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Abstract
Is it possible to predict the intrusiveness of background noise in speech signals as perceived by humans?
Such a question is important to the automatic evaluation of speech enhancement systems, including those
designed for new wideband speech telephony, and the goal of a future ITU quality assessment standard.

In this paper, we show that this is possible by modeling the encoding of the noise signal at the auditory
nerve. Indeed, recent research suggests that sparse signal representations may be indicative of the encoding
process in the auditory system, making them interesting for modeling human sound perception.

Here, we further explore this hypothesis, and decompose background noise in the speech signal into a
sparse combination of gammatone functions, resulting in a sparse, physiologically grounded representation
of the noise. We then show that the number of gammatones required to encode the noise is directly correlated
with the perception of noise intrusiveness. Furthermore, we show that an established measure of noise
intrusiveness based on this new representation outperforms the same measure based on the traditional
loudness model.
Index Terms: Psychoacoustics, perceptual quality assessment, noise intrusiveness, noise annoyance, noise
reduction, sparsity

1. Introduction
Sparse audio signal representations have attracted recent interest in general audio coding [1–3] and auditory
modeling [4, 5]. While sparsity is desirable in audio coding to achieve high compression ratios, the rationale
behind sparse signal representations in auditory modeling is the efficient coding hypothesis, which states
that the human sensory system encodes stimuli in a way that maximizes the amount of information carried
to the brain but minimizes the number of neuronal impulses [6, 7].

The use of sparse signal representations for auditory modeling was further substantiated by the work
of Smith and Lewicki [8], who showed that a sparse signal model trained on a natural sound ensemble
successfully predicted auditory filter shapes.

In this work, we apply a sparse signal modeling approach to the assessment of perceived intrusiveness
of environmental noises in speech recordings. More precisely, we focus on the case of noise reduction in
telephony, where the assessment of noise intrusiveness is useful to optimize the perceptual quality of the
telecommunication service to the end-user.

This paper is structured as follows: We explain the technical background of the speech quality assessment
task in Section 2. Section 3 introduces the auditory model, which is based on a sparse signal decomposition
using a dictionary of gammatones. We present the datasets of subjectively annotated speech recordings that
we use for evaluation in Section 4, and show results in Section 5. We provide a deeper analysis of our results
in Section 6 and conclude with some closing remarks in Section 7.

2. Problem statement
Mobile telephony often takes place in noisy environments, but interlocutors generally perceive noise in the
transmitted speech signal as a quality impairment. Therefore, modern telecommunication systems apply
noise reduction processing in order to attenuate background noises in the speech signal.

Noise reduction usually also partially degrades the foreground speech signal, so a compromise between
sufficient noise attenuation and tolerable speech degradation is necessary. The strength of these two effects



can be determined through subjective listening tests as defined by the International Telecommunication
Union (ITU) in Recommendation P.835 [9], in which listeners rate the background noise intrusiveness,
speech degradation and overall quality of noise-corrupted speech recordings processed by noise reduction
on a five-point scale.

An ongoing effort at ITU [10] seeks to predict these quality scores algorithmically from the signal,
enabling the evaluation of noise reduction systems without time-consuming subjective tests. In this paper,
we focus on predicting the average listener score for noise intrusiveness. In the target application of the ITU
effort, the distorted, noise-corrupted speech recording to be evaluated (the test signal) is always provided
with a matching undistorted, noise-free speech recording (the reference signal). Here, we only use the
reference signal to help identify speech pause sections in the test signal. Indeed, our model predicts the
intrusiveness of noise from the (noisy) speech pause sections.

3. Auditory model
Our model is based on a decomposition of the background noise signal following the spike coding approach
first proposed by Lewicki and Sejnowski [11]. Under this approach, the discrete time-domain signal x(n) is
represented as a linear combination of predefined kernel functions φ1(n), · · · , φM (n):

x(n) =

M∑
m=1

Im∑
i=1

αm,iφm(n− rm,i) + ε(n) (1)

where rm,i and αm,i denote the (arbitrary) temporal offset and gain of the instance i ∈ [1, Im] of kernel φm,
respectively, and ε(n) simply denotes the residual error of the representation. The set of predefined kernel
functions φ1(n), · · · , φM (n) is often called a dictionary. The number of occurrences Im of a predefined
kernel φm in the representation is unconstrained.

Compared to models based on the short-time Fourier transform (STFT), this approach does not subdivide
the signal into a series of frames, which may obscure transients by spreading their energy over the duration of
a frame. Instead, the representation preserves the precise temporal position of individual signal components,
a necessary property for essential auditory tasks such as sound source localization.

When the M kernels in the dictionary are modeled after auditory filter shapes, each kernel occurrence
in the obtained representation can be thought of as a local population of auditory nerve spikes with average
firing rates encoded by the kernel gain α [12]. In an over-simplification of terminology, we will refer to each
kernel occurrence in the representation as a spike.

