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Abstract

In hybrid hidden Markov model/artificial neural networks

(HMM/ANN) automatic speech recognition (ASR) system, the

phoneme class conditional probabilities are estimated by first

extracting acoustic features from the speech signal based on

prior knowledge such as, speech perception or/and speech pro-

duction knowledge, and, then modeling the acoustic features

with an ANN. Recent advances in machine learning techniques,

more specifically in the field of image processing and text pro-

cessing, have shown that such divide and conquer strategy (i.e.,

separating feature extraction and modeling steps) may not be

necessary. Motivated from these studies, in the framework of

convolutional neural networks (CNNs), this paper investigates

a novel approach, where the input to the ANN is raw speech

signal and the output is phoneme class conditional probabil-

ity estimates. On TIMIT phoneme recognition task, we study

different ANN architectures to show the benefit of CNNs and

compare the proposed approach against conventional approach

where, spectral-based feature MFCC is extracted and modeled

by a multilayer perceptron. Our studies show that the proposed

approach can yield comparable or better phoneme recognition

performance when compared to the conventional approach. It

indicates that CNNs can learn features relevant for phoneme

classification automatically from the raw speech signal.

Index Terms: Automatic speech recognition, Artificial neu-

ral networks, Convolutional neural networks, Phonemes, Data-

driven feature extraction

1. Introduction

Hidden Markov model (HMM) based automatic speech recog-

nition (ASR) system, similar to conventional pattern recogni-

tion system, breaks the problem into several sub-tasks: fea-

ture extraction, modeling and decision making, and optimizes

them in independent manner. For instance, acoustic features

such as, mel frequency cepstral coefficients (MFCC), percep-

tual linear prediction (PLP) cepstral coefficients, linear predic-

tion cepstral coefficients are extracted based on prior knowl-

edge about speech perception and/or speech production. These

features are then usually modeled by either Gaussian mixture

models (GMM) or artificial neural networks (ANNs) to esti-

mate state emission distribution. This step is often referred to

as acoustic modeling. The decision making, i.e. recognition,

step integrates the acoustic model, lexical knowledge and lan-
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guage model/syntactical constraints (again estimated indepen-

dently on text data) to decode the test utterance.

In recent years, in the field of computer vision [1] and text

processing [2] studies on sequence recognition problems similar

to ASR have shown that such divide and conquer strategy may

not be necessary. More precisely, these studies have shown that

it is possible to build end-to-end systems (fed with raw input

data) by using architectures composed of many layers, where

each layer learns features (i.e. abstract representations), that

are relevant to the problem of interest.

Inspired from these studies, the present paper, as a first

modest step, investigates estimation of phoneme class condi-

tional probabilities from raw speech signal using convolutional

neural networks1 (CNN) [4] for phoneme sequence recogni-

tion. In the framework of hybrid HMM/ANN system, we com-

pare the proposed approach with the conventional approach

of extracting spectral-based acoustic feature extraction and

then modeling them by ANN. In addition, we also propose

a discriminative decoding algorithm based on a simple condi-

tional random field (CRF). Experimental studies conducted on

TIMIT corpus show that (a) the proposed approach can yield

a phoneme recognition system that is similar to or better than

the system based on conventional approach and (b) CRF-based

decoding yields better performance than conventional joint like-

lihood based decoding.

The remainder of the paper is organized as follows. Section

2 presents a brief survey of related literature. Section 3 presents

the architecture of the proposed system. Section 4 presents the

experimental setup and Section 5 presents the results. Section 6

presents an analysis, Section 7 provides a discussion and Sec-

tion 8 concludes the paper.

