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ABSTRACT

Automatic non-native accent assessment has many potential benefits in language learning
and speech technologies. The three fundamental challenges in automatic accent assess-
ment are to characterize, model and assess individual variation in speech of the non-native
speaker. In our recent work, accentedness score was automatically obtained by compar-
ing two phone probability sequences obtained through instances of non-native and native
speech. In this paper, we build on the previous work and obtain the native latent sym-
bol probability sequence through the word hypothesis modeled as a hidden Markov model
(HMM). The approach overcomes the necessity for a native human reference speech of the
same sentence. Using the HMMs trained on an auxiliary native speech corpus, the proposed
approach achieves a correlation of 0.68 with the human accent ratings on the ISLE corpus.
This is further interesting considering that the approach does not use any non-native data
and human accent ratings at any stage of the system development.

Index Terms— Automatic accent assessment, non-native speech, posterior features, KL-
divergence, lexical model, KL-HMM

1 Introduction

Automatic accent assessment is an emerging topic of interest in language learning and
speech technologies. Non-native accent or foreign accent is characterized by transfer of
pronunciation rules, phonetic and prosodic structure from the native language of a speaker
to a second language.

Accent is typically assessed through perceptual listening tests. In these tests, the listeners
either assess a particular aspect of accent (for example, phonetic structure or intonation)
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or general accentedness of a speaker [1, 2]. Accent of a speaker depends on various fac-
tors such as age of onset of second language learning, years of second language training,
language learning aptitude etc. Furthermore, there is also an influence of the listener on
perception of non-native accent. For example, the native and non-native listeners of a lan-
guage perceive and score accent differently [2]. Therefore, in the literature there has been
a growing interest for fast and reliable methods to automatically assess the accent of second
language speakers.

Automatic accent assessment could be performed at phone or utterance levels. At the
phone level, it is typically formulated as a 2-class classification task to determine if the
pronunciation of a phone was correct or not. A variety of confidence measures are ex-
tracted at the output of an hidden Markov model (HMM) based speech recognizer such
as log-likelihood [3], log-likelihood ratio [4], goodness of pronunciation [5], log-posterior
probability scores [3, 6]. Mispronunciation is detected using classifiers such as decision
trees [7], logistic regression [8] that combine one or more of the above confidence mea-
sures. In [9, 10], a combination of dynamic programming and classifier approaches was
proposed for word-level mispronunciation detection. In [8], it was observed that the
log-posterior probability score computed using an HMM/artificial neural network (ANN)
system performed better than the goodness of pronunciation score computed using an
HMM/Gaussian mixture model system. The main drawback of classifier-based approaches
is that separate classifiers for each phone and human accent ratings are necessary during
training.

For utterance level accent evaluation using phonetic structure, phone-level log-likelihood
scores were averaged over the utterance [11]. In [12], an intonation-based accent score
was obtained through HMMs trained for categorical intonation units using continuous f0
and energy contours from native speech. In [1], a large number of rhythm features and
prosodic features are used to train a discriminative classifier for accent assessment. In this
paper, our interest is in utterance-level accent assessment.

In our recent work [13], we proposed a novel formulation for automatic accent assess-
ment as quantifying the acoustic-phonetic mismatch between latent symbol posterior prob-
ability sequences obtained through instances of native and non-native speech. Latent sym-
bols can be context-independent phones or clustered context-dependent phone states. The
knowledge of native speech, i.e., the lexical and phonetic structure, was imposed through
an instance of native speech. The resulting scores correlated highly with the human accent
ratings on English utterances from German, Finnish and Mandarin native speakers. In this
paper, we build upon our previous work along the following directions:

1. The lexical and phonetic structure of the native speech are imposed through an HMM-
based lexical model trained on native speech data [14]. Specifically, the native refer-
ence posterior probability sequence is obtained by modeling the word hypothesis through
the Kullback-Leibler divergence based HMM (KL-HMM). Thus the approach is text-
independent and it alleviates the need for native human speech of the same sentence.



2. We show that the model-based framework can be exploited to compute confidence mea-
sures at various levels. In this paper, word and phone-level confidence measures are
computed as the average KL-divergence between the non-native latent symbol probability
sequence and the HMM-based native reference probability sequence.

We evaluate the potential of the approach on the ISLE corpus which contains English speech
from native German and Italian speakers [15, 12]. Using HMM models trained on an auxil-
iary speech corpus and without using any human accent ratings during training, utterance
level accent scores computed using the proposed approach correlate well (R = 0.68) with
the human accent ratings.

The rest of the paper is organized as follows: Section 2 elaborates the accent assessment
approach, the experimental setup is given in Section 3, results and analysis are presented in
Section 4 and we conclude in Section 5.

2 Non-native Accent Assessment Approach

In our recent work, we proposed a novel formulation for automatic accent assessment based
on comparison of latent symbol posterior probability sequences obtained through instances
of native and non-native speech [13]. In this paper, we build on the approach and obtain the
native posterior probability sequence by modeling the word hypothesis through an HMM.
The approach is elaborated in terms of the following four subproblems:

1. Latent symbols: The latent symbol set defines the granularity at which the differences
between native and non-native speech are captured. In our previous work we showed that
the latent symbols can be context-independent phones or clustered context-dependent
phone states. The context-independent phones are based on native pronunciation lexicon
and the clustered context-dependent phone states are obtained using native pronuncia-
tion lexicon and native acoustic data using decision trees.

