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Abstract—We introduce LETHA (Learning on Easy data,
Test on Hard), a new learning paradigm consisting of building
strong priors from high quality training data, and combining
them with discriminative machine learning to deal with low-
quality test data. Our main contribution is an implementation
of that concept for pose estimation. We first automatically
build a 3D model of the object of interest from high-definition
images, and devise from it a pose-indexed feature extraction
scheme. We then train a single classifier to process these
feature vectors. Given a low quality test image, we visit many
hypothetical poses, extract features consistently and evaluate
the response of the classifier. Since this process uses locations
recorded during learning, it does not require matching points
anymore. We use a boosting procedure to train this classifier
common to all poses, which is able to deal with missing
features, due in this context to self-occlusion. Our results
demonstrate that the method combines the strengths of global
image representations, discriminative even for very tiny images,
and the robustness to occlusions of approaches based on local
feature point descriptors.
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I. INTRODUCTION

The problem of 3D pose estimation is at the forefront
in computer vision research. It consists of identifying the
position and orientation of the camera, given a test image,
with respect to the observed model. The problem has been
addressed from either purely geometric or machine learning
perspectives. Geometric methods initially use training data
to build a 3D model, and then search for the 2D-to-3D
correspondences that best align interest points in the test
image with the 3D model [13]. Machine learning approaches
on the other hand, annotate training imagery with discrete
locations in the pose manifold, and then search globally
for this pose-annotated matching of appearance, without
resorting to full 3D reconstruction of the object [7], [16],
[26]. The advantage of the global methods is that they are
less sensitive to precise localization of individual features,
which makes them more robust to image degradations than
local geometric methods. But in contrast, global methods
are not generally robust to occlusions. In addition, they often
require splitting the pose space into several classes, and train
specific classifiers for each of them, limiting the precision of
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Figure 1. LETHA uses high-quality images to train a classifier that is
tested on low quality data. The top frame shows the built 3D model, one
positive and two negative training image-pose pairs. The fact that features
are indexed with pose is indicated by the same location on the three training
images of the projection of point pairs, and by the object contour projected
in green. Observe that detecting the F1 car in the test images at the bottom
frame is even difficult for the human eye due to different artifacts. The
green contour indicates the pose estimated by our approach.

the estimated pose to that of the granularity between classes
and losing the correlation between neighboring poses.

We propose the LETHA approach (Learning on Easy
data, Test on Hard), that combines the strengths of both
geometric and machine learning methods for estimating 3D
object pose. We use high-definition training images to create



a 3D model of the object, and from it devise a pose-indexed
feature extraction scheme that bind image quantities to the
object pose. These features are then combined into strong
priors for each training pose. Since we focus on one single
object, the priors we build capture the variability of the ap-
pearance and generalize to test images with severe artifacts
in a maner similar to that of [9], [4]. These approaches,
though, again rely in the fact that similar local features
appear in both training and test images. We get rid of this
requirement by building specific priors for each training
pose, in which we exactly know where the features should
appear in the test image, hence no point of interest matching
is needed. A single classifier, common to all the poses, is
trained from these pose-indexed feature vectors. We use a
procedure able to cope with incomplete feature vectors, a
situation that occurs during self occlusion, allowing us to
evaluate the classifier, even when some features have been
wiped out or corrupted by image artifacts such as loss of
resolution, motion blur or partial occlusions.

During test, given a low quality input image and a
hypothetical pose to assess, the pose-indexed feature vector
is computed similarly, without the need to detect and match
points of interest, and fed to the classifier. The object’s
pose is estimated by measuring the classifier response for
all the poses seen in the training images, and then refined
by resampling around those poses with maximal classifier
response. We insist on the fact that since this optimization
is done by visiting multiple poses systematically, we do not
need to match points of interest, or perform any type of
fragile matching prior to using our predictor.

