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Convolutional Pitch Target Approximation Model

for Speech Synthesis

Xingyu Na, and Philip N. Garner

Abstract

In this paper, we investigate pitch contour modelling in speech synthesis based on segmental units. A convolu-

tional pitch target approximation model is proposed. This model allows jointly stochastic modelling of framewise

pitch and pitch contour of longer units, of which the intuitive relations are revealed by a convolutional target

approximation filter. The pitch contour is stylized by a linear representation called pitch target. In synthesis stage,

the likelihood of the framewise model and the pitch target model are jointly maximized using a Toeplitz matrix

representing the discrete convolutional filter.

Index Terms

Pitch modelling, speech synthesis, pitch target approximation.

I. INTRODUCTION

We are interested in general in modelling the prosodic contour of synthetic speech for statistical text to

speech synthesis (TTS). In particular, we seek a model that allows the prosody to be modified in order to

convey a particular intention. For instance, the dialogue component of a conversational system may wish

to choose intonation indicative of a question rather than a statement, or to emphasise a given phrase. This

in turn implies control over pitch, intensity and duration of speech segments. In this letter we focus on

pitch. Two issues are apparent:

1) Pitch contours associated with emotion are supra-segmental; they span phonemes.

2) To respond to high level semantic cues, the model should have physical meaning.

From a superpositional point of view, additive pitch models based on a hierarchical prosody structure

decompose pitch contour into various levels and model them separately [1]. Other than using additive

components, contour parameterization was an alternative approach, such as discrete cosine transform

(DCT) [2]. By changing the analytical granularity, it can also be used on a hierarchical structure [3].

However, neither additive model nor contour parameterization reveals the intuitive relations between the

framewise pitch and the segmental unit contour.

The Parallel ENcoding and Target Approximation (PENTA) model [4] was proposed to study the

linguistic phenomena observed in an acoutic sense. Assuming that the pitch targets are sequentially

assigned at syllable boundaries before being realized, they are defined as the straight line,

u(t) = mt+ b. (1)

The parameters, m and b, have explicit physical meanings, i.e. target slope and target height.

Prior to any implementation, we note that evaluation of the proposed model in a supra-segmental sense

is difficult; it involves rather subjective tests. In order to validate the model, we make use of Mandarin.

Being tonal, Mandarin has two advantages for this:

1) Pitch carries syntactic as well as semantic meaning; the former can be evaluated more objectively.

2) The tonality is segmental; this eases implementation in a HMM based TTS system.

In the following sections, we describe a stochastic pitch model based on a contour approximation

simulated by a discrete convolutional filter. We then validate the model qualitatively by using it to generate

(tonal) pitch contours for Mandarin speech. The method is found to generate pitch with the right syntactic

meaning, albeit with a slight accent. We conclude that the model merits further investigation.
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Fig. 1. Illustrative test of the discrete version of the target approximation filter on a Mandarin utterance. Dot lines represent the syllable

boundaries. Target parameters are extracted by minimizing the reconstructive error.

II. CONVOLUTIONAL TARGET APPROXIMATION FILTER

The generation of pitch contour can be viewed as successively approaching a sequence of assigned

pitch targets. Linear representation of pitch targets has been proven to be adequate for realizing natural

prosody [5]. To reconstruct the pitch contour from that, we parameterize the pitch realization process as

fu(t) = u(t) ∗ h(t), (2)

in which the convolutional form allows fast digital implementation.

Zhang et al. [6] designed an FIR filter to reconstruct pitch contour from straight target, which is similar

to a Gaussian filter.

hG(t) =

√
π

α
· exp

(

−π
2

α2
t2
)

(3)

The Fujisaki model, also known as the command-response (CR) model or the generation process model

in the field of prosody research, assumes that the pitch contour is the superposition of phrase and

accent components [7], which are modelled as the output of second-order critically-damped filters with

exponential form [8].

hE(t) = α2t exp(−αt) (4)

In a preliminary experiment, we tested two filters with artificial pitch targets. The output of the exponential

filter asymptotically approaches the target till the end of the target, while that of the Gaussian filter

approaches in the middle of it. Several studies [9, 10] suggest that the target approximation process of

pitch should be sequential and end at the boundaries. Therefore, the exponential filter is more suitable for

the target approximation model.

III. DISCRETE CONVOLUTIONAL FILTER

To introduce the target approximation into stochastic models, we need to derive the discrete version of

the convolutional filter. The Laplace transform of exponential filter is

FE(s) = L(hE(t))(s)

=

∫ +∞

0

α2t exp(−αt) · exp(−st) dt

=
α2

(s+ α)2

(5)
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First, transform the s-plane filter response function to the z-plane using first-order Padé approximant

s ≈ 1− z−1

t0
(6)

where t0 is the sampling period of the discrete-time representation. The inverse system in the z-domain

is then

H−1
E (z) = ψ2 − 2ψ(ψ − 1)z−1 + ψ2z−2 (7)

where ψ = 1 + 1/(αt0). Hence, the backward difference form is

u[t] = a2fu[t− 2] + a1fu[t− 1] + a0fu[t] (8)

where
a0 = ψ2,

a1 = −2ψ(ψ − 1),

a2 = ψ2.

