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Abstract

One of the key challenge involved in building a statistical automatic speech
recognition (ASR) system is modeling the relationship between lexical units
(that are based on subword units in the pronunciation lexicon) and acoustic
feature observations. To model this relationship two types of resources are
needed, namely, acoustic resources (speech signals with word level transcrip-
tions) and lexical resources (which transcribes each word in terms of subword
units). Standard ASR systems typically use phonemes or phones as subword
units. Not all languages have well developed acoustic resources and phonetic
lexical resources. In this paper, we show that modeling of the relationship be-
tween lexical units and acoustic features can be factored into two parts through
a latent variable, referred to as acoustic units, namely: (a) acoustic model that
models the relationship between acoustic features and acoustic units and (b)
lexical model that models the relationship between lexical units and acous-
tic units. Through this understanding, we elucidate that in standard hidden
Markov model (HMM) based ASR system, the lexical model is deterministic
(i.e., there exists an one-to-one relationship between lexical units and acoustic
units), and it is the deterministic lexical model that imposes the need for well
developed acoustic and lexical resources in the target language or domain when
building ASR system. We then propose an approach that addresses both acous-
tic resource and lexical resource constraints. More specifically, in the proposed
approach the acoustic model models the relationship between acoustic features
and multilingual phones (acoustic units) on target language-independent data,
and the lexical model models a probabilistic relationship between lexical units
based on graphemes and multilingual phones on small amount of target lan-
guage data. We show the potential and the efficacy of the proposed approach
through experiments and comparisons with other approaches on three different
ASR tasks, namely, non-native accented speech recognition, rapid development
of ASR system for a new language and development of ASR system for a mi-
nority language.
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1. Introduction

State-of-the-art automatic speech recognition (ASR) systems are based on
hidden Markov models (HMMs). Development of HMM-based ASR system is
often decomposed into two problems (Rabiner, 1989; Bourlard and Morgan,
1994). First, the relationship between “lexical units” (typically representing
subword units) and acoustic feature observations, such as cepstral features is
modeled. Second, the syntactic constraints of language are modeled.

The present paper focuses on the first problem where to model the rela-
tionship between lexical units and acoustic features, well developed acoustic
resources (speech data with transcription) and lexical resources (phonetic dic-
tionary) are required. While this is not an issue for resource rich languages, it is
challenging for under-resourced languages and domains that may not have such
resources (Besacier et al., 2014). In the literature lack of acoustic resources
has been typically addressed by first modeling the relationship between lexi-
cal units and feature observations on out-of-domain or language-independent
data and then adapting it on target language data through techniques such as
bootstrapping, maximum a posteriori adaptation (MAP) technique, maximum
likelihood linear regression (MLLR) (Kohler, 1998; Beyerlein et al., 2000; Schultz
and Waibel, 2001; Le and Besacier, 2009; Burget et al., 2010). The lack of pho-
netic lexical resources has been addressed through the use of alternate subword
units, such as graphemes (Schukat-Talamazzini et al., 1993; Kanthak and Ney,
2002; Killer et al., 2003; Dines and Magimai-Doss, 2007; Ko and Mak, 2014).
However, the lack of both acoustic and lexical resources has been sporadically
attempted (Stüker, 2008a,b).

In this paper, we first show that the modeling of relationship between lexical
units and acoustic features can be factored into two parts or models through a
latent variable, referred to as “acoustic units”, namely,

1. acoustic model where the relationship between acoustic units and acoustic
feature observation is modeled.

2. lexical model where the relationship between acoustic units and lexical
units is modeled.

We then elucidate that in standard HMM-based ASR system the lexical model
is deterministic. The deterministic lexical model imposes constraints such as,
the acoustic units and the lexical units have to be of the same kind; the acoustic
resources from target language or domain are required to train or adapt both
acoustic model and lexical model.

In a recent work, we showed that there are probabilistic lexical modeling ap-
proaches such as, Kullback-Leibler divergence based hidden Markov model (KL-
HMM) (Aradilla et al., 2008) where the relationship between lexical units and
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acoustic units is probabilistic (Rasipuram and Magimai.-Doss, 2013a). Prob-
abilistic lexical modeling relaxes certain constraints imposed by deterministic
lexical modeling and as a consequence, acoustic model and lexical model can be
independently trained on different set of resources (Imseng et al., 2011, 2012;
Rasipuram et al., 2013a); different kinds of subword units can be modeled in
an ASR system (Magimai.-Doss et al., 2011; Imseng et al., 2011; Rasipuram
et al., 2013a) and different types of contextual units can be modeled in an ASR
system (Magimai.-Doss et al., 2011; Imseng et al., 2011, 2012; Rasipuram et al.,
2013a). Motivated by these findings, this paper proposes an approach for rapid
development of ASR systems in the framework of probabilistic lexical modeling
with minimal acoustic and lexical resources from target language or domain. In
the proposed approach,

• acoustic units are “multilingual phones” and lexical units are based on
graphemes of the target language;

• an acoustic model is trained on language-independent acoustic and lexical
resources;

• lexical model, which captures a probabilistic relationship between
graphemes and multilingual phones, is trained on relatively small amount
of target language-dependent acoustic data.

On three different ASR tasks we validate the proposed approach and compare it
with standard approaches such as, acoustic model adaptation and use of Tandem
features that exploit out-of-domain resources, and training acoustic model and
lexical model on target language data alone.

The paper is organized as follows. Section 2 provides a background on stan-
dard HMM-based ASR system and elucidates the deterministic lexical model
aspect in theory and practice. Section 3 presents implications of deterministic
lexical modeling. Section 4 presents three different probabilistic lexical model-
ing approaches along with their potential implications. Sections 5 and 6 present
the experimental setup and the results, respectively. Finally, in Section 7 we
provide a discussion followed by conclusion.

2. Background

In statistical ASR approach, the goal is to find the best matching (most
likely) word sequence W ∗ given the acoustic observation sequence X =
{x1, . . . ,xt, . . . ,xT }, where t denotes the frame number and T the total number
of frames. Formally,

W ∗ = arg max
W∈W

P (W |X,Θ) (1)

= arg max
W∈W

P (X|W,ΘA) · P (W |ΘL)

P (X|Θ)
(2)

= arg max
W∈W

P (X|W,ΘA) · P (W |ΘL) (3)
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where W denotes the set of all possible word sequences, W denotes a word
sequence, Θ = {ΘA,ΘL} denotes the set of acoustic and language model pa-
rameters. The acoustic model parameter set ΘA = {θa, θpr, θl} includes acoustic
model (θa), lexicon (θpr) and lexical model (θl) parameters.

HMM-based ASR is a statistical ASR approach where given acoustic model,
lexicon and language model, the most likely word sequence W ∗ is achieved by
finding the most likely state sequence Q∗, i.e.,

Q∗ = arg max
Q∈Q

P (Q,X|Θ) (4)

= arg max
Q∈Q

T∏
t=1

p(xt|qt = li,ΘA) · P (qt = li|qt−1 = lj ,Θ) (5)

= arg max
Q∈Q

T∑
t=1

[log p(xt|qt = li,ΘA) + logP (qt = li|qt−1 = lj ,Θ)] (6)

where Q denotes the set of possible HMM state sequences and each Q =
{q1, . . . , qt, . . . , qT } denotes a sequence of lexical HMM states corresponding to a
word sequence hypothesis1, qt ∈ L = {l1, . . . li . . . lI} and I is the number lexical
units. In subword unit based ASR system, if phones are used as subword units
then each lexical unit li represents a phone or a polyphone and if graphemes
are used as subword units then each lexical unit li represents a grapheme or a
polygrapheme. Eqn. (5) results after i.i.d and first order Markov assumptions.
Eqn. (6) is as a result of log transformation to Eqn. (5). Usually, log p(xt|qt =
li,ΘA) is referred to as local emission score and logP (qt = li|qt−1 = lj ,Θ) is
referred to as transition score. If lj is the last lexical unit of a word and li is the
first lexical unit of next word then P (qt = li|qt−1 = lj ,Θ) is the language model
probability otherwise it is the HMM state transition probability. The present
paper deals only with the issues related to the estimation of local emission score.

