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ABSTRACT

In this paper, the Kullback-Leibler Hidden Markov Model

(KL-HMMs) is applied for unsupervised diarization of speech.

A general approach to speaker diarization is to split the audio

into uniform segments followed by one or more iterations of

clustering of the segments and resegmentation of the audio.

In the Information Bottlneck (IB) approach to diarization,

short uniform segments are clustered using the IB criterion

followed by resegmentation with KL-HMM. The KL-HMM

approach has been shown to be an effective resegmentation

procedure in this respect. Thus, the potential of KL-HMM

as an independent diarization system is explored where the

uniform segments are clustered and segmented using a se-

quence of posteriors obtained from the audio with respect to

a Gaussian Mixture Model (GMM). The segmentation is per-

formed using KL divergence, while the Jensen Shanon (JS)

divergence is used for clustering. The diarization procedure is

stopped by applying a Normalized Mutual Information (NMI)

based criterion between two consecutive clustering outputs.

The proposed method is tested on the NIST RT datasets. A

best case relative improvement of 30% is observed in terms

of Speaker Error Rate (SER) on the NIST RT 09 dataset when

compared with the IB approach.

Index Terms— Kullback Leibler divergence, Hidden

Markov Models, speaker diarization

1. INTRODUCTION

A speaker diarization system segments an audio contain-

ing speech based on who spoke when [1]. The problem is

commonly approached in an unsupervised fashion where the

knowledge of the speakers is unavailable. Commonly used

approaches on recordings of meetings include the Hidden

Markov Model/Gaussian Model Mixture (HMM/GMM) ap-

proach [2, 3] and the Information Bottleneck (IB) approach

[4]. On broadcast news data Bayesian Information Criterion-

based (BIC) approaches have been applied [5, 6, 7]. On data

such as dyadic telephone conversations that are typically used

for speaker recognition, i-vector based approaches are shown

to be useful [8, 9].

In the HMM/GMM approach to speaker diarization, the

audio is split into long segments as an initialization step. The

segments are modelled with a GMM. Multiple iterations of

re-segmentation and re-estimation steps follow. After a fixed

number of iterations, two clusters are merged based on the

BIC [5] or other suitable criteria [10, 11, 12].

In the IB approach [4], short segments of the audio are

clustered using the IB criterion. The clustering output is

used as an input to a resegmentation algorithm. Two ap-

proaches can be used for resegmentation: HMM/GMM (Hid-

den Markov Model/Gaussian Mixture Model) segmentation

and KL-HMM (Kullback-Leibler Hidden Markov Model)

segmentation. The decoding step is crucial in determining the

accuracy of the system as it corrects segment boundaries and

acts as a final reclustering step. The HMM/GMM approach

and KL-HMM approach are shown to give comparable re-

sults [13]. In cases when multiple features are available

the KL-HMM approach is shown to perform better than the

HMM/GMM approach for resegmentation [4]. In this paper,

we investigate the role of KL-HMM based segmentation as

an independent diarization system. The KL-HMM method

is modified to perform multiple iterations of re-estimation

and resegmentation followed by merging of the states of

the HMM using Jensen Shannon divergence. The stopping

criterion for the process is set using a Normalized Mutual

Information-based measure. The systems are tested on the

benchmark NIST RT datasets for speaker diarization. The

rest of the paper is organized as follows: Section 2 discusses

the role of KL-HMM based segmentation in the IB system.

Section 3 introduces KL-HMM as an independent diarization

system. The results of the experiments on the NIST RT data

sets are presented in Section 4.

2. KL-HMM BASED SEGMENTATION

In this section, the details of the KL-HMM based decoding

procedure are given. Apart from the IB-based speaker di-

arization systems, KL-HMMs have been applied to ASR tasks

[14]. In particular, KL-HMMs have been shown to be use-

ful when the resources for training are limited [15, 16]. That

KL divergence is a non-linear distance measure (between two

probability distributions) makes it particularly useful for com-



Table 1. Comparison of performance in terms of Speaker

Error Rate (SER) at two stages of the IB system: before and

after resegmentation with KL-HMM. Performance of RT05,

06, 07 and 09 are combined together.