As shown in Fig. I, our method is able to estimate the
pose even in the presence of severe image artifacts such as
motion blur and occlusion. As we will demonstrate in the
experimental section, LETHA compares favorably against
geometric approaches based on SIFT and DBRIEF features,
and also against global approaches based on Bag of Features
descriptors [25], GIST [15] and PCA cross-correlation [23].

II. RELATED WORK

3D pose estimation methods may be roughly split in
those techniques relying on local image features that purely
use geometric relations to compute the pose; and methods
that compute global descriptors of the image and resort to
machine learning tools to estimate the pose.

Local approaches use feature point descriptors to estimate
2D-to-3D correspondences between one input image and
one or several reference images registered to a 3D model
of the object. PnP algorithms such as the EPnP [13], [18],
[5] are then used to enforce geometric constraints and
explicitly solve for the pose parameters. On top of that,
robust RANSAC-based strategies [2], [14], [19] can be used
both to speed up the matching process and to filter outlier
correspondences. Yet, while these methods provide very
accurate results, they require both the reference and input

Table I
NOTATION

u Image.
ξ An hypothetical target pose to be tested
R̃ Set of real numbers extended with the value n.a.
T Nb. of high quality training images.
u∗
t t-th training image.

R+, R− Nb. of positive and negative samples for Boosting.
Q Nb. of 3D points in the model.
pq q-th 3D point in the object model.

Π(p, ξ) Projection of point p in the image for object’s pose
ξ.

Ψ(u, ξ) Pose-indexed feature vector on image u for pose ξ.
D Feature vector size.
Φ Trained classifier.
M Nb. of stumps in Φ.
σ Threshold function extended to n.a.

ρm, ωm m-th stump threshold and weight.

images to be of high quality, such that local features can
be reliably and repetitively extracted. As we will show in
the results section, these methods are not applicable for the
level of image artifacts we consider in this paper.

By contrast, approaches relying on global descriptions of
the object are less sensitive to a precise localization of indi-
vidual features. These methods typically use a set of training
images acquired from different viewpoints to statistically
model the spatial relationship of the local features, either
using one single detector for all poses [8], [10], [21] or a
combination of various pose-specific detectors [16], [17],
[22], [26]. Another alternative is to bind image features
with poses during training and have them vote in the pose
space [7]. These approaches, though, focus on recognizing
instances of a generic class and are not designed to deal
with image content different from that in the training set.

Among the methods that compute a global descriptor of
the image, we find some holistic representations that do
not require extracting points of interest. For instance, the
GIST [15] descriptor encodes sustained overall orientation
of straight edges on images, rather than localized features.
This descriptor is conceived more as class descriptor than
as a unique sample identifier, and is not generally robust
for discriminating between poses, mainly because it is built
using only 2D intensity data, disregarding visibility informa-
tion of the 3D model. The same applies to the PCA cross-
correlation, used in [23] as a similarity measure between
tiny images. As it will be shown in the results section,
considering visibility constraints in our pose-indexed feature
vectors brings a remarkable advantage of our approach
against such global descriptors, especially under occlusions.
This is because, to account for occlusions, we devote a
special treatment to missing data in our feature vector, giving
a comprehensive solution to self-occlusions.



III. THE LETHA APPROACH

In this section we describe an implementation of the
LETHA learning paradigm, applied to the estimation of the
pose of an object in low-quality images.

First, as described in § III-B, we generate a 3D cloud
model of the object, from which we derive a pose-indexed
feature extraction scheme able to compensate for pose
changes. Second, as described in § III-C, these features are
combined into a single classifier common to all the poses. To
handle weak learners abstaining because of self-occlusion,
we use a boosting procedure, dubbed AbstainBoost. The
search for the optimal pose is a coarse-to-fine process, as
described in § III-D. We first visit exhaustively the poses
met in the training set, and then visit more densely around
the most promising hypotheses by generating synthetically
perturbed poses in their neighborhoods.