Standard HMM-based ASR systems, for various reasons as elucidated shortly
in the following subsections, implicitly model the dependency between acoustic
feature observation xt and lexical unit li through a latent variable ad as

p(xt|qt = li,ΘA) =

D∑
d=1

p(xt, a
d|qt = li,ΘA)

=

D∑
d=1

p(xt|ad, qt = li, θa, θl) · P (ad|qt = li, θl)

=

D∑
d=1

p(xt|ad, θa) · P (ad|qt = li, θl) (7)

1That is a sentence model consists of sequence of word models constrained by the language
model, word models consist of sequence of subword models constrained by pronunciation
lexicon and subword model consists of concatenation of one or more HMM states
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Figure 1: Graphical model representation
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We refer to latent variable ad as acoustic unit. Furthermore, A =
{a1, . . . ad, . . . aD} is the set of acoustic units, D is the number of acoustic units,
θa denotes the acoustic model parameter set and θl denotes the lexical model
parameter set. The final relationship in Eqn. (7) is as a result of the assump-
tion that given ad, xt is independent of li. In Eqn. (7), p(xt|ad, θa) refers to
the acoustic model likelihood, and P (ad|qt = li, θl) is the probability of acoustic
unit given lexical unit given by the lexical model.

Figure 1(a) shows the graphical model representation of system based on
Eqns (6) and (7) for the word sequence “IS IT”. The figure shows that a se-
quence of words constrained by language model are represented by sequence
of lexical units (lih lz lih lt) as given by pronunciation lexicon. For each
lexical unit li, lexical model computes a D dimensional categorical variable
yi = [y1

i , . . . , y
d
i , . . . y

D
i ]T, ydi = P (ad|li, θl) that models a probabilistic relation-

ship between the lexical unit li and D acoustic units. Given the acoustic feature
observation sequence {x1, . . . ,xT }, the acoustic model computes the sequence
of acoustic likelihood vectors {v1, . . . ,vT }, where vt = [v1

t . . . , v
d
t , . . . , v

D
t ]T, and

vdt = p(xt|ad, θa). The local emission score at time frame t in Eqn (6) can be
seen as a match between acoustic and lexical model scores as given in Eqn (7),
which can be rewritten in terms of yi and vt as,

log p(xt|qt = li,ΘA) = log

D∑
d=1

p(xt|ad, θa) · P (ad|qt = li, θl) = logyT
i vt (8)

In standard HMM-based ASR systems the lexical model is deterministic, i.e.,
each lexical unit li is deterministically mapped to an acoustic unit aj (li 7→ aj),
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i.e.,

ydi = P (ad|qt = li, θl) =

{
1, if d = j ;
0, otherwise.

(9)

The graphical model representation of deterministic lexical model based system
at time frame t is illustrated in Figure 1(b). It is worth mentioning that in HMM-
based ASR literature due to this deterministic relationship typically distinction
is not made between acoustic and lexical units. Our main reason to refer lexical
unit li and acoustic unit aj distinctively here is to bring out the contributions
of the present paper clearly.

Depending on the subword context modeled, there are two types of ASR
systems, namely, context-independent subword unit based ASR system and
context-dependent subword unit based ASR system. State-of-the-art ASR sys-
tems are typically based on context-dependent subword units.

2.1. Acoustic Modeling

In the literature, there are two main approaches for acoustic modeling,
depending on the way acoustic units are modeled and the acoustic score
p(xt|adt , θa) is estimated, namely,

1. HMM/GMM approach (Rabiner, 1989) where acoustic score p(xt|ad, θa)
is estimated given a mixture of Gaussians that model an acoustic unit ad.
The acoustic model parameter set θa consists of set of acoustic units A and
GMM parameters (means, variances and mixture weights) corresponding
to acoustic units.

2. hybrid HMM/ANN approach (Morgan and Bourlard, 1995) where an ar-
tificial neural network (ANN) is first trained to estimate P (ad|xt, θa) and
then scaled-likelihood psl(xt|ad, θa) is estimated as

psl(xt|ad, θa) =
p(xt|ad, θa)

P (xt)
=
p(ad|xt, θa)

P (ad)
(10)

P (ad) is estimated on the training dataset through counting. The acoustic
model parameter set θa consists of set of acoustic unitsA, ANN parameters
θa (weights and biases) and priors {P (ad)}Dd=1.

In the case of context-independent subword unit based ASR system, the
acoustic unit set A is defined purely based on the pronunciation lexicon and the
minimum duration constraint (knowledge driven). The number of acoustic units
D is either K×M , where K is the number of context-independent subword units
in the lexicon and M is the minimum duration constraint (typically, M = 3) or
simply the number of context-independent subword units K.

In the case of context-dependent subword unit based ASR system, A is
usually obtained through decision tree based HMM state clustering and state
tying technique that uses pronunciation lexicon, linguistic knowledge (question
set for decision trees) and acoustic data. The number of acoustic units D varies
depending on the hyper parameters such as, state occupancy count and log-
likelihood threshold that are used during state tying and clustering (Young

6



et al., 2006). However, D is well below the total number of context-dependent
subword units possible for a given preceding context length cl, following context
length cr and M , i.e., M ·Kcr+cl+1. In the literature, this is mainly done due
to data sparsity and model complexity issues.

2.2. (Deterministic) Lexical Modeling

In context-independent subword unit based ASR system, the deterministic
relationship between lexical and acoustic units is knowledge driven. There-
fore, lexical model training is not involved. There are two types of context-
independent subword unit based ASR systems one can encounter, where

1. both acoustic units and lexical units incorporate minimum duration con-
straint, i.e., I = D = K ×M . This is a system where the relationship
between acoustic feature vectors (xt) and lexical units (li) is directly mod-
eled.

2. acoustic units are context-independent subword units without any mini-
mum duration constraint and lexical units are context-independent sub-
word units with minimum duration constraint, i.e., D = K and I = K×M .
In this case the deterministic relationship as in Eqn. (9) is represented by
a look-up table with I rows.

Context-independent subword unit based HMM/GMM systems are of the first
kind. In the past, context-independent subword unit based hybrid HMM/ANN
systems were typically of the second kind (Morgan and Bourlard, 1995).

In context-dependent subword unit based ASR system, the deterministic
relationship in Eqn. (9) is learned during acoustic model training, more precisely,
at the stage of state clustering and tying. The total number of lexical units
I = M ·Kcr+cl+1. The state tying process builds a look-up table with I rows
that maps each lexical unit li to one of the D acoustic units. In toolkits such
as HTK, this table is not explicitly seen. However, it can be obtained from
the HMM definition file (or MMF file) and tied list after state clustering and
tying (Young et al., 2006).

3. Implications of Deterministic Lexical Modeling

As described in the previous section, in standard HMM-based ASR systems
the lexical model i.e., the relationship between lexical units li ∈ L and acoustic
units ad ∈ A is deterministic and the pronunciation lexicon (θpr) determines
the lexical unit set L and the acoustic unit set A. As a consequence,

• if L is based on phone subword units (phone-based ASR system) or
grapheme subword units (grapheme-based ASR system) then A is also
based on phones or graphemes, respectively.

• if L is based on context-independent subword units (context-independent
subword unit based ASR system) or context-dependent subword units
(context-dependent subword unit based ASR system) then A is also
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based on context-independent subword units or context-dependent sub-
word units, respectively.

The first constraint deterministic lexical modeling imposes is the availability of
sufficient and well developed acoustic data in the target language or domain to
train effectively both acoustic model and lexical model. Unfortunately, many
languages may not have such well developed acoustic resources. Most of the
ASR systems use phones as lexical units. Therefore, the second constraint that
arises as a result of deterministic lexical modeling is the availability of well
developed phonetic lexicon. Again, many languages lack such well developed
lexical resources. For a language, it can happen that there are different pho-
netic lexicons based on different phone sets. For instance, in English there are
phonetic lexicons based on ARPABET, SRI phone set, UNISYN, SAMPA. The
third constraint that deterministic lexical model introduces is that ASR system
trained with one phone set can not be directly ported to or used for a new
domain which has a lexicon based on different phone set.