System SER (%)

Before KL-HMM 20.2

After KL-HMM 18.1

plex distributions. It is also useful that the method generalizes

to different distributions on data as it models only the multi-

nomial distribution on the posteriors.

The IB approach to speaker diarization has been shown to

be successfull and comparable to the HMM/GMM approach

[4]. In this approach, the audio file is split into small uni-

form segments. These segments are modelled using a Guas-

sian distribution. The Gaussians are used to estimate pos-

teriors for every frame of the speech signal. The posteriors

are used as relevance variables in the IB clustering method

[17]. The clusters obtained are passed through a segmenta-

tion algorithm, typically the KL-HMM approach, to smooth

the boundaries. Using the KL-HMM approach has an advan-

tage of reusing the posteriors available and the approach has

a simpler modelling process.

In KL-HMM, the states representation are estimated by

averaging posterior vectors in the state. Viterbi decoding

is applied based on the current model estimates using KL-

divergence between the speech frame posteriors and state

models. One iteration of KL-HMM segmentation is shown

to be sufficient to obtain optimal diarization performance [4].

The performance of the system before and after resegmenta-

tion with KL-HMM are compared in Table 1 to emphasize the

importance of resegmentation. The diarization performance

increases by 2.1% (absolute) after resegmentation. The bene-

fit of the KL-HMM system for segmentation is evident. This

motivates the investigation of the KL-HMM as an indepen-

dent speaker diarization module similar to the HMM/GMM

speaker diarization system. This requires the use of posteri-

ors instead of speech features (as in the case of HMM/GMM

systems). Therefore, the KL-HMM approach to speaker di-

arization is proposed by modifying the IB approach: the IB

clustering is entirely avoided and the are clusters initialized

in a flat start method (as often done in the HMM/GMM ap-

proach). Then, multiple iterations of resegmentation and state

model estimation are performed. Two states are merged after

a fixed number of iterations of resegmentation and estimation.

This process of resegmentation-estimation-merging is contin-

ued until a stopping criterion is met. A Normalized Mutual

Information-based (NMI) stopping criterion is defined for

this purpose.

3. KL-HMM BASED DIARIZATION

In this section, the KL-HMM based diarization system is in-

troduced. First, the overall architecture is presented followed

Fig. 1. Block diagram representing KL-HMM based diariza-

tion system. Multiple iterations of resegmentation and esti-

mation are performed before merging two states

by the definition of the stopping criterion.

3.1. Proposed system

The architecture of the proposed system is presented in Figure

1. There are 4 steps involved in the diarization procedure:

1. Initialization: Initialize the states of the KL-HMM by

computing the means of the posteriors of the states. The

initialization is uniform as in the HMM/GMM systems.

The approach to obtain posteriors is the same as that

used in the IB system.

2. Resegmentation: Based on the current models of the

HMM states, KL-divergence is computed between the

speech frame posterior yt = [yt,1 . . . yt,D]T and state

model mi = [mi,1 . . .mi,D]T of state i for all speech

frames, where the posterior is D-dimensional. The KL-

divergence measure is given by:

vt,i = −

D
∑

d=1

yt,d log

(

yt,d
mi,d

)

. (1)

The reference distribution is that of the state and the

frame posterior forms the test distribution. The diver-

gence uses a negative sign as the global cost is being

maximized. The diarization procedure stops here when

the stopping criterion (discussed later) is met.

3. Re-estimation: Based on the segmentation derived

from the previous step, the models of the states are

re-estimated. The model of a state i is given by

mi =
1

ni

∑

t∈i

vt, (2)

where ni is the number of speech frames in state i.

Steps 2 and 3 are repeated and allowed to converge.

In practise, 5 iterations are observed to be sufficient.