Equation (1) admits an infinite number of solutions. Sparse solutions to (1) are characterized by a small
total number of spikesK =

∑
m Im. Matching Pursuit [13] is an iterative algorithm to derive a (suboptimal)

sparse solution to (1), adding one spike to the representation at each iteration. Smith and Lewicki [8] have
shown that this modeling approach indeed predicts auditory filter shapes as the most efficient dictionary
for encoding an ensemble of natural sounds, lending further credence to sparse spike coding as an auditory
model.

3.1. Implementation

In our experiments, we used a dictionary of gammatone functions, i.e., mathematical models of auditory
filters defined as

φm(t) = t3e−2πbmt cos (2πfmt+ ϕ), t ≥ 0 (2)

with bm a bandwidth parameter and fm the center frequency of kernel φm. A good fit to experimental human
perceptual data is obtained for bm = 1.019 ERB(fm) [14], with

ERB(f) = 0.108 f + 24.7 (3)

the equivalent rectangular bandwidth at frequency f in Hz [15].
Figure 1 shows the frequency responses of the M = 32 gammatones in our dictionary. We use Slaney’s

auditory toolbox [16] to generate gammatones with center frequencies between 100 and 7195 Hz, spaced reg-
ularly on the ERB scale. We rescale the norm of gammatones to unity, thus the α parameter in (1) describes
the energy of each spike in the representation. Sparser solutions could be obtained with a larger dictionary,
however previous work has shown the benefit of increasing the dictionary size from 32 to 64 gammatones
to be small, and even negligible beyond 64 [4].
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Figure 1: Frequency responses of gammatones in our dictionary. The time-domain waveform corresponding
to the highlighted gammatone is shown in the inset.

We use the Matching Pursuit Tool Kit (MPTK) [17] to derive sparse solutions to (1). In computing the
decomposition, MPTK will also adapt the gammatone phase ϕ for each spike via the use of the Hilbert
transform.1 The result of Matching Pursuit decomposition is a set of values

ΘK = {αm,i, rm,i, ϕm,i}, m = [1,M ], i = [1, Im] (4)

describing the gain, temporal offset and phase of each of the K =
∑
m Im gammatone spikes representing

the signal x(n) in the spike coding model, along with a residual error ε(n).
The number of spikesK in the obtained representation depends on how many Matching Pursuit iterations

are carried out. We will discuss the choice of stopping criterion in Section 5.

4. Datasets
We evaluate the spike coding model on 2 datasets previously described in [18], which we briefly summarize
below:

We recorded short (2–4 seconds) sentences from 4 speakers, to which we added noises from a collection of
environmental noise recordings [19], increasing the duration to 6 seconds with temporal structure leading
noise — speech+noise — trailing noise. The background noise types and the signal-to-noise ratios (SNR) at
which they were added are given in Table 1.

We then processed the 6-seconds recordings in accordance with our focus on telephony. This consisted of
either applying noise reduction processing [20] and standard speech codecs [21–23] (simulated conditions),
or of transmitting the recordings with commercial handsets over land-line and cellular networks (in Europe
and the USA), and recording the transmitted signals at the far end (live conditions). Live conditions represent
the full signal processing chain in telephony, including distortions from transmission errors and in-handset
noise reduction.

In total, we generated 65 different conditions (repeated across the 4 speakers), which we partitioned into
2 datasets, such that a single dataset could be scored in about 1 hour. Two thirds of generated conditions
have audio bandwidths beyond the traditional telephone band, representing wideband or super-wideband
(up to 50–14 000 Hz) speech technologies. Furthermore, ∼30% of conditions are noise-free for a balanced
subjective test design as per ITU requirements [24].

A panel of 27 listeners evaluated the perceptual quality of the test signals in both datasets as defined
in ITU Recommendation P.835 [9]. The mean listener score for noise intrusiveness, averaged over the
4 speakers in each condition, is the Mean Opinion Score (MOS) that our model should predict.

1Creating a gammatone dictionary in MPTK format is non-trivial. We intend to release MATLAB code that shows how to do this.



Noise type SNR [dB]

Jackhammer (distant) 3
Pub (unintelligible babble) 4
Road (nearby traffic) 5
Train station (train engine, announcement) 8
Car (inside, cruising at 80 km/h) 8
Train (inside) 12
Office (keyboard clicks, intermittent speech) 15
Cafeteria (cutlery falling on trays, laughter) 17
Crossroad (distant traffic) 10, 20, 30, 40

Table 1: Used background noise types and SNR. The final SNR after noise reduction processing may be
lower.