3.1. Lack of acoustic resources

In the literature, lack of acoustic resources has been typically addressed using
acoustic model adaptation techniques that exploit multilingual or crosslingual
acoustic and lexical resources (Kohler, 1998; Beyerlein et al., 2000; Schultz and
Waibel, 2001; Le and Besacier, 2009; Burget et al., 2010). Generally, the first
step in these techniques is the definition of common or universal phone set
across all out-of-domain languages and target language. This step ensures that
the phone sets match across languages, thus, addressing the third constraint.
The common or universal phone set can be defined either in knowledge-based
manner or data-driven manner. Multilingual acoustic model (GMMs) and lexi-
cal model (state tying) are then trained on data from out-of-domain languages.
The parameters of multilingual acoustic model are adapted on target language
data using techniques such as, bootstrapping, maximum a posteriori adaptation
(MAP) technique, maximum likelihood linear regression (MLLR) technique,
sub-space Gaussian mixture model (SGMM) approach while the out-of-domain
lexical model (state tying) is either retained (Kohler, 1998; Beyerlein et al.,
2000; Le and Besacier, 2009) or redefined using target language data (Schultz
and Waibel, 2001; Burget et al., 2010).

3.2. Lack of lexical resources

In practice, phone-based ASR system development can be seen as a two
stage process. Development of pronunciation lexicon followed by ASR system
training. Pronunciation lexicon development is a semi-automatic process, where
usually given an existing manually developed (or verified) lexicon, a grapheme-
to-phoneme converter (Bisani and Ney, 2008; Novak, 2011) is trained to extract
pronunciations for new words or pronunciation variants. The augmented lexicon
is then used to build ASR system. However, for some languages seed lexicon
may not be available to train the grapheme-to-phoneme convertor. Therefore,
alternate subword units like graphemes, which makes lexicon development easy,
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have been explored in the literature (Schukat-Talamazzini et al., 1993; Kanthak
and Ney, 2002; Killer et al., 2003; Dines and Magimai-Doss, 2007; Ko and Mak,
2014).

The success of grapheme-based ASR system primarily depends on the
grapheme-to-phoneme relationship of the language. The reason for this is as
follows. It can be seen in Eqn. (7) that the acoustic model score p(xt|ad, θa)
models the dependency between acoustic feature observation xt and acoustic
unit ad. As discussed earlier in this section, due to deterministic lexical mod-
eling in standard HMM-based ASR systems, both acoustic unit ad and lexical
unit li are the same and represent graphemes. However, the acoustic feature
observations or the cepstral features depict the envelop of short-term spectrum
which is related to phones. As a result regular is the grapheme-to-phoneme rela-
tionship, better is the acoustic model. Indeed, the use of grapheme as subword
units has mainly succeeded for languages such as, Spanish, Finnish where the
grapheme-to-phoneme relationship is regular (Kanthak and Ney, 2002; Killer
et al., 2003; Ko and Mak, 2014). For languages such as, English that have irreg-
ular grapheme-to-phoneme relationship, it has been found that grapheme-based
system performs worse compared to phone-based system (Schukat-Talamazzini
et al., 1993; Kanthak and Ney, 2002; Killer et al., 2003; Dines and Magimai-
Doss, 2007; Ko and Mak, 2014).

3.3. Lack of acoustic and lexical resources

When the language lacks both acoustic and phone lexical resources, multi-
lingual and crosslingual grapheme-based approaches that can leverage from re-
sources available in other languages have been explored (Kanthak and Ney, 2003;
Stüker, 2008a,b). Similar to multilingual phone subword modeling, multilingual
grapheme subword modeling is based on universal or multilingual grapheme set
formed by merging graphemes that are common across different languages. How-
ever, unlike multilingual phone sets, its not trivial to port multilingual grapheme
sets to new languages mainly because of two reasons. Firstly, grapheme sets of
all languages may not match or overlap. To overcome this issue, either translit-
eration or data driven mapping has been employed (Stüker, 2008b). Secondly,
sharing of acoustic models of grapheme subword units across languages is not
evident, since the relationship between graphemes and phones may differ consid-
erably across languages. Investigations until now have shown that multilingual
grapheme-based ASR systems generally perform worse compared to monolingual
grapheme-based ASR systems (Kanthak and Ney, 2003; Stüker, 2008a,b). This
is unlike phone subword units where it has been shown that multilingual acous-
tic models can outperform monolingual acoustic models (Schultz and Waibel,
2001).

4. Probabilistic Lexical Modeling

In Section 2 we explained standard HMM-based ASR where the lexical model
is deterministic. In this section, we present three approaches which learn prob-
abilistic lexical model by training a second HMM, whose states represent lexical
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units and each state li is parameterized by a categorical distribution yi. The
categorical distribution tends to capture a probabilistic relationship between
a lexical unit li and D acoustic units. We present these techniques from the
perspective of hybrid HMM/ANN system. However, it should be noted that
these approaches are equally applicable to HMM/GMM system (Rasipuram
and Magimai.-Doss, 2013b). These approaches presume that acoustic unit set
A is defined and trained acoustic model is available.

4.1. Kullback-Leibler Divergence based HMM

In the first approach, probabilistic lexical model is learned through estimates
of P (ad|xt, θa) in the framework of Kullback-Leibler divergence based HMM
(KL-HMM) (Aradilla et al., 2008). The feature observations for the second
HMM are zt = [z1

t . . . , z
d
t , . . . , z

D
t )]T where zdt = P (ad|xt, θa). It is worth men-

tioning that KL-HMM was originally developed from the perspective of acoustic
modeling (Aradilla et al., 2008), as an alternative to Tandem approach (Her-
mansky et al., 2000). However, as shown recently and briefly explained in
this section, KL-HMM is a probabilistic modeling approach (Rasipuram and
Magimai.-Doss, 2013a,b).

In KL-HMM, as both feature observations and state distributions are prob-
ability vectors, local score at each HMM state is the Kullback-Leibler (KL)
divergence between feature observations zdt and categorical distributions yi,

SKL(yi, zt) =

D∑
d=1

ydi log
(ydi
zdt

)
(11)

The above equation represents the case where yi is the reference distribution
and the local score is denoted as SKL. However, KL-divergence is an asymmet-
ric measure. Thus, there are other possible ways to estimate KL-divergence,
namely,

1. Reverse KL-divergence (SRKL): In this case the acoustic state probability
vector zt is the reference distribution

SRKL(yi, zt) =

D∑
d=1

zdt log
(zdt
ydi

)
(12)

2. Symmetric KL-divergence (SSKL):

SSKL(yi, zt) =
1

2
· [SKL + SRKL] (13)

The categorical distributions {yi}Ii=1 are estimated by Viterbi expectation
maximization algorithm which minimizes a cost function based on SKL or SRKL

or SSKL. Finally, the decoding is performed by replacing the log-likelihood
based score in the standard Viterbi decoder with KL-divergence based local
score.

10



4.2. Tied Posterior

In the second approach, probabilistic lexical model is learned through scaled-
likelihood estimates psl(xt|ad, θa) (see Eqn. (10)). The approach referred to as
tied posterior approach (Rottland and Rigoll, 2000), was originally proposed
in the framework of hybrid HMM/ANN to build context-dependent subword
unit based ASR system using an ANN trained to classify context-independent
subword unit (phones). The emission likelihood at each context-dependent state
qt = licd is estimated as,

p(xt|qt = licd) =

D∑
d=1

wd
i · psl(xt|adci) (14)

where adci is context-independent phone, D is the number of context-independent
phones, psl(xt|adci) is the scale-likelihood (see Eqn. 10), 0 ≤ wd

i ≤ 1 is the weight

corresponding to context-dependent phone licd and
∑D

d=1 w
d
i = 1. The weights

wd
i are estimated by maximizing the cost function based on log-likelihood i.e.,

log p(xt|qt = licd). Comparison between (14) and (7) shows that licd corresponds
to lexical unit li, adci corresponds to acoustic unit ad and wd

i corresponds to
ydi = P (ad|li, θl). In other words tied posterior approach is a HMM-based ASR
approach that incorporates probabilistic lexical modeling.

Tied posterior approach can be interpreted along the lines similar to KL-
HMM approach where the states of the secondary HMM are parameterized by
yi. However, the feature observations used to train the HMM in tied posterior
approach are vectors of scaled-likelihood vt = [v1

t . . . , v
d
t , . . . , v

D
t ]T where vdt =

psl(xt|ad, θa), and the local score is

Stied(yi,vt) = log
( D∑
d=1

ydi .v
d
t

)
= log

(
yT
i vt

)
(15)

Like KL-HMM, the parameters {yi}Ii=1 can be estimated using Embedded
Viterbi training algorithm, and the decoding can be performed by replacing
the log-likelihood based score in standard Viterbi decoder with the local score
Stied(yi,vt).