A. Motivation and summary of the approach

Our overall approach consists of reformulating the esti-
mation of the pose of the object of interest in a framework
similar to the sliding-window approach for detection: we
visit many “poses”, and estimate for each a matching score
with a single trained predictor. The key idea is that the
extraction of the features alleviates the training of that single
predictor by handling geometrical invariance.

1) Standard detection with a sliding window: For the sake
of simplicity, consider first the sliding-window approach for
face detection. Given an image u, it visits a large number
R of sub-windows, each defined by a location in the image
plane and a scale, and for each of these “hypothetical poses”
{ξ1, . . . , ξR}, it extracts a vector of features Ψ(u, ξ) in the
corresponding sub-window, such as the responses of linear
filters translated and scaled according to ξ, and feed them to
a predictor Φ, such as an SVM or a Boosted linear predictor.
The response Φ(Ψ(u, ξ)) should be positive if a face is
present there, negative otherwise.

The central idea is that the same predictor Φ is used for
every window. The way the feature responses are computed
ensures that Φ it does not have to cope with invariance to
translation or scale.

A remarkable property of this approach, as noticed in [6],
is that the “windows” do not really exist. What defines the
overall process is (a) a set of poses {ξ1, . . . , ξR}, and (b) a
procedure which to compute a “pose-indexed” feature vector
Ψ(u, ξ) for any image u and pose ξ, which accommodates
the perturbations due to the pose. These two components are
used to produce the training feature vectors to learn Φ, and
the test feature vectors to use during detection.

2) Extension to general 6D poses: We can generalize the
same approach to rigid objects, in which case the pose is
6D. For this, Ψ should extract quantities in the image at
locations corresponding to 3D points fixed in the object
reference frame, and projected in the image according to
the hypothetical 6D pose to test.

pq

pq′
Π(pq, ξ)

Π(pq′ , ξ)

ξ u

Figure 2. Each individual pose-indexed feature is computed as the
difference between the gray levels at locations Π(pq , ξ) and Π(pq′ , ξ),
corresponding to the projections of the points pq and pq′ into the image
plane u, for the hypothetical object pose ξ. If one of the points is not visible
due to self-occlusion, the feature value is n.a.

Our algorithm goes one step further and learns from
data both the set of poses {ξ1, . . . , ξR}, and the mapping
Ψ. Given high-definition training images, we estimate the
camera positions from which we build the set of poses
{ξ1, . . . , ξR}, and a 3D model of the object from which
we construct the functional Ψ. In practice, this Ψ computes
quantities in the image at locations corresponding to points
physically on the object. We extract features with this Ψ,
and as in the standard sliding-window case, we train a single
predictor Φ common to all the poses.

B. Learning pose-indexed features Ψ

The first step to learn Ψ from the high-definition training
images u∗1, . . . , u

∗
T is to build a 3D cloud model of the ob-

ject. We use Bundler [20], a SfM system that matches SIFT
key-points through iterative bundle adjustment. It generate
a dense family of Q points pq ∈ R3 laying on the object’s
surface, and an estimate of each training image viewpoint
pose, from which we derive the object pose in the observer’s
referential ξ∗t ∈ R3 × SO(3), t = 1, . . . , T.

Then, for each gray-scale image u, and for any pose ξ,
let Π(p, ξ) ∈ {1, . . . ,W}× {1, . . . ,H} ∪ {n.a.} denote the
projection into the image plane of u of the point p laying on
the 3D model surface, with W and H being the image width
and height, respectively. This projection will take the value
n.a. when the point is hidden due to self-occlusion. For
any pair of point indexes (q, q′) ∈ {1, . . . , Q}2, we define
a pose-indexed feature as the difference between the image
intensities at the two projected points (see Fig. 2):

Ψq+Qq′(u, ξ) = u(Π(pq, ξ))− u(Π(pq′ , ξ)) , (1)

which takes the value n.a. if either one of the projections
is n.a. From these features, we define a full pose-indexed
feature vector of dimension D = Q2. This whole feature
vector is never actually computed. During training, only a
random subset of features is evaluated, and during test, the
number of features actually evaluated is equal to the number
M << D of stumps in the predictor Φ.
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Figure 3. To evaluate the classifier on a test image u, for an hypothetical
pose ξ, the algorithm first computes the feature vector Ψ(u, ξ), and then
the response of the predictor Φ(Ψ(u, ξ)).