4.1. Perception of noise intrusiveness

A statistical analysis of subjective scores (see [18]) revealed that neither sentence content nor speaking style
(regular vs. effortful speech) had a significant effect on noise intrusiveness scores. This is likely due to the
used ITU test protocol, which instructs listeners to focus only on the signal component of interest (i.e., the
background noise when scoring noise intrusiveness) [9]. We also found that noise intrusiveness was more
determined by the absolute playback level of background noise, rather than the signal-to-noise ratio between
speech and noise.

This independence of noise intrusiveness from the speech signal could be a particularity of our datasets,
but it simplifies the following experiments, since we will estimate noise intrusiveness solely from the
background noise in the test signal.

5. Results

5.1. Applying the proposed model

We apply our model to all background noise conditions, defined as conditions with a SNR ≤ 40 dB (22 and
23 conditions in dataset 1 and 2, respectively). To speed up further calculations, and because noise energies
above 7 000 Hz tend to be very low, we band-limit all signals to 100–7 000 Hz and operate at 16 kHz.

We use voice activity detection on the (noise-free) reference signals and a temporal alignment (similar
to [25]) to easily identify (noisy) speech pause sections in the test signals. For each condition, we find the
test signal with the shortest active speech duration, and compute sparse spike coding representations of the
concatenated noise sections, as described in Section 3.1.

An important aspect in computing the spike coding representations is the choice of stopping criterion
for the Matching Pursuit decomposition. Applications in general audio coding often set a criterion on the
energy of the residual signal ε(n), i.e., the decomposition stops when a desired coding fidelity is achieved.
For perceptual modeling, it makes more sense to set a threshold on the stimulus intensity of auditory nerves,
modeled here by the energy of spikes α.

We thus halt the decomposition once the energy of newly extracted spikes falls below a fixed spiking
threshold αmin. We setαmin such that the test signal with the lowest noise level in our datasets (a 40 dB SNR
condition) produces 0 spikes (i.e., ε(n) = x(n)), and an infinitesimally higher noise level will have at least
1 gammatone spike in its representation.

Analyzing the spike coding representations obtained with this stopping criterion, we find that the average
number of spikes needed to encode 1 second of background noise signal (the “spike rate”) strongly correlates
with subjective noise intrusiveness scores. Figure 2 shows this relationship. For our 2 datasets, the (absolute)
correlation is ρ = 93.7% and 92.1%, respectively.

Note that the 2 datasets mainly differ in the noise types they contain. The overall test design and
processing steps are very similar, and we only partitioned our data to avoid overly long subjective tests.
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Figure 2: Number of gammatone spikes per second needed to encode background noise vs. perceived noise
intrusiveness, rated on a scale from 1 (“very intrusive”) to 5 (“not noticeable”). Conditions from dataset 1
and 2 are shown as black unfilled squares and gray circles, respectively. Error bars represent 95% confidence
intervals of subjective scores.

5.2. Comparison to other measures

We compare our new measure against these baselines:

Log energy, i.e. noise level in dB SPL (sound pressure level).

Weighted log energy, applying a spectral weighting curve to model the ear’s frequency-dependent sensi-
tivity. We use the equal loudness level contour from the ISO 226:2003 standard [26]. We flip the
contour upside down with a 0 dB gain at 1 kHz to obtain the spectral weighting curve.

Mean loudness, which also considers simultaneous and temporal masking effects in the perception of sound
intensity. In [27], the loudness of stationary environmental noises was found to be highly correlated
with perceived noise annoyance. We use Zwicker’s calculation method [28], and compute the mean
over the noise duration.

Percentile loudness, defined as the loudness value that is exceeded during a percentage p of the measure-
ment time. Percentile loudness has become a standard measure of non-stationary noise annoyance,
with values for p between 2 and 10% [29–31]. We use p = 5%, as recommended in [29, sec. 16.1.3].

Besides the correlation coefficient, we compute a more sophisticated, recently standardized performance
metric called epsilon-insensitive root mean square error (unitless, denoted rmse*) [32]. This metric com-
putes a monotonous third-order polynomial to map model results to subjective scores, and evaluates the
overall prediction error outside of the confidence intervals of subjective scores. The black and gray curves
in Figure 2 show the mappings for the mean spike rate measure.

Table 2 shows the performance metrics for the baseline measures of noise intrusiveness for our 2 datasets.
The two measures based on log energy capture the rough trend of perceived noise intrusiveness, but do not
provide satisfactory predictions. Measures based on loudness, which are also at the core of models of overall
speech quality [e.g. 33, 34] provide better results.

