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ABSTRACT

There is growing interest in using graphemes as subword units, especially in the context of the rapid development of hidden
Markov model (HMM) based automatic speech recognition (ASR) system, as it eliminates the need to build a phoneme
pronunciation lexicon. However, directly modeling the relationship between acoustic feature observations and grapheme states
may not be always trivial. It usually depends upon the grapheme-to-phoneme relationship within the language. This paper
builds upon our recent interpretation of Kullback-Leibler divergence based HMM (KL-HMM) as a probabilistic lexical modeling
approach to propose a novel grapheme-based ASR approach where, first a set of acoustic units are derived by modeling context-
dependent graphemes in the framework of conventional HMM/Gaussian mixture model (HMM/GMM) system, and then the
probabilistic relationship between the derived acoustic units and the lexical units representing graphemes is modeled in the
framework of KL-HMM. Through experimental studies on English, where the grapheme-to-phoneme relationship is irregular,
we show that the proposed grapheme-based ASR approach (without using any phoneme information) can achieve performance
comparable to state-of-the-art phoneme-based ASR approach.
Index Terms: Automatic speech recognition, hidden Markov model, Lexical modeling, Graphemes, Phonemes, Posterior
features, Kullback-Leibler divergence based HMM

1 Introduction

State-of-the-art automatic speech recognition (ASR) systems use phonemes as subword units and a pronunciation lexicon is
used to map orthographic transcription of words to sequence of phonemes. Thus, one of the primary resource required to build
a good ASR system is a well developed phoneme pronunciation lexicon. The development of phoneme lexicon requires some
minimum phonetic expertise and is usually a semi-automatic process.

An alternative to phonemes is graphemes1, which makes lexicon development easy [1, 2, 3], [4, Chapter 4], [5, 6, 7, 8, 9].
However, modeling the relationship between graphemes and standard acoustic feature observations, such as PLP cepstral
coefficients which capture phoneme related information (from envelop of short-term spectrum) is not always trivial. The
reason being grapheme-to-phoneme relationship depends upon the language. For language such as Spanish the relationship is
regular, while for language such as English the relationship is irregular. To overcome the problem of irregular relationship,
in literature modeling of context-dependent graphemes has been explored [1, 2, 3]. The implicit assumption here being that
relationship between context-independent graphemes and context-independent phonemes can be irregular, but relationship
between context-dependent graphemes and context-independent phonemes could be regular2. However, in case of English,
context-dependent grapheme based ASR systems have been still found to yield considerably lower performance when compared
to context-dependent phoneme based ASR systems [1, 2, 3, 5, 6].

Kullback-Leibler divergence based hidden Markov model (KL-HMM) is a recently proposed approach, where phoneme class
conditional probabilities estimated by artificial neural networks (ANN) are directly used as feature observations [12]. In a more
recent work, we showed that KL-HMM system is a HMM-based ASR system, where the relationship between physical/acoustic
states (modeled by ANN) and logical/lexical states (modeled by KL-HMM) is probabilistic [13]. Furthermore, we also showed
that KL-HMM approach is equally applicable to both HMM/Gaussian mixture model (HMM/GMM) system and hybrid
HMM/ANN system.

Building upon our recent interpretation of KL-HMM system, this paper presents a novel grapheme-based ASR approach
in which the probabilistic relationship between lexical units and acoustic states is modeled rather than the deterministic
relationship (as in standard HMM-based ASR system). The proposed approach is implemented in two stages. First a
crossword trigraph based HMM/GMM system is trained using state tying. The tied HMM states of this system are chosen as
the acoustic states and then the probabilistic relationship between context-dependent graphemes and acoustic states is learned
through KL-HMM approach. ASR studies conducted on English language show that the performance of grapheme-based ASR

1Graphemes are alphabets of a language.
2Indeed, grapheme-to-phoneme conversion systems exploit this notion by building a decision tree [10] or n-gram model [11].



can be significantly improved and close to state-of-the-art performance can be achieved. Most importantly, the improvement
in ASR accuracy is achieved with traditional trigraph modeling and without any phonetic knowledge.