4.3. Scalar Product HMM

In KL-HMM system, local score is based on KL-divergence. However, two
posterior probability distributions can be compared with different cost functions
such as, scalar product, Bhattacharya distance (Soldo et al., 2011). It is possible
to envisage a secondary HMM where local score is based on scalar product

SSP (yi, zt) = log
(
yT
i zt
)

(16)

We refer to this system as scalar product HMM (SP-HMM). Again, {yi}Ii=1 can
be estimated using embedded Viterbi training algorithm, and the decoding can
be performed by replacing the log-likelihood based score in standard Viterbi
decoder with SSP (yi,vt).

The SP-HMM is of particular interest here for the following reasons,
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1. it can be seen as a particular case of tied posterior approach where the
priors in the scaled-likelihood estimation are dropped or assumed to be
equal.

2. as discussed in this section, SP-HMM and KL-HMM differ only in terms
of the cost function used for parameter estimation and the local score used
during decoding.

In the case of KL-HMM, Tied and SP-HMM approaches, the lexical model
parameter set θl = {yi}Ii=1. The parameter estimation and decoding with
KL-HMM, Tied and SP-HMM approaches is elaborated in Appendix A. For
more details about the parameter estimation in KL-HMM, the reader is referred
to (Aradilla, 2008). An issue that is common to all the probabilistic lexical
modeling approaches discussed in this section is the robust estimation of {yi}Ii=1,
especially when the lexical units represent context-dependent subword units.
This can be addressed by clustering and tying the states of KL-HMM or tied
posterior or SP-HMM systems using the approach proposed in (Imseng et al.,
2012).

4.4. Similarities and dissimilarities between KL-HMM, Tied and SP-HMM

In the three probabilistic lexical modeling approaches discussed, local score
estimation at time frame t can be seen as a match between “bottom-up” acoustic
information zt or vt and “top-down” lexical information yi related to latent
variable ad, as shown in Figure 1(a). Yet another similarity between the three
approaches is that they reduce to standard hybrid HMM/ANN system described
earlier in Section 2 when the lexical model is deterministic, i.e., yi is Kronecker
delta distribution.

Despite these similarities, KL-HMM approach has additional advantages
compared to Tied and SP-HMM approaches. We discuss them briefly in this sec-
tion. From the communication theory perspective (Bahl et al., 1983), standard
HMM-based ASR approach can be seen as a communication problem where
noisy output of acoustic channel (i.e., sequence of acoustic likelihood vectors
{v1, . . . ,vT } or sequence of acoustic posterior vectors {z1, . . . , zT }) is decoded
by a linguistic decoder, which implies comparison to possible sequences of lexi-
cal model parameter vectors ( for e.g. {yi, . . . yg} where i, g ∈ {1, . . . , I}) with
lexical transition constraints (P (qt = li|qt−1 = lj)). Thus, standard HMM-
based ASR inherently gives more importance to lexical model and consequently
relies on purity or correctness of the lexical knowledge imparted into the sys-
tem. This aspect has particularly been observed in the case of pronunciation
variation modeling of conversational speech where one of the best approach is to
add pronunciation variants, i.e., improve the deterministic lexical model (Strik
and Cucchiarini, 1999).

The KL-HMM approach using local score SKL(yi, zt) where yi is the refer-
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ence distribution reflects the HMM-based ASR. More specifically,

SKL(yi, zt) =

D∑
d=1

ydi log
(ydi
zdt

)
=

D∑
d=1

ydi log ydi −
D∑

d=1

ydi log zdt (17)

The first part of Eqn. (17) or the entropy of probability distribution yi takes
into account the uncertainty in the lexical model, and the second part or the
cross entropy compares the acoustic model against the lexical model. It is trivial
to see the point made above about the purity of lexical knowledge by turning
yi into deterministic lexical model i.e., Kronecker delta distribution. In such
a case, the hybrid HMM/ANN approach (Bourlard and Morgan, 1994) where
acoustic model estimates P (qt = ad|xt, θa) rather than psl(xt|qt = ad, θa) can
be seen as a special case of KL-HMM approach.

KL-HMM approach, however, is capable of reversing the importance given
to acoustic model and lexical model by changing the local score to SRKL(yi, zt),
i.e.,

SRKL(yi, zt) =

D∑
d=1

zdt log
(zdt
ydi

)
=

D∑
d=1

zdt log zdt −
D∑

d=1

zdt log ydi (18)

It can be observed from Eqn. (18) that the first quantity or the entropy of
probability distribution zt is independent of lexical state and the matching only
takes place with the second quantity, i.e., the cross entropy between distributions
zt and yi, with zt as the reference. The local score SSKL(yi, zt) is the case where
equal importance is given to both acoustic model and lexical model.

Yet another distinction between KL-HMM and Tied/SP-HMM approach
is that, in KL-HMM the local score is discriminative (Blahut, 1974), i.e., the
acoustic model and lexical model is matched discriminatively, irrespective of the
type of local score used, i.e., SKL(yi, zt) or SRKL(yi, zt) or SSKL(yi, zt). We
use these distinctions to better explain our findings in Section 6.

The above differences among different KL-divergence based local scores is
from decoding perspective. The details on the role of different cost functions
in estimating yi i.e., from training perspective is presented in (Rasipuram and
Magimai.-Doss, 2013a).

4.5. Potential of Probabilistic Lexical Modeling

In the case of probabilistic lexical modeling each lexical unit li is related to
all acoustic units {ad}Dd=1 in probabilistic manner. As a consequence,
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• the parameters of acoustic model θa and lexical model θl can be trained on
independent set of resources. In the light of that, previous works on KL-
HMM such as (Imseng et al., 2011, 2012; Rasipuram et al., 2013a) suggest
that ASR systems can be rapidly developed using language-independent
acoustic model and training only the lexical model on target language or
domain data.

• L and A can model different contextual units. For instance, as in previous
work on KL-HMM (Magimai.-Doss et al., 2011; Imseng et al., 2011, 2012;
Rasipuram et al., 2013a), L can be based on context-dependent subword
units while A can be based on context-independent subword units. These
ASR systems have been found to yield performance comparable to or
better than standard context-dependent subword unit based HMM/GMM
system.

• it is not necessary that subword unit set used for defining acoustic units
should be same as subword unit set used for defining lexical units. The lex-
ical model can capture the relationship between the distinct subword unit
sets through acoustics. This flexibility has been exploited to build ASR
systems where the acoustic unit set A is based on phones and the acoustic
model is trained on auxiliary acoustic and lexical resources, and the lexi-
cal unit set L is based on graphemes and the lexical model is learned on
target language or domain data (Magimai.-Doss et al., 2011; Imseng et al.,
2011; Rasipuram et al., 2013a; Rasipuram and Magimai.-Doss, 2013b). It
has been observed that this grapheme-based ASR approach could result
in better or comparable performance even for languages such as English
(where grapheme-to-phoneme relationship is irregular) compared to two
stage approach where G2P training is followed by ASR system develop-
ment (Rasipuram and Magimai.-Doss, 2013a).

Given these findings we hypothesize that, compared to conventional ap-
proach of rapid development of ASR system through acoustic model adaptation
of deterministic lexical model based ASR system, ASR systems can be rapidly
and effectively built with probabilistic lexical modeling approach,

• by training a “shared” multilingual phone based language-independent
acoustic model and

• learning a probabilistic relationship between graphemes of target language
and multilingual phones using target language or domain acoustic data
(speech data with word level transcriptions).

5. Experimental Setup

We validate our hypothesis by training a single language-independent multi-
lingual acoustic model and conducting ASR studies on three different resource-
constrained tasks where only lexical model is trained, namely,
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System
Acoustic model Lexical Model

Acoustic
Approach

Train/ Lexical
Approach

Train/
units Adapt units Adapt

KL-HMM CI ANN LI CD Prob LD
SP-HMM CI ANN LI CD Prob LD
Tied-HMM CI ANN LI CD Prob LD

Tandem (CI+)cCD (ANN+)GMM (LI+)LD CD Det LD

MAP cCD GMM LI+LD CD Det LI
MLLR cCD GMM LI+LD CD Det LI

HMM/GMM cCD GMM LD CD Det LD

Table 1: Overview of different systems. CI denotes context-independent subword units, cCD
denotes clustered states of context-dependent subword unit based HMM/GMM system and
CD denotes context-dependent subword units. LI denotes language-independent data is used
to train or adapt the model, LD denotes language-dependent data is used to train or adapt the
model and LI+LD denotes both language-independent and language-dependent data is used
to train the model. In Tandem, the ANN trained to classify context-independent acoustic
units is used to extract features for HMM/GMM system. This is indicated through (CI+),
(ANN+) and (LI+) notation. Det denotes lexical model is deterministic and Prob denotes
lexical model is probabilistic.