C. Training Φ with AbstainBoost

We want to train a predictor Φ to evaluate from the
feature vector Ψ(u, ξ), whether the image / pose pair (u, ξ)
is consistent. That is, whether the object of interest is visible
in u with the pose ξ.

1) Stumps and training set: We choose as predictor a
linear combination of decision stumps:

Φ(ψ) =

M∑
m=1

ωm σ(ψdm , ρm) , (2)

where ψdm is the dm-th feature of the pose-indexed feature
vector ψ, ρm is the stump threshold, and ωm is the stump
weight, and all these parameters are chosen during training.

As stated in § III-B, features may take the value n.a., to
account for self-occlusion. We use a thresholding function
that sends the n.a. values to 0:

σ(z, ρ) =

 0 if z = n.a.
−1 if z < ρ

1 if z ≥ ρ
(3)

To build the training set, negative samples are generated
by computing, for every single training image u∗t , the pose-
indexed feature vectors using the poses from other training
images which have a relative difference with ξ∗t greater than
10%. Positive samples are obtained by computing the pose-
indexed feature vector for poses around ξ∗t (i.e. we add a 1%
relative noise to every component of the pose). The number
R+ of positive samples is a constant factor of the number
R− of negative samples (i.e., 30%).

Following the parallel with the sliding-window face detec-
tion, positive samples are taken “around” the actual location
of every face, and negative samples are taken “far from” any
face.

2) AbstainBoost: A classical method to build a lin-
ear combination of stumps from a training set is Ad-
aboost, which selects stumps one after another to reduce
the exponential loss in a greedy manner [11]. The stan-
dard derivation of this procedure relies on all the weak
learners having the same L2 norm. If we define Wτ =∑
n:ynh(ψn)=τ exp(−ynΦ(ψn)), where yn ∈ {−1, 1} is the

label of the n training samples, and ψn the corresponding

feature vector, Adaboost chooses weak learners h maximiz-
ing |W+1−W−1|. However, as stated in Eq. (3), we have to
deal with zero-valued responses, hence weak-learners of var-
ious norms. Relying on the inner product between the weak-
learner’s responses and the sample weights as an indication
of “good direction” in the functional space, as Adaboost
does, is incorrect and leads in practice to weak learners
with fewer zero responses, even if they are often incorrect,
because they have larger norm. With weak learners taking
values in {−1, 0, 1}, it can be derived analytically that the
optimal weak learner – i.e. the one inducing the maximum
reduction of the exponential loss when added with its opti-
mal weight ω – is the one maximizing |

√
W+1 −

√
W−1|..

This is a natural derivation of Adaboost, the framework
given here is analogous to Blum’s ”specialist” model of
online learning [1]. For clarity we will refer to it as
the AbstainBoost procedure. It can find the best stump’s
threshold in a time linear with the number of samples after
they have been sorted according to the feature’s value, and
the optimal weight remains ωm = log

√
W+1/W−1. This

use of Adaboost is similar to the GrowRule operation in
the Slipper algorithm [3], with the main difference that it
allows to directly select signed abstaining decision stumps,
instead of being applied to a greedy construction of Boolean
disjunctions.

To summarize: given the training set, and the stumps
defined on Eq. (3), the learning procedure consists of M
AbstainBoost iterations, each one sampling at random sev-
eral feature indexes 1 ≤ d ≤ D, and keeping the one that
maximizes the abovementioned score. The corresponding
stump is then added to the strong classifier, and the process
is re-iterated.