The rest of the paper is organized as follows. In Section 2, we present the KL-HMM approach. The interpretation of
KL-HMM as probabilistic lexical modeling approach originally proposed in [13] is relatively new and is therefore presented
again for the sake of clarity in Section 3. Section 4 presents the experimental studies. Finally, in Section 5 we conclude.

2 KL-HMM

In KL-HMM approach [12], first the mapping between acoustic feature observations (xt) and phonemes (p1, · · · , pd, · · · , pD, D -
number of phoneme classes) is learned through a posterior probability estimator which estimates class conditional probabilities
of phonemes zt, given by,

zt = [z1t , · · · , z
d
t , · · · , z

D
t ]T

= [P (p1|xt), · · · , P (pd|xt), · · · , P (pD|xt)]
T (1)

We refer to zt as posterior feature. Generally an MLP is used to estimate posterior features. Later, the soft correspondence
between HMM states and phonemes (pd) is modeled by using posterior features zt as feature observations in HMM system.
Each HMM state i ∈ {1, · · · I} in KL-HMM is parameterized by a categorical distribution yi = [y1

i , · · · y
d
i , · · · , y

D
i ]T. The local

score S(yi, zt) at each HMM state i in case of KL-HMM system is the Kullback Leibler (KL) divergence between yi and zt,
i.e.,

S(yi, zt) =
D∑

d=1

z
d
t log(

zdt

yd
i

) (2)

The above equation represents the case where zt is the reference distribution and the local score is denoted as RKL. However,
given that KL-divergence is an asymmetric measure there are other possible ways to estimate the local score [12].

2.1 Training

The KL-HMM acoustic model is fully parameterized by Θ = {{yi}
I
i=1, {aij}

I
i,j=1} where each state i is represented by

categorical distribution yi, aij is the transition probability from state i to state j. Given a training set of N utterances,
where each training utterance n is a sequence of posterior features Z(n) = {z1(n), · · · , zt(n), · · · , zT (n)(n)} of length T (n),
the parameters Θ are estimated by Viterbi expectation maximization algorithm which minimizes the cost function,

min
Q∈Q

N∑

n=1

T (n)∑

t=1

[S(yqt , zt(n))− log aqt−1qt ] (3)

where zt(n) = [z1t (n), · · · , z
d
t (n), · · · , z

D
t (n)]T , Q denotes the set of possible HMM state sequences. More precisely, the training

process involves iteration over the segmentation and the optimization steps until convergence.

2.2 Decoding

The decoding is performed using standard Viterbi decoder. Given a sequence of posterior features Z = {z1, · · · , zt, · · · , zT }
and the trained parameters Θ = {{yi}

I
i=1, {aij}

I
i,j=1}, decoding involves recognition of the underlying hypothesis m̂:

m̂ = argmin
Q∈Q

T∑

t=1

[S(yqt , zt)− log aqt−1qt ] (4)

where Q denotes the set of possible state sequences allowed by the hypothesis m.

3 Probabilistic Lexical Modeling

KL-HMM until now has been investigated as an approach where a posterior probabilities of phonemes can be directly used
as feature observations in HMM system [12, 7, 8, 14, 9]. Recently, we showed that the KL-HMM can be seen as probabilistic
lexical modeling approach applicable to both HMM/GMM and hybrid HMM/MLP based ASR systems [13]. The interpretation
being relatively recent we present here again for the sake of completeness.