• Non-native accented speech recognition task that lacks both acoustic re-
sources and “well developed” phonetic lexical resources (typically, phone
lexicon includes native speaker pronunciations). In the literature, non-
native accented ASR research mainly has focused on acoustic model adap-
tation. We investigate it on English where grapheme-to-phoneme relation-
ship is irregular.

• Rapid development of ASR system for a new language that is not present in
language-independent data using minimal acoustic and lexical resources.
We demonstrate this aspect on Greek ASR task.

• Development of ASR system for a minority language, particularly, Scot-
tish Gaelic which has only 60,000 speakers, lacks sufficient acoustic re-
sources and does not have any phonetic lexical resources. The grapheme-
to-phoneme relationship of Gaelic is regular, and many-to-one as the
number of graphemes in a word is significantly higher than number of
phones (Rasipuram et al., 2013a).

We compare systems based on probabilistic lexical modeling approaches de-
scribed in Section 4 with standard HMM-based systems with different capabil-
ities. Table 1 provides an overview of the systems that are investigated. The
non-native and minority language ASR studies build on top of our preliminary
investigations that focussed on KL-HMM and the use of word-internal context-
dependent subword units (Imseng et al., 2011; Rasipuram et al., 2013a).
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5.1. Databases and Setup

In this section, we describe the different databases and the setup of the
systems used.

5.1.1. Language-Independent Dataset

A part of SpeechDat(II) corpus which contains gender, dialect and age bal-
anced native speech from multiple language speakers, more precisely, British
English, Italian, Spanish, Swiss French and Swiss German, is used as language
independent dataset. Each language has approximately 12 hours of speech data,
totally amounting to 63 hours. All the SpeechDat(II) lexicons use SAMPA sym-
bols. A multilingual phone set of 117 units obtained by merging phones that
share the same symbols across the above mentioned five languages, serves as
the acoustic (or the subword) unit set.

5.1.2. Non-native HIWIRE

HIWIRE corpus contains utterances spoken by natives of France (31 speak-
ers), Greece (20 speakers), Italy (20 speakers) and Spain (10 speakers) (Segura
et al., 2007). The utterances contain spoken pilot orders made of 133 words.
The database provides grammar with a perplexity of 14.9. The HIWIRE task
does not have training data. It only includes adaptation data (50 utterances
per speaker, approx. 150 min) and test data (50 utterances per speaker, ap-
prox 150 min). To simulate limited resources the amount of adaptation data is
continuously reduced from 150 min to 3 min (specifically, 150 min, 120 min, 90
min, 64 min, 32 min, 16 min, 10 min, 3 min) by picking a subset of utterances
as in (Imseng et al., 2011). The grapheme-based lexicon was transcribed using
27 graphemes (26 English alphabets, and silence).

A noticeable difference between (Imseng et al., 2011) and this paper is that
in the previous work lexicon based on ARPABET phone set supplied with HI-
WIRE corpus was used where as in this work we use lexicon based on SAMPA
phone set. The lexicon based on SAMPA phone set was created by borrowing
pronunciations of 102 words that are in common from the SpeechDat(II) English
lexicon. For the remaining 31 words, we obtained pronunciations by mapping
ARPABET phones to SAMPA phones. The main reason to use SAMPA phone
set based lexicon in this work is to have a shared subword units set between
out-of-domain lexicon and target domain lexicon. This allowed the evaluation of
acoustic model adaptation based systems (MAP and MLLR) discussed later in
Section 5.2.2. Also, native English is present in out-of-domain resources. There-
fore, in the case of KL-HMM, SP-HMM and tied approaches, the lexical model
parameters trained on SpeechDat(II) English are adapted using HIWIRE adap-
tation data. Additionally, we could also investigate the case where no lexical
model or acoustic model adaptation is performed.

5.1.3. Greek SpeechDat(II)

The experimental setup is based on (Imseng et al., 2012). Training set, devel-
opment set and test set contains 13.5 hours of speech (1500 speakers), 1.5 hours
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of speech (150 speakers) and 6.9 hours of speech (350 speakers), respectively.
Two optimistic language models, one from the sentences in the development set
and other from the sentences in the test set are built. The phone lexicon is
transcribed in SAMPA phone set using 31 phones (including silence). To sim-
ulate limited resources, the amount of available data was continuously reduced
from 13.5 hours to 5 minutes (specifically, 800 min, 300 min, 150 min, 75 min,
37 min, 18 min, 9 min, 5 min). All the systems were evaluated on the same test
set. The test set contains 10k unique words. The performance of phone-based
KL-HMM, MAP, MLLR and HMM/GMM systems presented in (Imseng, 2013,
Figures 4.3 and 4.4) is taken as reference in this paper.

As this study focusses on grapheme-based ASR systems, grapheme lexicon
was developed using 25 graphemes that includes 24 Greek alphabets and silence.
The acoustic model adaptation systems impose the constraint that subword unit
sets of language-independent data and target language data match. As a result,
grapheme-based acoustic model adaptation systems were not directly applicable
to Greek ASR task, as Greek graphemes are different from Roman graphemes.
This necessitated transliteration of Greek alphabets in terms of English (Roman)
alphabets, as given in (Rasipuram et al., 2013b, Table 1), for grapheme-based
acoustic model adaptation systems described later in Section 5.2.2.

5.1.4. Scottish Gaelic

The Scottish Gaelic speech corpus was collected by CSTR, University of
Edinburgh. The experimental setup is similar to (Rasipuram et al., 2013a).
Corpus consists of speech from 46 speakers. The training set consists of 22
speakers, 2389 utterances amounting to 3 hours of speech, the development set
consists of 12 speakers, 1112 utterances amounting to 1 hour of speech and the
test set consists of 12 speakers, 1317 utterances amounting to 1 hour of speech.
The speakers in training data, development data and test data are different.
The vocabulary size is 5k unique words. The database does not contain phone
pronunciation lexicon. The grapheme-based lexicon containing 83 graphemes (5
vowels, 5 long vowels, 23 broad consonants, 23 slender consonants, 26 consonants
and silence) is obtained by considering broad and slender Gaelic consonants as
separate graphemes. We refer to this lexicon as knowledge-based grapheme
lexicon.

In this study, we also investigate a grapheme lexicon that does not use any
knowledge, such as broad and slender consonants. We refer to it as orthography-
based lexicon. This lexicon is transcribed in traditional way from the orthog-
raphy of words and includes 32 Gaelic graphemes (25 alphabets, 5 accents and
silence).

Table 2 summarizes the information about different corpora used.

5.2. Systems

In this section, we provide details about different systems given in Table 1
by grouping them into three categories.
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Corpus (Description) Language
# of Subword units Train data Test data
Phones Graphemes (in min) (in min)

SpeechDat(II) English 45 27 744 n.a
(Native speech French 42 43 810 n.a
sampled at 8K German 59 42 846 n.a
used to train Italian 52 34 690 n.a
the acoustic model) Spanish 32 34 690 n.a

(data used to train 117 47 3780 n.a
multilingual
acoustic model)

HIWIRE English 42 27 0 to 150 150
(Non-native speech from
natives of France, Spain,
Italy and Greece)

SpeechDat(II) Greek 31 25 5 to 800 360
(Native Greek speech)

Scottish Gaelic Scottish n.a. 83 or 32 180 60
(Broadcast news data) Gaelic

Table 2: Overview of the tasks and the respective corpora used in the study

5.2.1. Probabilistic Lexical Modeling based Systems

We use an off-the-shelf three layer multilingual multilayer perceptron (MLP)
trained on language-independent dataset to classify 117 context-independent
multilingual phones as acoustic model. More recently, MLPs with deep archi-
tectures classifying context-dependent clustered phone units have gained lot of
attention (Hinton et al., 2012). In the present work, we use the off-the-shelf
MLP for the following reasons,

• The exactly same off-the-shelf MLP has been used in the previous studies
on the ASR tasks described earlier (Imseng et al., 2011, 2012). Therefore,
the results from the present study are directly comparable to the previous
studies.