D. Coarse-to-fine pose estimation for testing

The test proceeds in a two-step “coarse-to-fine” manner,
visiting first the poses seen during training, and then fo-
cusing on the best ones by visiting another set of poses
generated in their neighborhoods. For each visited pose, the
classifier response is computed as depicted in Figure 3.

More precisely the process first loops through the T
training poses ξ∗1 , . . . , ξ

∗
T , and for each, it projects the Q

object model points onto the image plane, and creates the
pose-indexed feature vector Ψ(u, ξ∗t ). This feature vector is
used to evaluate the classifier response Φ(Ψ(u, ξ∗t )), and the
G poses with the highest responses are retained

In a second step, the final pose is refined by reevaluating
the classifier on a set of poses generated synthetically in the
neighborhoods of the best G poses retained. We first set a
hyper-box around each one of the G best poses by defining
a minimum and maximum value for each single component,
using the pose itself and its two closest neighbors, with
an additional 10% relative margin on each component (see
Fig. 4). We sample uniformly Z poses is in each box, and



ξ∗t Training poses

ξ∗t(g) Best G training

ξz Pose refinement samples

ξ̂ Final pose
poses

Figure 4. Refining the final pose. A bounding box in pose space is
computed around each of the G poses that have maximal classifier response
and their two nearest neighbors. Z new poses are uniformly sampled inside
these boxes, keeping as final pose that with maximum classification score.

evaluate the classifier for each. The final pose ξ̂ is the one
with maximum response.

Note that the core property of our algorithm is that
since we perform measurements at locations recorded on
the training images, we do not require any point of interest
detection in the test phase, since we know where the image
intensities should be measured for each hypothetical pose we
test. This makes the algorithm appealing for low-resolution
or severely corrupted images.

IV. EXPERIMENTS AND RESULTS

We next describe our experiments: the datasets we use
for the evaluation, the competing approaches, the parameters
used for learning the LETHA classifier, and the results.

A. Datasets

We use four datasets for evaluation (see Fig. 1 and 5
for some examples). In the first 2 datasets half the images
were used for training and the other half for testing. Internal
camera parameters for each image are known in all datasets.
• Caltech dataset: Objects from the CalTech Turntable
dataset [12]. 360 images per object, in a controlled envi-
ronment with constant lighting and textureless background.
• Cars dataset: Sequence used in [7]. 21 different cars
observed under 68 viewpoints on average. Small number
of instances per class, which makes learning difficult.
• Sagrada Familia dataset: Images with strong lighting
changes and mild occlusions in two sets taken around the
building, at different daytimes and with different weather
conditions. 317 training images (taken on a sunny day) and
210 testing images (taken on a cloudy day). Occlusions due
to pedestrians, buses and trees.
• F1 dataset: Training and test images were generated sep-
arately. It contains 317 calibrated training images, showing
a F1 model car on an empty table, and 336 test images of
the same F1 model car but in a heavy cluttered environment.
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Figure 5. 3D model and sample images used in our tests. The images
shown correspond to one original test image for each dataset along with the
maximum point of degradation for resolution loss and motion blur reached
in our experiments.

B. Baselines

Our first choice for a baseline was a purely geomet-
ric method relying on local feature point extraction with
RANSAC-based geometrical pose estimation. Given a high
definition 718×480 image of the Sagrada Familia dataset,
and its closest pose-correspondent 143 × 96 image, we ex-
tracted points of interest in both images using DBRIEF [24],
computed the number of inliers after matching features
and estimated the pose transform using EPnP[13] with
RANSAC. Due to the large amount of mismatches and
localization biases of the same 3D in both images, even
after 50,000 RANSAC iterations (which took 5 minutes to
compute in a standard PC) the algorithm was not able to
converge to a correct pose. Obviously the problem would
be magnified if, for a given test image, all training images
had to be evaluated, and thus we discarded RANSAC-based
approaches from subsequent analysis.