(9)

Hereafter, we use t to denote the discrete time. Given Eq.8, the pitch fu , (fu[t], · · · , fu[T ])T can be

written in terms of u, such that

u = Afu, (10)

and to introduce the target as a constraint in the stochastic model, we rewrite the equation as

fu = A−1u, (11)

where

A ,













a0 O
a1 a0
a2 a1 a0

. . .
. . .

. . .

O a2 a1 a0













(12)

is a Toeplitz matrix representing the inverse of the discrete target approximation filter. To illustrate the

approximation performance of the discrete convolution, we extract the line parameters m and b using a

steepest descent gradient algorithm to minimize the root mean square error (RMSE), defined as

Err =

(

1

T

T
∑

t=1

(f [t]− u[t])2

)1/2

. (13)

The pitch contour was estimated by STRAIGHT-TEMPO [11]. One sample utterred by a female speaker

is shown in Fig .1. As suggested by Kameoka et al. [8], the approximation strength parameter α was set

to be a constant for a given speaker. In this case, based on the grid search in term of the average RMSE

between the original and the reconstructed pitch of 100 testing utterances, we set α = 30.8. The pitch

targets generally identify the shape of the pitch contours.

IV. STOCHASTIC MODELLING

A meaningful stochastic model of pitch target assignment should satisfy the following requirements:

1) Targets are represented by a piecewise linear function.

2) Target slope and height are constants within a syllable.

3) The offset of one target is followed by the onset of the next target.

Assuming the pitch targets are the emissions of a set of HMMs which satisfy the above constraints,

the topology is as shown in Fig.2. The segmental units are modelled by HMMs with one emitting state

using single Gaussian distribution. gk represents the stochastic distribution of the target model of the kth

segmental unit in the utterance, while fk denotes the corresponding emitted pitch target.
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Fig. 2. Pitch target modelling using HMM considering constraints of target assignment.

A. Likelihood function

In this model, the output target of unit k at time t is observed given the hidden variable with additive

white Gaussian noise.

ok[t] , uk[t] = µgk [t] + ǫgk [t] (14)

Let ǫgk [t] ∼ N (0, σ2
gk
) then

ok[t] ∼ N (µgk [t], σ
2
gk
) (15)

where µgk [t] = mgkt+ bgk and σ2
gk

are respectively the mean and variance of the target model gk.

The free parameters in this model consist of the slope of the pitch target mgk , the height of the pitch

target bgk , and the variance of the output distribution, σ2
gk

. Here we use Θg to denote the free parameter

set of pitch target model as

Θg , {Mg,Bg,Σg} (16)

where Mg = (mg1 , . . . ,mgK )
T, B = (bg1 , . . . , bgK )

T, and Σg = (σ2
g1
I, . . . , σ2

gK
I). g = (g1, . . . , gK)

represents the model sequence of the segmental units. From Eq. 15 and Eq. 16, we define

u ∼ N (µg,Σg) (17)

where u , (u[1], . . . , u[T ])T and µg , (µ[1], . . . , µ[T ])T. Overall, the probability density function of

target model parameters can be written as

p(u | Θg) = N (u;µg,Σg)

=
1

(2π)T/2|Σg|1/2
exp

(

−1

2
(u− µg)

TΣ−1
g (u− µg)

)

(18)

where u = Af reveals the underlying relationship between variable u and f as defined by Eq. 10.

B. Maximum likelihood pitch generation

In HMM-based speech synthesis, pitch is modelled using framewise multi-space distribution HMMs.

To capture the temporal dependency, static features are generated considering the constraint imposed by

dynamic window coefficients [12]. The probability density function of pitch model is [13]

p(Wf | Θq) =

1

(2π)3T/2|Σq|1/2
exp

(

−1

2
(Wf − µq)

TΣ−1
q (Wf − µq)

)

(19)

where Θq represents the framewise model parameter set of state sequence q, and W is the window

coefficient matrix given by

W = [W1,W2, . . . ,WT ]
T ,

Wt =
[

w
(0)
t ,w

(1)
t ,w

(2)
t

]

.
(20)
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Fig. 3. Joint pitch model of a segmental unit, assuming the framewise model has three emitting states.

w
(d)
t is the window coefficient vector for calculating the dth order dynamic feature of frame t, which only

has non-zero values on the tth and adjacent elements, depending on the window length.