2. Acoustic model: The acoustic model, models the relationship between the acoustic fea-
ture observations and the latent symbols on native speech data from the target language.
As in our previous work, we model this relationship through ANNs. Given a non-native
speech utterance Xnn = [x(nn)

1 , · · · , x(nn)
n , · · · , x(nn)

N ], the acoustic model estimates the
latent symbol posterior probability sequence Z = [z1, · · · , zn, · · · , zN],

zn = [z1
n, . . . , zkn, . . . , zKn]

T,

= [P(c1|xn), . . . ,P(ck|xn), . . . ,P(cK|xn)]
T, (1)

Here N denotes the number of frames, c1, . . . , cK denote the latent symbols and K denotes
the number of latent symbols.

3. Lexical model: The lexical model, models the relationship between lexical units
(context-dependent subword units) and the latent symbols. In the case of accent as-
sessment, the lexical model imposes the lexical and phonetic structure of native speech
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Fig. 1. Instance-based and Model-based lexical modeling approaches.

utterance. Depending on the way word hypothesis is represented, the lexical model can
be instance-based [16] or model-based [14].

Previous work: In our previous work, we focussed on the instance-based lexical model.
As shown in Fig 1(a), given the native utterance Xn, latent symbol posterior probability
sequence Y = [y1, · · · , ym, · · · , yM]T is estimated using an ANN.

Current work: In this paper, we focus on HMM-based or model-based lexical modeling. As
shown in Fig 1(b), the text spoken by the non-native speaker is converted to a sequence
of lexical units using a pronunciation lexicon. The sequence of lexical units is represented
by a sequence of HMM-states where each HMM-state captures the relationship between
lexical unit and latent variables. Each HMM-state is either parameterized by a Kronecker
delta distribution (deterministic lexical modeling) or categorical state distribution (prob-
abilistic lexical modeling).

In the case of deterministic lexical modeling, the lexical model, models a determinis-
tic relationship between lexical units and latent symbols. Typically, decision-trees are
used to deterministically map each lexical unit to a latent symbol. The decision trees
are trained using the pronunciation lexicon, linguistic knowledge (a phonetic question
set) and acoustic data of the native speech from the target language. Because of the
deterministic relationship between lexical units and latent symbols, the lexical model
or the HMM-state distribution is a K-dimensional Kronecker delta distribution. That is



ym = [y1
m, . . . ,yk

m, . . . ,yK
m]T and if the lexical unit lm is mapped to the latent symbol cj

(lm 7→ cj) then,

yk
m =

{
1, if k = j;
0, otherwise.

(2)

In the case of the probabilistic lexical modeling, the lexical model captures a probabilis-
tic relationship between lexical units and latent variables. More specifically, the lexi-
cal model or HMM-state distribution is a K-dimensional categorical distribution ym =

[y1
m, . . . ,yk

m, . . . ,yK
m]T where yk

m = P(ck|lm), 0 < P(ck|lm) < 1 and
∑K

k=1 P(ck|lm) = 1.
The lexical model parameters are trained on the native speech from the target language
using the KL-HMM approach.

4. Match between sequences of native and non-native speech: The non-native latent
symbol posterior probability sequence Z is matched with the deterministic or probabilis-
tic lexical model represented by sequence of HMM states through dynamic programming.
Specifically, in the case of HMM-based lexical modeling, the Viterbi alignment is used to
align the sequences Z and Y using a local score and local HMM constraints.

In the case of deterministic lexical model, the local score that matches the acoustic model
evidence zn at time frame n with the lexical model evidence ym at HMM state m is
defined as,

S(ym, zn) =
K∑

k=1

yk
m log

(
yk
m

zkn

)
. (3)

Each lexical unit is deterministically mapped to a latent symbol. For example, if the lexical
unit lm is mapped to the latent symbol cj (lm 7→ cj) then,

S(ym, zn) = − logP(cj|qt = lm). (4)

where qt is the HMM state at time t. In the case of probabilistic lexical model, the local
score matches the posterior distribution zn with HMM-state distribution ym through KL-
divergence, i.e.,

S(ym, zn) =
K∑

k=1

zkn log
(

zkn
yk
m

)
. (5)

HMM-based lexical modeling provides a framework to compute confidence measures at
various levels which can be employed in accent assessment. A confidence measure C(srm)

for each phone srm is computed as the average of the local score between the sequence
of posteriors of the non-native speech and the HMM-state distributions i.e.,

C(srm) =
1

erm − brm + 1

erm∑
n=brm

S(ysrm
, zn). (6)

Similarly, a confidence measure C(wm) for each word wm is computed based on the
average of the local score between the sequence of posteriors of the non-native speech



and the HMM state distributions,

C(wm) =
1
Rm

Rm∑
r=1

1
erm − brm + 1

erm∑
n=brm

S(ysrm
, zn). (7)

where srm is the rth subword state in word wm, brm and erm are the begin and end
indices of the frames aligned with subword state srm, and Rm is the number of lexical
units in word wm.