• In recent work, it has been shown that KL-HMM retains its benefit over
standard hybrid HMM/ANN system even when MLP that classifies clus-
tered context-dependent phone units is used (Imseng et al., 2013; Razavi
et al., 2014).

The use of deep MLP architectures and context-dependent acoustic units in
probabilistic lexical modeling framework is open for further research. Lexical
model is trained for each of the probabilistic lexical modeling systems, namely,
KL-HMM, SP-HMM and Tied-HMM as described earlier in Section 4. We used
SRKL as the local score for the KL-HMM system based on more recent investi-
gations (Rasipuram and Magimai.-Doss, 2013a; Imseng et al., 2012; Rasipuram
et al., 2013a).
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5.2.2. Acoustic model adaptation based systems

We present ASR systems based on standard MAP and MLLR adapta-
tion techniques. For this purpose, multilingual context-dependent phone-
based and grapheme-based HMM/GMM systems were trained on the language-
independent data set. The phone-based HMM/GMM system used multilingual
phones as subword units.

All the five considered European languages use Roman alphabet. Therefore,
multilingual grapheme-based HMM/GMM system was developed by forming
multilingual grapheme set of 47 units by merging graphemes that are common
across the languages in language-independent data set. Accents and diacritics
are treated as separate graphemes.

Each context-dependent subword unit was modeled using 3 HMM states and
each HMM state is modeled using mixture of 16 Gaussians. Then, MAP adap-
tation or MLLR adaptation is performed using speech data from the target lan-
guage or domain. As described earlier in Section 5.1.3, for Greek task transliter-
ated grapheme based lexicon was used while performing MAP or MLLR adap-
tation.

5.2.3. Standard language-dependent acoustic model and lexical model based ASR
systems

These are HMM/GMM ASR systems where both acoustic model and lex-
ical model are trained on language-dependent data. We investigate two sys-
tems, the first system uses standard cepstral features as feature observations
(HMM/GMM system) and the second system uses Tandem features as fea-
ture observations (Tandem system) (Hermansky et al., 2000). As indicated
in Table 1, Tandem system exploits both language-dependent and language-
independent resources similar to probabilistic lexical model based systems and
acoustic model adaptation based systems.

The Tandem features were extracted by transforming 117 dimensional out-
put of the same multilingual MLP described earlier in Section 5.2.1, with log
transformation followed by principal component analysis. The dimensionality
of the output features is either kept the same or reduced to 39 dimensions.

The HMM/GMM systems used 39 dimensional PLP cepstral features (c0 −
c12 + ∆ + ∆∆) as acoustic features. All the phone subword based systems
use phonetic question set and grapheme subword based systems use singleton
question set for decision tree state tying procedure. The number of mixture
components for each of the tasks and the training conditions were tuned on the
development set. Additionally, for tandem systems, the dimensionality of the
feature observations (either 117 dimensions or 39 dimensions) was also tuned
on the development set. HTK toolkit was used to build all HMM/GMM sys-
tems (Young et al., 2006).

6. Results

The present section is organized as follows. First, we present results on
rapid development of ASR with both acoustic and lexical resource constraints
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on HIWIRE and Greek ASR tasks. Later, we present results on minority lan-
guage speech recognition using Scottish Gaelic task. The performance of all the
systems is reported in terms of word accuracy.

System
3 min 10 min 120 min 150 min

Graph Phone Graph Phone Graph Phone Graph Phone

KL-HMM 90.7 93.3 94.0 94.6 98.0 98.0 98.1 98.1
SP-HMM 91.4 93.3 92.1 94.2 95.0 95.6 95.0 95.6
Tied-HMM 86.4 92.5 88.6 93.2 94.3 95.3 94.4 95.4

MAP 86.7 91.6 88.9 92.6 96.7 97.9 96.9 98.0
MLLR 86.2 92.4 87.3 94.3 92.2 96.0 91.9 96.0

Tandem 39.5 55.3 68.9 85.4 95.4 96.2 95.9 96.5

HMM/GMM 26.7 48.3 64.8 82.6 95.8 96.6 96.4 96.8

Table 3: Performance in terms of word accuracy on HIWIRE test set for various systems using
various amounts of HIWIRE adaptation data

System
5 min 37min 300 min 800 min

Graph Phone Graph Phone Graph Phone Graph Phone

KL-HMM 78.0 80.3 81.4 83.0 83.8 84.4 84.5 84.8
SP-HMM 71.3 73.8 75.9 76.3 77.8 79.3 78.7 79.6
Tied-HMM 66.6 68.6 71.3 73.6 74.8 76.3 76.4 77.6

MAP 54.7 77.4 68.7 79.3 78.0 82.7 78.0 83.9
MLLR 50.0 77.3 52.6 78.7 52.8 79.1 52.8 78.7

Tandem 55.7 66.9 76.0 79.7 81.6 83.8 82.4 84.9

HMM/GMM 54.6 63.5 74.5 81.2 82.3 84.5 83.5 85.2

Table 4: Performance in terms of word accuracy on Greek test set for various systems using
various amounts of Greek data

6.1. Rapid ASR development

Tables 3 and 4 summarize the performance in terms of word accuracy on HI-
WIRE and Greek tasks for various amounts of language-dependent training data
for KL-HMM, SP-HMM, Tied-HMM, Tandem, MAP, MLLR and HMM/GMM
systems. The results are analysed using Figures 2 and 3 along two aspects,
namely, comparison of different probabilistic lexical model based systems (Sec-
tion 6.1.1), comparison of probabilistic lexical model based systems against
acoustic model adaptation based systems and standard HMM/GMM systems
(Section 6.1.2).

6.1.1. Probabilistic Lexical Modeling based Systems

Figures 2(a) and 2(b) present the performance on HIWIRE and Greek tasks
respectively, for phone- and grapheme-based KL-HMM, SP-HMM and Tied
posterior systems with increasing amount of training data. The figures show
that KL-HMM system consistently performs better compared to SP-HMM and
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Tied-HMM systems for both phone and grapheme subword units. Further-
more, on HIWIRE task the difference is more pronounced when the systems use
graphemes as subword units.

6.1.2. Comparison of probabilistic lexical modeling based system with other Sys-
tems

Figures 3(a) and 3(b) plot the performance on HIWIRE and Greek tasks re-
spectively, with varying amount of training data for phone-based and grapheme-
based KL-HMM, MAP, MLLR, Tandem and HMM/GMM systems. We can
draw the following inferences from the figures,

1. KL-HMM based systems irrespective of the type of subword units used,
phones or graphemes, tend to perform better than (when the training data
is less) or comparable (when training data is increased) to phone-based
or grapheme-based deterministic lexical model based systems. On both
HIWIRE and Greek tasks, the difference in performance between phone
and grapheme-based systems is minimal for KL-HMM approach compared
to all other approaches.

2. On both HIWIRE (where grapheme-to-phoneme relationship is irregular)
and Greek (where grapheme-to-phoneme relationship is regular) tasks it
can be been observed that deterministic lexical model based systems are
more suitable for phones than graphemes.
On HIWIRE task where lexical units and acoustic units match or have
shared unit set acoustic model adaptation based systems perform bet-
ter than HMM/GMM or Tandem systems. However, the performance of
acoustic model adaptation systems using graphemes is worse than with
phones as subword units. On Greek task where transliterated grapheme
based lexicon was used for acoustic model adaptation, grapheme-based
systems perform significantly worse compared to phone-based acoustic
model adaptation or HMM/GMM or Tandem systems. The results also
show that in case of grapheme subword unit set mismatch, transliteration
may not be the best possible alternative. In such cases, data driven map-
ping of grapheme subword units could potentially be investigated (Stüker,
2008b).
When the available training data is larger, phone-based deterministic lex-
ical model systems for both HIWIRE and Greek tasks perform compara-
ble to phone-based KL-HMM system (though not the same technique, for
e.g., in HIWIRE it is MAP and in Greek it is HMM/GMM and Tandem).
However, in case of grapheme-based systems, this trend is not observed.
The results, inline with the other multilingual grapheme-based ASR stud-
ies (Kanthak and Ney, 2003; Killer et al., 2003; Stüker, 2008a) show that
the use of multilingual grapheme models across languages does not appear
evident, since the relationship between graphemes and phones may differ
considerably across languages.