The baselines we chose are state of the art methods of
both geometrical and global approaches:
• PCA-NCC: PCA normalized cross-correlation [23] is a
good candidate, as it does not require an outlier rejection
stage to compare a pair of images.
• GIST: Gist descriptor [15] uses information of the entire
image, and as suggested by [23] it is an appropriate approach
to compare very tiny images.
• BoF: As a representative of the methods that build a global
descriptor of the image from local features we used a Bag



of SIFT Features (BoF) [25].
• DBRIEF: We used the average confidence of individual
DBRIEF matches [24]. It uses a similar scheme as ours,
it trains a dictionary of features by learning the appearance
changes over a 3D model. This is done to ensure robustness
to 3D deformations with the same intention as LETHA.

C. Training and testing with LETHA

Using Bundler, we built the 3D models for each dataset.
The size of these models ranges from about 1× 105 points
for the Sagrada Familia dataset down to 2 × 104 points in
the F1 dataset. For the Cars dataset we built a different 3D
model for each object class.

Training images are initially convolved by Gaussian filters
with standard deviation of 2 pixels. Then, following the
methodology described in § III-C1, for each of the T training
poses, we generate R+ positive and R− negative samples.
Training images are initially convolved by Gaussian filters
with standard deviation of 2 pixels. Then, following the
methodology described in § III-C1, for each of the T training
poses, we generate R+ positive and R− negative samples,
according to the procedure described in § III-C1. This
results, for each training image, in a total of 52 samples for
the Cars dataset, 240 for the Sagrada Familia dataset, 300
for the Caltech dataset, and 412 for the F1 dataset. The full
sample set used to train the predictor Φ has a size ranging
from 10, 000 samples to 350, 000 samples, out of which 1/4-
th are positive samples and 3/4-ths negative ones.

D. Results

In all experiments, we compute the pose of a corrupted
test image with each of the algorithms. For all competing
methods, the estimated pose will be the one of the most sim-
ilar training image. For LETHA it is computed as described
in § III-D. Let ξ̂ = (q̂, t̂) be that estimated pose, where
q̂ is a normalized quaternion representing the rotation and
t̂ the translation vector. Similarly, let ξtrue = (qtrue, ttrue)
be the ground truth pose of the test image. As in [13],
relative rotation and translation errors is computed as Erot =
‖qtrue − q̂‖/‖q̂‖ and Etrans = ‖ttrue − t̂‖/‖t̂‖, respectively.
In all discussed experiments we compute the median error
of all testing images over different configurations.

Note that LETHA refines the pose by sampling around the
training poses with highest scores. Yet, given a training pose,
the reduction in pose error when using this fine estimation
is very small. The real benefit of re-sampling around a few
training poses, is that the final chosen pose may be the result
of sampling around a training pose which initially did not
have the highest score. We show examples of pose retrieval
on test images in Fig. 7.

1) Resolution loss and blurring: We evaluated all meth-
ods in two different situations: reduction of the image size
and motion blur (see Fig. 5). Let us first focus on the Caltech
and Cars datasets for which the amount of illumination

changes or occlusions produced by external objects does not
exist or is relatively small.

The first two rows of Fig. 6 summarize these results.
For the “size reduction” experiment both PCA-NCC imple-
mentations and our approach show high robustness1. For
instance, in the Sagrada Familia dataset this means that the
algorithms are capable of finding the right pose for a test
image as small as 14×10 pixels compared to the 718×480
size of a training image. The performance of our approach
and of PCA-NCC degrade for larger reduction sizes. Note
that PCA-NCC, despite being a relatively simple approach,
takes advantage of the fact that it uses all pixels in the image.
The rest of methods that either rely on combination of local
features (BoF or DBRIEF), or orientations of straight edges
(GIST), generally rapidly fail for moderate reductions in
size, when these features are prone to disappear.

The performance in the “motion blur” experiment is
similar. Both PCA-NCC and LETHA clearly outperform
other techniques in the Sagrada Familia and Cars dataset.
In the Caltech dataset, though, LETHA is consistently more
robust than PCA-NCC.