3.1 Standard HMM-based ASR

In HMM-based ASR, given the acoustic model, lexicon and language model, finding the most likely word sequence is achieved
by finding the most likely state sequence Q∗

Q
∗ = argmax

Q∈Q

P (Q,X|Θ) (5)

≈ argmax
Q∈Q

T∏

t=1

p(xt|qt,ΘA) · P (qt|qt−1,Θ) (6)

≈ argmax
Q∈Q

T∑

t=1

log p(xt|qt,ΘA) + logP (qt|qt−1,Θ) (7)

where Q denotes set of all possible HMM state sequences, Q = {q1, · · · qt, · · · qT } denotes a sequence of HMM states, T denotes
number of frames, and Θ = {ΘA,ΘL} denotes the set of parameters, more specifically acoustic model and lexical model
parameters set ΘA and language model parameters ΘL. Eqn. (6) results after i.i.d and first order Markov assumptions.
Usually, log p(xt|qt,ΘA) is referred to as local emission score and logP (qt|qt−1,Θ) is referred to as transition score.

In HMM/GMM system, the emission likelihood p(xt|qt,ΘA) is estimated using GMMs where as in hybrid HMM/ANN
system, the emission likelihood is estimated using ANN [15]. Though the literature is dominated by the approach of using
likelihood as local emission score, in theory, HMMs can be also trained and decoded using a posteriori probability estimate
P (qt|xt,ΘA) as local emission score [15]. We refer to the approach of using likelihood as local emission score as likelihood-based
ASR approach and the approach of using a posteriori probability as local emission score as posterior-based ASR approach.

In practice, in HMM-based ASR system there are two kinds of states, namely acoustic states denoted as qacot corresponding
to acoustic model and lexical states denoted as qlext corresponding to lexical model. For example, in a tied-state context-
dependent subword based ASR system the clustered or physical states are the acoustic states and the states of the context-
dependent subword model (e.g. /k/-/ae/+/t/) also commonly referred to as logical states are the lexical states. Let ΘA =
{θa, θl}, where θa denotes the parameters of acoustic model and θl denotes the parameters of lexical model. The acoustic
model parameters in the case of GMMs are the Gaussian means, variance and weights of each acoustic state. In standard
HMM-based ASR systems, the relationship between lexical states and acoustic states is one-to-one, i.e. deterministic. Thus,
θl consists of the set of subword units, pronunciation models of words and a table that maps lexical states (corresponding to
the subword units) onto acoustic states.

During both training phase and decoding phase, the emission likelihood is estimated by matching the acoustic state evidence
with the lexical model. This is trivial as the relationship between the acoustic states and the lexical states is one-to-one. More
precisely, given the one-to-one relationship, p(xt|q

lex
t = i,ΘA) = p(xt|q

aco
t = d, θa), where i ∈ {1, · · · I} here denotes a lexical

state, d ∈ {1, · · ·D} here denotes an acoustic state, I here denotes the number of lexical states and D here denotes the number
of acoustic states. Here after, for simplicity we will drop the notations for parameters.

3.2 KL-HMM as Probabilistic Lexical Model

The one-to-one relation between acoustic and lexical states makes the ASR system overly rely on lexical resources, i.e.,
subword units and pronunciation models. One way to overcome this is to model the probabilistic relationship between lexical
and acoustic states.

KL-HMM approach can be viewed as a posterior based ASR approach which replaces the deterministic map between lexical
and acoustic states in a standard HMM-based ASR system with a probabilistic map. This is achieved in two steps:

1. first, an acoustic state posterior probability estimator is trained which estimates zt = [P (qacot = 1|xt) · · ·P (qacot =
D|xt)]

T .

2. second, a KL-HMM system is trained using zt as feature observations. The states of second HMM represent lexical
states i.e., context-dependent subword units and are parameterized by {yi}

I
i=1 which model the probabilistic relation

between lexical and acoustic states, i e., yi = [P (qacot = 1|qlext = i) · · ·P (qacot = D|qlext = i)]T

If zt is estimated using ANN then KL-HMM can be seen as probabilistic lexical modeling applied to hybrid HMM/ANN
system [7], where as if zt is estimated using GMMs of clustered HMM states then it can be seen as probabilistic lexical modeling
applied to HMM/GMM system [13]. Furthermore, compared to standard ASR system which uses deterministic lexical model,
KL-HMM system does not changes the acoustic model complexity but only the lexical model complexity, where now θl consists
of now consists of subword unit set, pronunciation model of words and {yi}