3. Monolingual HMM/GMM systems and acoustic model adaptation based
systems with shared unit set (i.e., on HIWIRE task) that exploit multi-
lingual speech tend to converge with the increase in acoustic resources.
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Figure 2: Comparison between probabilistic lexical modeling based systems with increasing
amount of target domain or language training data
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4. Compared to HMM/GMM approach, Tandem approach is beneficial
mainly in low acoustic resource conditions.

5. Comparing MAP and MLLR approaches, it can be observed that MLLR
is better than MAP mainly in very low acoustic resource conditions.

As mentioned in Section 5.1.2, it is possible to directly decode HIWIRE test
set using language-independent acoustic and lexical models without any adapta-
tion. Table 6.1.2 presents the performance on HIWIRE task for KL-HMM, SP-
HMM, Tied-HMM and language-independent HMM/GMM systems. The lexical
model for KL-HMM, SP-HMM and Tied-HMM systems is trained on Speech-
Dat(II) English data. It can be observed that for both phone and grapheme
subword units KL-HMM system performs better than SP-HMM, Tied-HMM
and LI HMM/GMM systems. Also, it is interesting to note that irrespective of
subword units used, the performance of all the probabilistic lexical model based
systems (that use context-independent phones as acoustic units) is better than
LI HMM/GMM system (that use context-dependent phones as acoustic units).

System Grapheme Phone

KL-HMM 90.0 94.0
SP-HMM 87.3 93.2
Tied-HMM 86.0 91.6

LI HMM/GMM 84.2 91.3

Table 5: Performance in terms of word accuracy on HIWIRE test set using system trained
on SpeechDat(II) data. LI HMM/GMM system refers to multilingual HMM/GMM system
trained on language-independent (LI) data

6.2. Scottish Gaelic ASR

Table 6 presents the performance on test set of Scottish Gaelic corpus
for KL-HMM, SP-HMM, Tied-HMM, Tandem and HMM/GMM systems for
orthography-based and knowledge-based grapheme lexicons. MAP system was
not investigated for knowledge-based lexicon due to the mismatch between
acoustic unit set and lexical unit set. It can be observed that the sys-
tems using knowledge-based grapheme lexicon perform better than systems us-
ing orthography-based grapheme lexicon. This shows that integrating ortho-
graphic knowledge specific to language in grapheme lexicon can help in im-
proving the performance of grapheme-based ASR system. KL-HMM systems
perform better than all other systems. Tandem system performs better than
HMM/GMM system. Furthermore, MAP, SP-HMM and Tied-HMM systems
perform worse compared to Tandem and HMM/GMM systems. Finally, in the
case of orthography-based lexicon MAP system is not able to capitalize from
the language-independent data.

6.3. Analysis

From the experiments presented earlier in this section, it can be observed
that despite using exactly same acoustic model, the performance trends of dif-
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Figure 3: Comparison of phone-based and grapheme-based KL-HMM systems against acoustic
model adaptation based systems and standard HMM/GMM system with increasing amount
of target domain or language training data
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System
Orthography-based Knowledge-based

lexicon lexicon

KL-HMM RKL 67.9 72.7
SP-HMM 52.0 56.7
Tied-HMM 54.5 59.7

MAP 55.1 –
Tandem 66.5 69.9

HMM/GMM 64.2 68.0

Table 6: Performance in terms of word accuracy on Gaelic test set for various systems

ferent probabilistic lexical modeling approaches KL-HMM, SP-HMM and Tied-
HMM are different. KL-HMM system performs better than deterministic lexi-
cal model based systems in both under-resourced and well resourced conditions.
While, SP-HMM and Tied-HMM systems show gains over the deterministic lex-
ical model based systems mainly in under-resourced conditions (see Tables 3
and 4). We attribute the superiority of KL-HMM system to its abilities dis-
cussed in Section 4.4 such as, being able to give more importance to acoustic
model than lexical model through the use of local score SRKL(yi, zt), discrimi-
native local score etc.

In order to ascertain it, we conducted a study on HIWIRE task with 150
minute target data condition where the lexical model of KL-HMM system
trained using local score SRKL is used and decoding is performed with different
local scores, namely, SKL(yi, zt), SSKL(yi, zt), Stied(yi,vt) and SSP (yi, zt).
The study was conducted for both grapheme-based and phone-based systems.
Table 7 presents the results of this study.

Local score
grapheme phone

for decoding

SRKL(yi, zt) 98.1 98.1

SKL(yi, zt) 97.8 97.6

SSKL(yi, zt) 98.1 98.1

SSP (yi, zt) 96.5 96.7

Stied(yi, zt) 97.3 97.1

Table 7: Comparison across different local scores used during decoding. All the system used
KL-HMM trained lexical model with local score SRKL(yi, zt).

It can be observed that decoding with KL-divergence based local scores
SRKL(yi, zt), SSKL(yi, zt) and SKL(yi, zt) results in better performance com-
pared to decoding with SSP (yi, zt) and Stied(yi,vt) local score, ascertaining the
fact that KL-divergence is a discriminative local score. Furthermore, decoding
with SKL(yi, zt), SSP (yi, zt) and Stied(yi,vt) yields lower performance than
decoding with SRKL(yi, zt). However, decoding with SSKL(yi, zt) that gives
equal importance to both acoustic and lexical model yields performance similar
to SRKL(yi, zt). It can also be noted that decoding the KL-HMM lexical model
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with SSP (yi, zt) and Stied(yi,vt) results in better performance compared to
SP-HMM trained and Tied-HMM trained lexical model, respectively (see Ta-
ble 3). This indicates that KL-HMM approach with local score SRKL is yielding
a better lexical model compared to SP-HMM or Tied-HMM approaches. Deeper
investigations on these aspects is out-of-the-scope of the present paper.

6.4. Comparisons to Literature

In the literature, there are studies that have been reported on HIWIRE
task (Segura et al., 2007; Gemello et al., 2007). Despite using the same adap-
tation and test sets, the studies reported in this paper and the literature differ
in terms of the sampling frequency of speech data, type and amount of the out-
of-domain data used. First, we compare studies where any kind of adaptation
was not performed,

• in (Segura et al., 2007), TIMIT trained monophone HMM/GMM system
without adaptation was found to achieve performance of 91.4% word ac-
curacy.

• in (Gemello et al., 2007), monophone hybrid HMM/ANN system using
MLP trained on TIMIT, WSJ0, WSJ1 and Vehiclus-ch0 corpora was found
to achieve performance of 90.5% word accuracy. Furthermore, monophone
hybrid HMM/ANN system using MLP trained on LDC Macrophone and
SpeechDat Mobile corpora and HIWIRE speech downsampled to 8kHz
was found to achieve performance of 88.4% word accuracy.

As shown in Table 6.4, the phone-based KL-HMM system performs better
compared to the studies reported in the literature and grapheme-based KL-
HMM system performs comparable compared to studies reported in the litera-
ture. It can also be observed from Tables 6.4 and 6.1.2 that the phone-based
LI HMM/GMM system performs similar to the above mentioned systems from
the literature, where as the grapheme-based LI HMM/GMM system performs
worse.

System
Out-of-domain Sampling

Performance
data frequency

HMM/GMM TIMIT 16kHz 91.4

Hybrid HMM/ANN
TIMIT, WSJ0,

16kHz 90.5
WSJ1, Vehiclus-ch0

Hybrid HMM/ANN
LDC Macrophone,

8kHz 88.4
SpeechDat Mobile

KL-HMM Grapheme SpeechDat(II) 8kHz 90.0

KL-HMM Phone SpeechDat(II) 8kHz 94.0

Table 8: Comparison of the performance in terms of word accuracy on HIWIRE test set
without any adaptation.

There are also studies on HIWIRE that report results with acoustic model
adaptation where 150 min of HIWIRE adaptation data is used,
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• in (Segura et al., 2007), it has been found that TIMIT trained
HMM/GMM system with MLLR adaptation achieves performance of
97.25% word accuracy.

• in (Gemello et al., 2007), linear hidden network (LHN) based adaptation
in hybrid HMM/ANN framework achieved performance of 98.2% on 16kHz
sampled HIWIRE data. MLP trained on data from TIMIT, WSJ0, WSJ1
and Vehiclus-ch0 was adapted on HIWIRE data using LHN.