While loudness predicts perceived sound intensity, the percentile of loudness over time models how
short-time intensities are integrated to an overall perception. A percentile value close to the maximum can
be seen as a simple model of the “peak&end rule” from experimental psychology [35], by which subjects



Baseline measures Dataset 1 Dataset 2

ρ [%] rmse* ρ [%] rmse*

Log energy 85.1 0.420 89.4 0.379
Weighted log energy 91.5 0.301 91.7 0.328
Mean loudness 91.1 0.282 95.0 0.216
5%-Perc. loudness 93.5 0.238 95.0 0.235

Table 2: Prediction performance of baseline measures, evaluated by the correlation with subjective scores (ρ)
and prediction error after polynomial mapping (rmse*, lower values are better).

are disproportionately influenced by peak events (e.g., transients or bursts in non-stationary noises) in their
overall judgment.

As a comparison to the loudness measure, we also apply the percentile calculation to our proposed
measure of the number of gammatone spikes over time. The resulting prediction performance is shown in
the first section of Table 3 (boldface values), and is a clear improvement over the baseline measures, both in
terms of correlation and prediction error.

Spike rate measures Dataset 1 Dataset 2

ρ [%] rmse* ρ [%] rmse*

Gammatone dict.
Mean 93.7 0.237 92.1 0.223
5%-Percentile 98.3 0.062 96.1 0.166

ERB-Gabor dict.
Mean 93.7 0.237 92.0 0.223
5%-Percentile 98.2 0.065 95.4 0.190

Regular Gabor dict.
Mean 93.2 0.254 92.4 0.229
5%-Percentile 97.5 0.131 94.2 0.251

Table 3: Prediction performance of spike rate-based measures for different dictionaries. Metrics are the
same as in Table 2.

6. Discussion
All measures compared here depend on the noise energy in different ways. In our proposed measure,
the decomposition of a high-energy noise signal produces more spikes with energies above the spiking
threshold αmin and thus a higher spike rate.

Since all compared measures depend on the noise energy, their different prediction performances are
due to how they rank different noise types with similar energies relative to one another.

Manual inspection of results by noise type reveals that the worst mis-predictions of the log energy and
weighted log energy measures are due to strongly overestimated intrusiveness of babble (speech-like) noises.
The loudness measures achieve better predictions, probably by modeling how part of the overall noise floor
is masked by voiced segments in the speech babble, resulting in a loudness that is lower than the sum of
individual signal components. Finally, in the spike rate measures, it is known that gammatone kernels
sparsely encode speech [2, 8], thus the obtained spike rate remains comparatively low.

Besides noise energy, the sparsity of obtained representations also depends on the used dictionary.
Components in the noise signal that do not correlate well with any single gammatone kernel from the
dictionary will be represented by combinations of multiple gammatones as part of the decomposition [13].



We create two modified dictionaries to evaluate this dependency:

• A dictionary of 32 Gabor kernels with center frequencies and half-magnitude bandwidths identical to
the gammatone dictionary (“ERB-Gabor” dictionary)

• 32 Gabor kernels with constant bandwidth that tile the frequency space linearly (“regular Gabor”
dictionary).

We adapted the spiking threshold αmin for each dictionary as per our criterion in Section 5.1. The
performance metrics obtained with the two modified dictionaries are shown in the second and third section
of Table 3, respectively.

Interestingly, the prediction performance of the mean spike rate remains almost unchanged across
dictionaries, but drops for the percentile spike rate. From the different spike coding representations (not
shown here), we see that using Gabor dictionaries results in higher spike rates for almost all noise types, but
barely changes the relative ranking of noises by spike rate.

However, the difference in the spike rate over time between stationary and non-stationary noise sections
is less pronounced in the representations computed with the Gabor dictionaries. Hence, the percentile
calculation is less effective at modeling the increased intrusiveness of peak noise events. The performance
drop is not as strong with the ERB-Gabor dictionary, since its kernels are very similar to those in the
gammatone dictionary.

7. Conclusion
The goal of this work was not to build a complete model of noise intrusiveness, which usually involves
learning model parameters from a training dataset (as e.g. in [36, 37]). Instead, we sought to identify the
fundamental measures that best predict the perception of noise intrusiveness. We have evaluated measures
that are widely used in perceptual quality and environmental noise assessment (weighted log energy, mean
and percentile loudness), and have proposed a new, physiologically grounded measure that is based on a
sparse spike coding representation of noise.

The sparsity of these representations directly correlates with subjective noise intrusiveness scores. Apply-
ing the percentile calculation from percentile loudness to the sparsity over time further improved predictions,
making our proposed measure the best-performing on our datasets.

No parameters were trained on the data: the dictionary is a standard gammatone filterbank, and the
spiking threshold is fixed by the pre-defined SNR (40 dB in our case) at which we consider speech to be
“noisy”. The results illustrate how models from computational biology may find technical applications.

Our analysis is limited by the amount of available subjectively scored data, and it remains to be seen
whether the results hold for other types of noises. As part of the ongoing ITU effort [10], other parties will
generate datasets with other conditions, on which our new measure can be further evaluated.
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