2. Related Work

Despite the success of spectral-based acoustic features, there

has been interest in modeling raw speech signal for speech

recognition. In one of the earliest work, Poritz proposed an

approach where the speech signal is modeled by a linear pre-

diction HMM [5]. This work was later revisited as switch-

ing autoregressive HMM [6], and more recently in the frame-

work of switching linear dynamical systems [7]. Experi-

ments on isolated word/digit recognition task have shown that

these approaches can yield performance comparable to stan-

dard cepstral-based HMM system in clean conditions, and bet-

ter performance under noisy conditions [7]. In [8], an ap-

proach to model raw speech signal was proposed. In this

approach, the signal statistical characteristics are modeled as

1In speech literature, CNN is referred to as time-delay neural net-
work [3].



the output of a filter excited by a Gaussian source. The po-

tential of the approach was demonstrated on classification of

speaker-dependent discrete utterances consisting of 18 highly

confusable stop consonant-vowel syllables. More recently,

combination of raw speech and cepstral features in the frame-

work of support vector machine has been investigated for noisy

phoneme classification [9].

3. Proposed system

Compared to classical approaches, convolutional neural net-

works alleviate the problem of designing/choosing the right fea-

tures for a particular task of interest. These networks can be fed

with raw signal, and learn low-level or mid-level features in a

end-to-end manner [10, 11].

The proposed system is composed of two parts: the estima-

tion of the phoneme class conditional probabilities and the de-

coding of the sequence. The first part is performed by a CNN,

which takes raw speech signal as input. For second part, a sim-

ple CRF will be used to decode the sequence.

3.1. Convolutional Neural Network

The network is given a window of raw input signal and com-

putes the conditional probability p(i|x) for each phoneme class

i. One class is then attributed to an example by computing

argmax(p(i|x)). These type of network architectures are com-

posed of several filter extraction stages, followed by a classifi-

cation stage. A filter extraction stage involves a convolutional

layer, followed by a temporal pooling layer and an non-linearity

(tanh()). Our optimal architecture included 3 stages of filter ex-

traction (see Figure 1). Signal coming out of these filter stages

are fed to a classification stage, which in our case was a one-

hidden layer MLP. The last layer is a softmax layer, which com-

putes the conditional probability.

3.1.1. Convolutional layer

While “classical” linear layers in standard MLPs accept a fixed-

size input vector, a convolution layer is assumed to be fed with

a sequence of T vectors/frames: X = {x1 x2 . . . xT }. A

convolutional layer applies the same linear transformation over

each successive (or interspaced by dW frames) windows of kW

frames. E.g, the transformation at frame t is formally written as:

M







xt−(kW−1)/2

...

xt+(kW−1)/2






, (1)

where M is a dout × din matrix of parameters. In other words,

dout filters (rows of the matrix M) are applied to the input se-

quence. An illustration is provided in Figure 2.

3.1.2. Max-pooling layer

These kind of layers perform local temporal max operations

over an input sequence, as shown in Figure 3. More formally,

the transformation at frame t is written as:

max
t−(kW−1)/2≤s≤t+(kW−1)/2

f
s
i ∀i (2)

These layers increase the robustness of the network to slight

temporal distortions in the input.

Convolution

M × ·

din

dout

kWdW

Figure 2: Illustration of a convolutional layer. din and dout are

the dimension of the input and output frames. kW is the kernel

width (here kW = 3) and dW is the shift between two linear

applications (here, dW = 2).

Max-Pooling

max(·)

d

d

kW

Figure 3: Illustration of max-pooling layer. kW is the number

of frame taken for each max operation and d represents the

dimension of input/output frames (which are equal).

3.1.3. SoftMax layer

The Softmax [12] layer interprets network output scores fi(x)
as conditional probabilities, for each class label i:

p(i|x) =
efi(x)

∑

j

e
fj(x)

(3)

3.1.4. Network training

The network parameters θ are learned by maximizing the log-

likelihood L, given by:

L(M1, ...,ML, θ) =

N
∑

n=1

log(p(in|xn, θ)) (4)

for each input x and label i, over the whole training set, with re-

spect to the parameters of each layer Ml. Defining the logadd

operation as: logaddi(zi) = log(
∑

i e
zi), the likelihood L can

be expressed as:

L = log(p(i|x)) = fi(x)− logadd
j

(fj(x)) (5)

where fi(x) described the network score of input x and class

i. Maximizing this likelihood is performed using the stochastic

gradient ascent algorithm [13].
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Figure 1: Convolutional Neural Network. Several stages of convolution/pooling/tanh might be considered. Our network included 3

stages.

