whitening + Lnorm + LDA + WCCN + DV | 20.83 22.04 14.65 17.75 | ¢
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6. Conclusions

In this paper, we studied the problem of face, speaker and bi-modal authenti-
cation in the challenging mobile environment. The study was carried out on the
MOBIO database, for which we proposed three new protocols. One of these new
protocols, laptop-1, presents a significant challenge for both speaker and face
authentication as there is a significant mismatch between enrolment and test con-
ditions. Empirically, we found that both face and speaker authentication are ad-
versely affected by this condition mismatch with the relative performance of the
best uni-modal and uni-algorithm systems F-ISV and S-ISV degrading by 47%
and 37%, respectively, for Male trials. The impact of this condition mismatch
was extended to the bi-modal system, whose relative performance degraded by as
much as 80% for Male trials.

We also examined several aspects of bi-modal and multi-algorithm fusion in
the challenging mobile environment. We developed a state-of-the-art bi-modal
multi-algorithm fusion system (B-ALL) that outperformed the state-of-the-art
system of [8] obtaining a relative performance improvement of 35% and 27% on
Female and Male trials, respectively. We found that multi-algorithm fusion pro-
vides a consistent performance improvement, particularly for the audio modality
with average performance improvements of 3% for face authentication and 19%
for speaker authentication across Male and Female trials for all of the protocols.
In addition to this we showed empirically that ISV consistently outperforms not
only GMM, but also TV with a limited amount of training data for both face
and speaker authentication. We further explored this performance difference and
found that TV provided improved performance for short utterances (less than 5 s)
and ISV provided better performance for medium length utterances (between 5 s
and 10 s).
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