To combine the framewise model with the segmental model, the state sequence of the framewise model

and that of the pitch target model are aligned in the synthesis stage. f is determined by maximizing the

joint likelihood considering dynamic features and target model as

f̂ = argmax
f
p(Wf | Θq)p(u | Θg) (21)

used for imposing p(u | Θg) as a constraint term in parameter optimization. The topology is shown in

Fig.3. A new set of joint distributions are formed by imposing the aligned target model. This generative

model of pitch contour describes not only the windowed pitch distribution at each frame, but also the

target distribution of the current segmental unit.

Ignoring the parts independent of f , the objective function to be maximized is defined as the log

likelihood function
LΘq,Θg

= log p(Wf | Θq) + log p(u | Θg)

∝ −1

2

(

f⊤W⊤Σ−1
q Wf − 2µ⊤

qΣ
−1
q Wf

)

− 1

2

(

f⊤A⊤Σ−1
g Af − 2µ⊤

gΣ
−1
g Af

)

(22)

Taking the first derivative gives

∂LΘq,Θg

∂f
=

− 1

2

(

∂

∂f

(

fTWTΣ−1
q Wf

)

− 2
∂

∂f

(

µ
T

qΣ
−1
q Wf

)

)

− 1

2

(

∂

∂f

(

fTATΣ−1
g Af

)

− 2
∂

∂f

(

µ
T

gΣ
−1
g Af

)

)

= −Rf + r

(23)

where
R = WTΣ−1

q W +ATΣ−1
g A

r = WTΣ−1
q µq +ATΣ−1

g µg

(24)

Letting ∂Lθq ,θu/∂f = 0, we find

Rf̂ = r. (25)

By solving Eq. 25, the maximum likelihood pitch contour is generated. This equation can be solved

by decomposing R into triangular matrices and then using the forward-backward Gaussian substitution

method [13].
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Fig. 4. A sample of pitch generation. The thick solid line is the original pitch of the testing utterance. The dash line is the pitch contour

generated jointly by the framewise pitch model and the pitch target model. The thin solid line and shadow show the distributions of the

targets predicted by the decision tree. The dot lines show the syllable boundaries.

TABLE I

WAVEFORMS DEMONSTRATING SYNTHESISER PERFORMANCE

Female speaker

Original BIT_ASCCD_f001_012_06_05.ori.wav

Synthsized BIT_ASCCD_f001_012_06_05.tgt.wav

C. Illustrative Sample

To demonstrate the convolutional pitch model, both a framewise acoustic model and a pitch target

model are trained using a subset of the Mandarin corpus ASCCD [14]. A decision tree is used to

cluster the target model using the same lexical features as framewise models. Fig. 4 shows a testing

utterance (BIT_ASCCD_f001_012_06_05). The generated pitch approaches the natural contour while

following the targets predicted by decision tree. Most of the pitch dynamic ranges are covered by the

target distributions.

Besides tone, syllabic identity is also important. The target model allows unified acoustic modelling

by joining these two factors. The performance is evidence from the waveforms included with in this

submission, generated using the testing data in ASCCD, summarised in Table I. Judged by 5 native

Mandarin speakers, although with a sligth accent, the speeches sound syntactically right. Hence, we

believe it will work suprasegmentally.

V. CONCLUSION

In this letter, it has been shown that the pitch target model and associated discrete convolutional filter

allow a unified framework to generate pitch contours based on knowledge of segmental units. Both discrete

approximation filter and the resulting pitch model has been validated intuitively by real testing data. The

tests on Mandarin speech synthesis provided right syntactic meaning. Therefore, this model can be used

as segmental unit models in pitch modification scenarios, such as emotion adaptation.

The model as described, can be developed into multiple levels of segmental units as the DCT model by

Qian et al. [3]. Incorporated with suitable syntactic and semantic cues, this model allows explicit prosody

control. However, current implementation uses discontinuous pitch, which is not suitable for prosody

modelling. Simple pitch interpolations generate quite different targets when there is a long unvoiced

segment within the unit. To address this issue, incorporating the continuous pitch estimator by Garner et

al. [15] is worth trying.
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a pitch–adaptive time–frequency smoothing and an instantaneous–frequency–based F0 extraction:

Possible role of a repetitive structure in sounds,” Speech Communication, vol. 27, no. 3-4, pp. 187–

207, April 1999.

[12] H. Zen, K. Tokuda, and A. W. Black, “Statistical parametric speech synthesis,” Speech Communica-

tion, vol. 51, no. 11, pp. 1039–1064, November 2009.

[13] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura, “Speech parameter generation

algorithms for HMM-based speech synthesis,” in Proceedings of the IEEE International Conference

on Acoustics, Speech and Signal Processing, June 2000, pp. 1315–1318.

[14] Phonetics Lab, “ASCCD: Read discourse corpus with prosodic, segmental and syntactic annotation,”

http://ling.cass.cn/yuyin/english/resc6.htm, Institute of Linguistics, CASS.

[15] P. N. Garner, M. Cernak, and P. Motlicek, “A simple continuous pitch estimation algorithm,” IEEE

Signal Processing Letters, vol. 20, no. 1, pp. 102–105, January 2013.