3.1.5. Designing and tuning the network

The number of convolution and pooling layers, as well as the

size of the kernels kW and the shift dW are all chosen by vali-

dation. It is worth mentioning that for a given input window size

over the row signal, the size of the output of the filter extraction

stage will strongly depend on the number of max-pooling lay-

ers, each of them dividing the output size of the filter stage by

the chosen pooling kernel width. As a result, adding pooling

layers reduces the input size of the classification stage, which

in returns reduces the number of parameters of the network (as

most parameters do lie in the classification stage).

3.2. Decoder

We consider a very simple version of CRFs, where we define

a graph with nodes for each frame in the input sequence, and

each label. This CRF allows to us to discriminatively train a

simple duration model over our network output scores. Transi-

tion scores are assigned to edges between phonemes, and net-

work output scores are assigned to nodes. Given an input data

sequence x and a label path on the graph y, a score for the path

can be defined:

s(x, y) =

T
∑

t=1

(

fyt(xt) +Ayt,yt−1

)

(6)

where A is a matrix describing transitions between labels and

fyt(xt) the network score of input x for class y at time t. Path

scores are interpreted as conditional probabilities, by applying

a softmax (see Section 3.1.3) over all possible paths. The CRF

transitions scores are then trained by maximizing the likelihood

over the training data, with a gradient ascent.

4. Experimental Setup

In this section we present the setup used for the experiments, as

well as the different features and the decoding algorithms.

4.1. TIMIT Corpus

The TIMIT acoustic-phonetic corpus consists of 3,696 training

utterances (sampled at 16kHz) from 462 speakers, excluding

the SA sentences. The cross-validation set consists of 400 ut-

terances from 50 speakers. The core test set was used to report

the results. It contains 192 utterances from 24 speakers, exclud-

ing the validation set. The 61 hand labeled phonetic symbols

are mapped to 39 phonemes with an additional garbage class,

as presented in [14].

4.2. Features

4.2.1. Raw

Features are simply composed of a window of the speech signal

(hence din = 1, for the first convolutional layer as shown in

Figure 1). The window is normalized such that it has 0 mean

and variance 1. Using raw data allows us to learn filters with

minimal priors.

4.2.2. MFCC

We also performed several experiments, with MFCC as input

features. They were computed (with HTK [15]) using a 25 ms

Hamming window on the speech signal, with a shift of 10 ms.

The signal is represented using 13th-order coefficients along

with their first and second derivatives, computed on a 9 frames

context (din = 39 for the first convolutional layer).

4.3. Network hyper-parameters

The hyper-parameters of the network were hand-tuned using

a cross-validation set. Ranges which were considered are re-

ported in Table 1.

Table 1: Network hyper-parameters

Parameter Range

Input window size (ms) 100-700

Kernel width (kW ) 1-9

Number of filters per kernel (dout) 10-90

Number of hidden units in the class. stage 100-1500

• Input window size: this parameter corresponds to the

context taken along with each example. In the raw fea-

ture experiment, it was set to 270 ms. For the MFCC

experiment, 30 frames were taken as context.

• In the raw case, the kernel width of the first, second and

third convolutional layers were set to 10, 5 and 9, re-

spectively. For MFCC experiments, they were set to 39,

5 and 7, respectively.

• Number of filters: all convolutions had 90 filters for the

raw experiments, and 80 for the MFCC experiments.

• The number of hidden units was set to 500.

• The MFCC-based networks had no pooling layer. We

found pooling operations were decreasing the perfor-

mance with these features, while they are crucial for raw

signal input experiments (see Section 6.1). This is not

surprising, as MFCCs are sufficiently engineered to work

well with simple network classifiers.