As shown in the Table 6.4, hybrid HMM/ANN system using LHN based
adaptation performs similar to phone-based and grapheme-based KL-HMM sys-
tems. In (Imseng et al., 2011), on HIWIRE task the performance of grapheme-

System
Out-of-domain Sampling

Performance
data frequency

MLLR TIMIT 16kHz 97.25

LHN
TIMIT, WSJ0,

16kHz 98.2
WSJ1, Vehiclus-ch0

KL-HMM Grapheme SpeechDat(II) 8kHz 98.1

KL-HMM Phone SpeechDat(II) 8kHz 98.1

Table 9: Comparison of the performance in terms of word accuracy on HIWIRE test set with
adaptation

based KL-HMM system using low amounts of HIWIRE adaptation data (3min,
10min) was significantly poor compared to phone-based KL-HMM system. How-
ever, in this work the gap has significantly reduced as the lexical model param-
eters trained on SpeechDat(II) English are adapted using HIWIRE adaptation
data.

In the case of Greek task, as previously mentioned phone-based KL-HMM,
MLLR, MAP, and HMM/GMM systems reported in (Imseng et al., 2012)
and (Imseng, 2013, Figure 4.3 in Page 59 and Figure 4.4 in Page 60) have
been used as reference. However, the phone-based Tandem systems reported
in (Imseng, 2013) and this work differ. Unlike (Imseng, 2013), in our stud-
ies the dimensionality of Tandem features was either 117 dimensions (all the
dimensions) or 39 dimensions (same as the dimension of standard cepstral fea-
ture vector). The dimension of features was tuned on the development set for
each of the training condition. We found dimensionality reduction to be bene-
ficial, especially in the low acoustic resource conditions. For example, on 5 min
acoustic resource case, preformance of phone-based Tandem system reported
in (Imseng, 2013) was 30.2% word accuracy where as in this work with reduced
feature dimensionality we achieved 66.9% word accuracy.

In the previous study on Scottish Gaelic ASR (Rasipuram et al., 2013a),
knowledge-based grapheme lexicon that tagged word beginning and end
graphemes was used and word-internal context-dependent graphemes were mod-
eled. The KL-HMM and HMM/GMM systems achieved word accuracy of 72.8%
and 64.8%, respectively. In this work, the same knowledge-based grapheme lex-
icon was used but without any word begin and end tags. As a result, the
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total number of grapheme subword units is less. Furthermore, in this paper we
modeled cross-word context-dependent subword based systems. As it can be
seen from Table 6, the knowledge-based HMM/GMM system yields 3.2% abso-
lute improvement in WER compared to previous work and grapheme KL-HMM
system achieves performance comparable to the previous study.

7. Discussion and Conclusion

In this work, we showed that ASR systems can be rapidly built using
language-independent acoustic model and training only the lexical model on
small amount of target language data. In a recent work (Rasipuram et al.,
2013b), we have shown that the lexical model can be completely knowledge
driven and ASR systems could be developed for new languages without using
any acoustic and lexical resources from the language, i.e., (near) zero resource
ASR system.

In this work, we compared probabilistic lexical model systems where only
lexical model is trained on target language data with deterministic lexical model
based systems where either acoustic model is adapted on target language data or
both acoustic model and lexical model are trained on target language data. In
our studies we observed that with increase in target language acoustic data, the
gap between KL-HMM system and acoustic model adaptation based systems
reduces. This suggests that there may be benefits in combining acoustic model
adaptation and probabilistic lexical modeling.

• When using ANN-based acoustic model, this can be achieved by training
a hierarchical neural network (Pinto et al., 2011) or adapting a neural
network with target language data (Swietojanski et al., 2012). A recent
study on Scottish Gaelic in the framework of KL-HMM has shown the
potential of acoustic model adaptation using hierarchical neural network
approach (Rasipuram et al., 2013a).

• KL-HMM approach is not restricted to ANN-based acoustic modeling
alone (Rasipuram and Magimai.-Doss, 2013b). Therefore, using GMMs as
acoustic model this can be achieved by adapting the GMMs through MAP
technique (as done in the present paper) followed by KL-HMM training.

As mentioned earlier in Section 3, in deterministic lexical modeling framework,
acoustic model adaptation and lexical model adaptation can be combined in
different ways. For instance, (a) by jointly learning acoustic model parame-
ters (GMMs) and probabilistic lexical model parameters in the framework of
HMM/GMM systems as in (Luo and Jelinek, 1999), or (b) by combining acous-
tic model adaptation with polyphone decision tree state tying (PDTS) (Schultz
and Waibel, 2001), or (c) using SGMM approach (Burget et al., 2010). Com-
paring probabilistic lexical modeling and deterministic lexical modeling along
these lines with graphemes as subword units is part of our future work.

In conclusion, our studies showed that with probabilistic lexical modeling
especially using KL-HMM approach, ASR systems can be rapidly developed for

28



new languages and domains by training language or domain independent acous-
tic model and learning the grapheme-to-phone relationship on small amount of
target language or domain data. In doing so, we not only address the lack of
acoustic resource (speech data with transcription) problem but also the lack of
lexical resource (phonetic pronunciation dictionary) problem.

Our studies, in addition to showing the efficacy of the proposed approach,
also explicated that it is the constraints imposed by the deterministic lexical
model that demand the availability of well-developed acoustic resources and
phonetic lexical resources from the target language. Furthermore, our investi-
gations also showed that deterministic lexical model based ASR approaches are
more suitable for phone-based ASR than grapheme-based ASR, while proba-
bilistic lexical model based ASR approach is suitable for both.

Appendix A. Parameter Estimation of Probabilistic Lexical Model
Approaches

Given a trained ANN and training set of N utterances {X(n),W (n)}Nn=1

where for each training utterance n, X(n) represents sequence of cepstral fea-
tures of length T (n) and W (n) represents the sequence of underlying words, the
set of acoustic state probability vectors {Z(n),W (n)}Nn=1 or the set of likeli-
hood vectors {V (n),W (n)}Nn=1 are estimated where Z(n) represents a sequence
of acoustic state probability vectors of length T (n), V (n) represents a sequence
of acoustic likelihood probability vectors of length T (n).

The KL-HMM system is parameterized by Θkull = {{yi}Ii=1, {aij}Ii,j=1}.
The training data {Z(n),W (n)}Nn=1 and the current parameter set Θkull, are
used to estimate the new set of parameters Θ̂kull by Viterbi expectation maxi-
mization algorithm which minimizes the cost function,

Θ̂kull = arg min
Θkull

[ N∑
n=1

min
Q∈Q

T (n)∑
t=1

[
SRKL(yqt , zt(n))− log aqt−1qt

]]
(A.1)

The parameters of the tied approach Θtied = {{yi}Ii=1, {aij}Ii,j=1} are esti-
mated by Viterbi expectation maximization algorithm that maximizes the cost
function,

Θ̂tied = arg max
Θtied

[ N∑
n=1

max
Q∈Q

T∑
t=1

[
Stied(yqt ,vt(n)) + log(aqt−1qt)

]]
(A.2)

where Q = {q1, · · · qt, · · · , qT (n)}, qt ∈ {1, · · · , I} and Q denotes set of all pos-
sible HMM state sequences.

The training process involves iteration over the segmentation and the opti-
mization steps until convergence. Given current set of parameters, the segmen-
tation step yields an optimal state sequence for each training utterance using
Viterbi algorithm. Given optimal state sequences and acoustic state posterior
vectors belonging to each of these states, the optimization step then estimates
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new set of model parameters by minimizing Eqn. (A.1) or maximizing (A.2)

subject to the constraint that
∑D

d=1 y
d
i = 1.

For local score SRKL (Equation (12)), the optimal lexical state distribution
is the arithmetic mean of the training acoustic state probability vectors assigned
to the state, i.e.,

ydi =
1

M(i)

∑
zt(n)∈Z(i)

zdt (n) ∀d (A.3)

where Z(i) denotes the set of acoustic state probability vectors assigned to state
li and M(i) is the cardinality of Z(i).

The optimal state distribution for tied approach is,

ydi =
1

M(i)

∑
vt(n)∈V (i)

ydi .v
d
t (n)∑D

d=1 y
d
i .v

d
t (n)

∀d (A.4)

where V (i) denotes the set of acoustic state probability vectors assigned to state
li and M(i) is the cardinality of V (i).

SP-HMM is a special case of tied approach with optimal state distribution
as,

ydi =
1

M(i)

∑
zt(n)∈Z(i)

ydi .z
d
t (n)∑D

d=1 y
d
i .z

d
t (n)

∀d (A.5)
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