4. Clustering: After multiple iterations of the Steps 2 and

3, two states are merged using the Jensen-Shannon (JS)

divergence. The merging criterion is similar to the one
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Fig. 2. The plot shows the reduction in Speaker Error Rate

with each iteration of the KL-HMM system. Initially, there

are 16 states and at each state, there are 5 iterations

used in the IB method. If two states are modelled by

mi and mj , the JS divergence is given by

JS(mi,mj) =

D
∑

d=1

πiKL(mi,mij) + πjKL(mi,mij),

(3)

where πi =
ni

ni+nj
, ni is the number of feature vectors

assigned to cluster i and mij = πimi + πjmj is the

combined mean of the two states. The KL divergence

between two posterior vectors is given by

KL (mi,mj) =

D
∑

d=1

mi,d log (mi,d/mj,d) (4)

Equation 3 is computed between all states and the pair

with minimum JS divergence is merged.

3.2. NMI-based criterion

As the KL-HMM system is applied in an unsupervised envi-

ronment, the choice of stopping criterion is critical in deter-

mining its performance. In this paper, the Normalized Mutual

Information (NMI) [18] based criterion is used as the stopping

criterion. This is similar to the criterion used the IB system.

Figure 2 helps illustrate that a stopping point exists. It

shows that the error rate desirably decreases after every it-

eration. The existence of minima suggests that applying ap-

propriate threshold to an appropriate stopping criterion can

provide automatic procedure to stop the algorithm.

The NMI is calculated between two consecutive clus-

tering outputs obtained from two consecutive iterations

even if they have different number of clusters. Given two

clustering outputs C1 = {c1,1, c1,2, . . . , c1,N1
} and C2 =

{c2,1, c2,2, . . . , c2,N2
}, the criterion is computed as

ˆNMI(C1, C2) =
∑

a∈C1,b∈C2

na,b ∗ log
Nna,b

nanb

(5)

where na and nb are the number of data points in cluster i

and j and ni,j is the set intersection of the two clusters and

N is the total number of points. The hat is used on NMI to

suggest that the criterion is a simplified version of NMI. As

the number of iterations increase, the NMI decreases. Thus,

applying a threshold on the minimum NMI value provides a

stopping criterion.

4. EXPERIMENTS

Speaker diarization experiments are performed on the NIST

RT 05, 06, 07 and 2009 benchmark datasets. The NIST RT05

is used as a development dataset while others form the test

set. The development set is used to tune the NMI threshold

and optimum number initial clusters. Multiple Distant Micro-

phone (MDM) recordings are used for the experiments after

their enhancement using Beamformit [19].

4.1. System parameters

MFCC features are extracted from the audio at 10ms frame

rate with a window size of 25ms. A Gaussian is modelled

for every 250 frames. The covariance matrix is shared across

the Gaussians. The posteriors are estimated for every frame

with respect to the Gaussians. The initial number of states is

set to 16 after optimization on RT05 dataset for best perfor-

mance. The minimum state duration for KL-HMM is set to

350 frames.

Two variants of the KL-HMM are developed based on the

posteriors used for resegmentation: (i) in smooth posterior

approach the posteriors obtained from the Gaussians are re-

tained as it is (same as that used in the IB system) (ii) in hard

posterior approach the top scoring Gaussian is set to 1.0 in

the posterior vector for every frame while the rest are set to

0.0. However, for the estimation of the means of the states

in both cases, only smooth posteriors are used as retaining

uncertainty is observed to be useful for modelling.

4.2. Results

The results of experiments on the RT datasets are reported

in Table 2. The KL-HMM system performance is compared

with the HMM/GMM system and IB system. The comparison

with IB is important as KL-HMM has already been applied in

this context. Two types of results are compared: (i) oracle

results, in which the best achieved diarization result is pre-

sented and (ii) NMI results that are obtained by using NMI as

stopping criterion. The oracle results are presented to show

the effectiveness of the approach when the optimal number of

clusters for the procedure is known. The results show the best



Table 2. Results of experiments conducted on the NIST RT datasets are presented. The relative improvements are given with respect to

IB (non-Oracle) system. Smooth posteriors: posteriors computed from all Gaussians; Hard posteriors: highest scoring Gaussians set to 1.0;

Oracle: performance with optimal number of clusters; NMI: system uses NMI; SER: Speaker Error Rate, R.I. : Relative Improvement

.