The experiments were implemented using the torch7 toolbox

[16]. As a comparison, an MLP architecture will also be tested.

It is composed of two layers. The hidden layer width was set to

500 units.
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Figure 4: Frequency responses of filters learned in the first convolutional layer.

4.4. Decoding

We used the simple CRF approach described in Section 3.2 as

decoding algorithm. We also report experimental results with a

standard HMM decoder, with constrained duration of 3 states,

and considering all phoneme equally probable.

5. Results

We propose to evaluate the network capacity to estimate condi-

tional probabilities by a phoneme sequence recognition experi-

ment on the TIMIT database. The results are presented in Table

2, in term of phoneme accuracy for the different features and

decoding scheme, along with the number of parameters. Us-

ing raw speech, the CNN architecture outperforms the baseline,

and the CRF approach increases the accuracy compared to the

HMM approach. Using MFCC features with the CNN architec-

ture yield similar performance as the raw features. The baseline

accuracy is consistent with other works, although a bit lower,

certainly due to the absence of supplementary processing, like

speaker-level mean variance normalisation in [17].

Table 2: Phoneme recognition accuracy on the core test set of

TIMIT corpus.

Features Arch. Decoding nbr. param. Test acc.

MFCC MLP HMM 196’040 66.65

Raw MLP HMM 740’540 38.91

Raw CNN HMM 720’110 67.88

Raw CNN CRF 69.47

MFCC CNN HMM 860’700 70.52

MFCC CNN CRF 71.80

6. Analysis

6.1. Advantage of max-pooling layers

We varied the number of pooling layers, to evaluate their contri-

bution in the overall performance of the architecture. The other

hyper-parameters were tuned such that the same input window

size was kept for each architecture. The output dimension of

each convolution were also tuned for each case (to reduce over-

fitting due to a too large number of parameters). The phoneme

accuracy of each architecture is reported in Table 3, using raw

features and HMM decoding, along with the number of param-

eters of the network. Clearly, adding max-pooling layer im-

proves the system performance while providing an easy way to

reduce the number of parameters (see Section 3.1.5).

Table 3: Max-pooling (MP) layers contribution

Number of Network Test

MP layers parameters Accuracy

3 303’460 67.60

2 380’660 67.18

1 507’860 67.14

0 593’460 64.96

6.2. Filters trained in the first layer

Figure 4 presents the response of five randomly chosen filters2.

Clearly, each filter responds to different frequencies of the input

signal. In our future work, we will investigate the relationship

between the filters learned and the task at hand.

7. Discussion

Using the CNN architecture with raw speech data shows a great

improvement compared to the classical MLP system, which

suggest that this architecture can indeed learn features. More-

over, it outperforms the baseline, with almost no pre-processing

on the data. These results suggest that deep architecture can

learn efficient features and more importantly, that it is possi-

ble to achieve similar performances than complex hand-crafted

features, which question their use.

When adding a decoder, the CRF approach seems to work

better than the generative HMM approach, even as the CRF has

no duration constraints, compared to the three-state duration

constraint applied on the HMM. It is still optimized indepen-

dently, but end-to-end training is possible with this framework,

and might lead to better performances.

8. Conclusions

In this paper, we proposed to use convolutional neural networks

to estimate phoneme class probabilities. Our system is able to

learn features by taking raw speech data as input and outper-

forms baseline systems. Moreover, using MFCC feature as in-

put yield comparable performances.

For future work, we plan to evaluate the robustness of our

architecture with studies in noisy conditions. Secondly, as this

work was intended as a first step for an end-to-end trained sys-

tem, we plan to develop such a system applying the Graph

Transformer Networks [18] approach, integrating the decoding

step in our network. From there, we will focus on developing

more specific applications, such as Spoken Term Detection.

2Responses from all filters can be found at
http://www.idiap.ch/%7Edpalaz/full-responses.pdf
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