I
i=1. For relations to other probabilistic lexical

modeling approaches and interpretation of previous work on KL-HMM [12, 7, 8, 14] the reader is referred to [13].
In our previous studies, we investigated probabilistic lexical modeling using KL-HMM approach for grapheme lexicon

in the framework of hybrid HMM/MLP-based ASR system [7, 8, 9], where acoustic states represent context-independent
phonemes and the lexical states represent context-dependent graphemes. The acoustic state probability zt estimator was
an MLP trained using in-domain or out-of-domain acoustic-phonetic resources. In following section, we show the potential
of probabilistic lexical modeling for grapheme-based ASR, where the acoustic states are derived from the data by modeling
context-dependent graphemes in the framework of conventional HMM/GMM system.



4 Experimental Setup and Results

In this section, we compare deterministic lexical modeling and probabilistic lexical modeling in the context of both grapheme-
based ASR and phoneme-based ASR.

ASR studies are conducted on DARPA Resource Management task [16]. The training set consists of 3’990 utterances
spoken by 109 speakers (approximately 3.8 hours speech data). The test set contains 1’200 utterances amounting to 1.1 hours
of speech data (formed by combining Feb’89, Oct’89, Feb’91 and Sep’92 test sets). The test set is completely covered by a
word pair grammar (perplexity 60) included in the task specification.

The phoneme lexicon was obtained from UNISYN dictionary [17]. About 35 words in phoneme lexicon have more than
one pronunciation. The grapheme lexicon was transcribed using 29 context-independent graphemes (which includes symbols
- and ’, and silence).

4.1 Deterministic Lexical Model based ASR System

We build crossword triphone and trigraph based HMM/GMM systems with decision tree based state tying using HTK
toolkit [18]. Each triphone or trigraph is modeled by 3 HMM states. The acoustic feature xt is the 39 dimensional PLP
cepstral feature. Phoneme-based HMM/GMM system uses phonetic question set where as grapheme-based HMM/GMM sys-
tem uses singleton question set. State tying resulted in 1611 clustered/acoustic states for phoneme-based system and 1536
clustered/acoustic states for grapheme-based system.

4.2 Probabilistic Lexical Model based ASR System

Given the clustered acoustic state models of the deterministic lexical model based system, training probabilistic lexical model
based system using KL-HMM approach involves,

1. estimation of acoustic state posterior feature zt = [z1t · · · z
d
t · · · z

D
t ]T assuming equal priors for the acoustic states,

z
d
t = P (qacot = d|xt) =

p(xt|q
aco
t = d)

∑D

j=1 p(xt|qacot = j)
(8)

where p(xt|q
aco
t = d) is the likelihood of acoustic state d, and D is the number of acoustic states.

2. and then, estimation of yi by KL-HMM approach using RKL as local score.

We train and test crossword triphone and trigraph KL-HMM systems where in both systems similar to HMM/GMM
system each subword unit is modeled by 3 states. The state tying is performed using the approach proposed in [14].

4.3 Systems

We build six systems, namely,

1. BASE-PHONE: phoneme-based ASR system with deterministic lexical model, where lexical states are triphones and
acoustic states are the 1611 clustered states.

2. BASE-GRAPH: grapheme-based ASR system with deterministic lexical model, where lexical states are trigraphs and
acoustic states are the 1536 clustered states.

3. PROB-PHONE: phoneme-based ASR system with probabilistic lexical model, where lexical states are triphones and
acoustic states are the 1611 clustered states of the system BASE-PHONE.

4. PROB-GRAPH: grapheme-based ASR system with probabilistic lexical model, where lexical states are trigraphs and
acoustic states are the 1536 clustered states of the system BASE-GRAPH.