2) Illumination changes: Our second series of experi-
ments uses the Sagrada Familia dataset. Test images contain
strong illumination changes from the training dataset since
they were captured at different days, and with different
weather conditions. This strong changes in appearance make
PCA-NCC and BoF unable to handle even the non-corrupted
images. GIST is able to handle the non-corrupted images
but breaks when small changes are introduced. We also see
that DBRIEF is able to handle quite well the object as it is
highly textured. The difference between BoF and DBRIEF,
both based on feature points, is due to BoF taking into
account all the features in its histograms, which introduces
a significant amount of noise. DBRIEF on the other hand
takes into account mainly just the best matches, which in
a higly textured object like the Sagrada Familia, is prone
to have at least a couple of good matches even when
changes in illumination are present. We are able to cope
with illumination changes because we use features based on
the difference of intensity between points and not on the
absolute intensity values.

3) Occlusions: Let us now focus on the experiments for
the F1 dataset depicted in the last row of Fig. 6. As shown
in Fig. 1, the test images contain strong occlusions of the
object which were not included in the training set. On top
of this, we also considered the image degradation artifacts
used above. In this situation neither the methods that use
information of the entire image (PCA-NCC and GIST), nor
the methods based on local features (BoF and DBRIEF),
are able to succeed. LETHA, in contrast, exploits all its
properties to yield robust results. On the one hand, the fact

1Relative pose errors below 10% are comparable to those that would be
obtained using a purely geometric method, such as the EPnP [13] when
using high resolution images with no degradation.
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Figure 6. Pose estimation error of LETHA and other approaches in experiments with severe degradations of image size and motion blur. In addition the
last row depicts the results on the F1 dataset which contains strong occlusions.

that the location of the features for each pose is known in
advance alleviates the problem of feature detection when
the image is severely deteriorated. On the other hand, it
also exploits the fact that for each view only local features
that are not affected by self-occlusion are considered. This
maximizes the chance of obtaining a large number of visible
features, even when the target object is partially occluded by
external objects.

4) Computational cost: Given a test image, the time to
estimate the pose for the different experiments is shown in
Table II. Note that all methods are about the same order
of magnitude. DBRIEF is slow because we have used its
MATLAB implementation. In addition, while it is fast in
extracting the features, the process of matching a large
number of them is slow.

V. CONCLUSION

We have proposed a new machine learning paradigm:
Learning with high-quality data to be able to test with low
quality data. The rationale behind this idea is that inference
is possible only from clean data, or using a strong model,
and that the latter can be inferred from the former.

From this general principle, and extending the concept
of pose-indexed features to be able to learn them, we have

GIST BoF PCA-NCC DBRIEF LETHA
Sagr. Fam 1.19 0.12 0.27 8.30 1.64
Caltech 0.89 0.10 0.34 7.90 1.56
Cars 0.67 0.19 0.38 2.09 0.82
F1 1.56 0.22 0.47 17.1 4.34

Table II
TIME (SECONDS) REQUIRED TO COMPUTE THE POSE OF AN INPUT

IMAGE FOR ALL EXPERIMENTS AND METHODS. NOTE THAT BOF IS
IMPLEMENTED IN C WHILE THE OTHER METHODS ARE IN MATLAB

derived a novel and very efficient algorithm for the specific
problem of 3D pose estimation. As demonstrated on the test
datasets, with sufficiently good training data, we obtain an
extremely good estimate of the object pose, in very low
resolution images, with illumination changes and with high
levels of noise and occlusion.

This procedure is promising as a near-perfect solution to
be used in controlled environments such as a factory. Our
future work will aim at extending it to multi-target detection,
richer poses, and class-level detection.



Figure 7. Pose estimation results represented as reprojected wireframes of the best matching candidate in the training data. Allthough our pose is better
than the closest image from the training set, we do not directly project the 3D model point cloud because it would clutter the image in an unintuitive way.
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