Dev. set Test set

System/Dataset RT05 R.I. RT06 (SER) R.I. (%) RT07 (SER) R.I. (%) RT09 (SER) R.I. (%)

HMM 11.9 - 15.4 - 6.4 - 14.5 -

IB (Oracle) 14.8 - 16.4 - 9.4 - 22.0 -

IB 18.7 - 18.5 - 13.6 - 22.9 -

Smooth posteriors

KL-HMM (Oracle) 9.5 49.1 15.6 15.7 10.1 18.3 15.8 30.0

KL-HMM (NMI) 16.7 10.6 20.5 - 14.6 - 19.3 15.7

Hard posteriors

KL-HMM (Oracle) 8.9 52.4 14.5 21.6 9.0 33.8 15.9 30.0

KL-HMM (NMI) 14.4 23.0 18.4 0.5 14.0 - 21.2 7.4

possible performance that can be achieved with the KL-HMM

system given the initialization procedure and input posteriors.

The posteriors used for the IB system and KL-HMM are

the same. From Table 2, it is clear that in the majority of

the cases, the KL-HMM system performs better than the IB

system. The KL-HMM system with hard posteriors performs

better than the system with smooth posteriors. This is per-

haps due to the noisy posterior values in the posterior vector.

However, thresholding the posterior values as an intermedi-

ate approach between smooth and hard posterior approaches

did not give appreciable improvement over smooth posterior

approach. Moreover, the binary approach to hard posteri-

ors avoids sorting issues with the posterior values for every

frame of speech. Finally, it also emphasizes the need for bet-

ter methods to estimate posteriors.

The oracle systems show the potential of the KL-HMM

as an independent diarization module. A best case relative

improvement of 23.0% on the development set and 30.0% on

the test set are observed compared to the IB system. The sys-

tems that use the NMI criterion perform worse than the ora-

cle systems. In best case (RT09), a relative improvement of

15.7% is observed. This is useful as RT09 has more speak-

ers per meeting than the other datasets. Thus, the methods

scales well with the number of speakers and the audio length.

Both smooth and hard posterior methods perform poorly on

the RT07 dataset.

On the development set, the NMI gets the accurate num-

ber of speakers 40% of the time. The IB strategy, however,

fixes the number of clusters to 10. The HMM/GMM cluster-

ing’s accuracy is only 20% with an average estimation error

by 1.1 speakers.

4.3. Runtime

We now compare the speed of the three algorithms:

HMM/GMM, IB and KL-HMM. The Real Time Factors

(RTF), defined as the ratio between the run time and length

of the audio, are given in Table 3. The IB system is the fastest

among the three systems. A straightforward implementation

of the KL-HMM system is only slower than the IB system

Table 3. Comparison of runtimes of the algorithms used in the

paper.

System RTF

HMM/GMM 0.45

IB 0.08

KL-HMM (Soft posteriors) 0.16

KL-HMM (Hard posteriors) 0.13

by a factor of 1.6, but is faster than the HMM/GMM system

by factor of 4.5. Thus, the KL-HMM system performs better

than the IB system with a small trade-off in speed.

5. CONCLUSION AND FUTURE WORK

The KL-HMM system for speaker diarization is presented.

The system is tested as an independent diarization module on

the NIST RT datasets and its performance is compared with

that of the IB system. The KL-HMM system’s performance

is shown to be better than that of IB system with best case

relative improvement of 30%. However, the added advantage

of the speed of the KL-HMM, in which the it is better than

HMM/GMM system by a factor of 4.5, presents a reasonable

trade-off. The NMI based stopping criterion provides an au-

tomatic way to chose the optimal number of clusters. This is

observed to be relatively better than the BIC based criterion

used in the HMM/GMM by 50%.

The framework presented in this paper opens up ways

to use information theoretic measures while decoding for

speaker diarization. Measures such as symmetric KL diver-

gence, Jensen-Shannon divergence can be used with suitable

modelling strategies for the HMM’s states.
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