5. PROB-PHONE-CROSS: phoneme-based ASR system with probabilistic lexical model, where lexical states are triphones
but the acoustic states are 1536 clustered states of the system BASE-GRAPH.

6. PROB-GRAPH-CROSS: grapheme-based ASR system with probabilistic lexical model, where lexical states are trigraphs
but the acoustic states are 1611 clustered states of the system BASE-PHONE.

System PROB-GRAPH-CROSS is somewhat similar to the grapheme-based ASR system presented in [7], in the sense
that both use phoneme information. More precisely, in [7] acoustic states are context-independent phonemes learned on either
in-domain data or out-of-domain data (using an MLP), where as in the system PROB-GRAPH-CROSS the acoustic states are
clustered context-dependent phonemes learned on the in-domain data (using GMMs). Furthermore, system PROB-GRAPH
derives the acoustic states from context-dependent graphemes, and thus does not use any phoneme information.



Table 1. word error rate (WER) for different systems
System Lexical Model WER

1 BASE-PHONE deterministic 4.2
2 PROB-PHONE probabilistic 2.9

3 BASE-GRAPH deterministic 6.3
4 PROB-GRAPH probabilistic 4.3

5 PROB-PHONE-CROSS probabilistic 3.5
6 PROB-GRAPH-CROSS probabilistic 4.1

4.4 Results

Table 1 presents the ASR performance of different systems in terms of word error rate (WER). It can be observed show that,

• the performance of the system BASE-PHONE with deterministic lexical modeling is comparable to 4.1% WER reported
in [19]. The performance of the system PROB-PHONE with KL-HMM approach is better than the system BASE-
PHONE. Result shows that probabilistic lexical modeling can improve state-of-the-art ASR performance by modeling
the pronunciation variation.

• the performance of the system BASE-GRAPH with deterministic lexical modeling is poor compared to the system
BASE-PHONE. However, the system PROB-GRAPH improves the performance of grapheme-based ASR and achieves
performance close to state-of-the-art phoneme-based ASR system BASE-PHONE.

The systems PROB-PHONE-CROSS and PROB-GRAPH-CROSS were built mainly for analysis purpose. It can be
observed that the performance of the system PROB-PHONE-CROSS is worse than the system PROB-PHONE but better
than the system BASE-PHONE. Furthermore, it can be seen that system PROB-GRAPH-CROSS improves over the systems
PROB-GRAPH, BASE-GRAPH and BASE-PHONE. This indicates that clustered states of the system BASE-PHONE and the
system BASE-GRAPH are modeling similar kind of acoustic information, and the poor performance of system BASE-GRAPH
is primarily due to the use of deterministic lexical model.

5 Conclusions and Future Work

In this paper, we proposed a novel grapheme-based ASR approach in HMM/GMM framework, in which the probabilistic
relationship between context-dependent graphemes (lexical states) and HMM tied states (acoustic states) is modeled. Through
experimental studies we showed that by modeling the probabilistic relationship, the approach is more robust against possible
pronunciation errors inherent in the grapheme lexicon. The performance of the proposed grapheme-based ASR system can be
significantly improved and close to state-of-the-art phoneme-based ASR performance can be achieved without using phoneme
information. There is further scope for improving the proposed grapheme-based ASR approach:

• The state clustering i.e., the acoustic states can be improved. For example, using phonetic question set [1, 2], or by
enhanced tree clustering [3] which allows parameter sharing across different polygraphs, or by clustering quintgraphs.

• in our previous work in the framework of hybrid HMM/ANN system [7], we observed that the performance of grapheme-
based ASR system can be improved by increasing the lexical model complexity without changing acoustic model com-
plexity. We can do similar thing in the present approach, where the lexical states model longer grapheme contexts such
as, quintgraphs and the acoustic states represent clustered trigraphs (as done in this paper).

We will scrutinize these possible improvements in our future work in addition to applying the approach to conversational
speech and accented speech.
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