The utterance-level accent score is the average of phone-level or word-level confidence
measures across the utterance. It is worth mentioning that the phone-level score in the
case of deterministic lexical modeling C(srm) is equivalent to the log phone posterior
(LPP) of phone as defined in [8]. However, in our approach C(srm) is directly used to
compute utterance level accent scores whereas in [8] it is used as a feature to train a
logistic regression classifier for phone-level mispronunciation detection.

3 Experimental Setup

The experimental evaluations presented in this paper are conducted on the data from the
ISLE corpus [15]. We used the train and test set division for the ISLE corpus as defined
in [12].

Speakers: The study consists of English speech from native German and Italian speakers.
The corpus has 8 training speakers and 8 test speakers. The speakers in the train and test sets
are different. There are about 150 train utterances and 40 test utterances for each speaker.
We did not use the train utterances of the ISLE corpus in our experiments. According to
the manual phone-level error labelling [15], native Italian speakers produced more phone
errors per word (average of 0.54 errors per word) than the native German speakers (average
of 0.16 errors per word).

Human accentedness ratings: We used the human accent ratings collected by the Signal
Analysis and Interpretation Laboratory (SAIL) [12]. The sentences were scored taking into
account intonation and all other cues on a scale from 1 or “no foreign accent” to 5 “strong
foreign accent”. Two stage approach was employed for to obtain human accent ratings. In
the first stage, part of the corpus (138 sentences) was labelled by five native speakers of
English. Average inter-labeler correlation of 0.657 was achieved. In the second stage, one
native listener who had an average correlation of 0.732 with all the other five listeners,
scored all the utterances of the corpus [12].

MLPs: In this paper, we used the same multilayer perceptrons (MLPs) used in our previous
study on accent assessment as acoustic models [13]. The MLPs were trained on the Wall
Street Journal (WSJ) corpus [17]. The WSJ corpus consists of two parts - WSJ0 with 14
hours of speech (7,193 utterances from 84 speakers) and WSJ1 with 66 hours of speech
(29322 utterances from 200 speakers). We used both WSJ0 and WSJ1 (the si-284 setup)



which contains approximately 80 hours of speech data. We trained six, five-layer MLPs
which differed mainly in terms of the number of latent symbols or output units.

• MLP-CI-40: An MLP trained to classify 40 context-independent phones.

• MLP-CD-N: MLPs trained to classify N context-dependent phone states. The latent symbols
or context-dependent phone states were obtained by decision tree-based state clustering
of context-dependent phones in HMM/GMM framework. The different number of latent
symbols N (N ∈ {183, 419, 1013, 1915, 2832}) were obtained by varying the hyper pa-
rameters the state occupancy count and the log-likelihood threshold during decision-tree
based state clustering.

Lexical Model: In the case of deterministic lexical modeling, the decision trees trained
during HMM/GMM training are used to map each context-dependent lexical unit to a latent
symbol. The resulting mapping is used to generate Kronecker delta distributions of lexical
units. Each lexical unit or context-dependent subword unit was modeled using three HMM-
states.

In the case of probabilistic lexical modeling, KL-HMM systems are trained only on the
WSJ0 corpus (the si-84 setup) that contains approximately 14 hours of speech. Given the
MLPs, the training of a probabilistic lexical model based system involves,

1. the estimation of the acoustic unit posterior feature vector zt = [z1
t, . . . , zkt , . . . , zKt ]

T; and

2. the estimation of the lexical model parameters using the KL-HMM approach.

We train crossword context-dependent KL-HMM systems where the lexical units impose
three-state minimum duration constraint.

Automatic accentedness evaluation: Utterance-level accent scores are computed using ei-
ther the phone-level (Eqn. (6)) or word-level confidence measures (Eqn. (7)). Furthermore,
the utterance-level accent score is directly correlated (using Pearson correlation coefficient)
with the human accent ratings.

4 Results and Analysis

Table 1 presents the utterance level correlation between the automatic accent scores com-
puted using the phone and word-level confidence measures and the human accent ratings
for the ISLE test set with increasing phonetic granularity. The results indicate that:

• As the granularity of the latent symbols increases, the correlation with respect to the
human ratings generally increases for both deterministic and probabilistic lexical models.
This trend was also observed in our previous study on the EMIME corpus using instance-
based lexical modeling [13].



Table 1. Correlation between the human accent ratings and the utterance automatic accent
scores computed using phone and word-level confidence measures with probabilistic and
deterministic lexical models.

# of latent Probabilistic Deterministic

symbols phone-level word-level phone-level word-level

40 0.58 0.48 0.53 0.40
183 0.63 0.53 0.55 0.40
419 0.66 0.57 0.61 0.50
1013 0.68 0.60 0.64 0.54
1915 0.67 0.59 0.67 0.55
2832 0.67 0.59 0.67 0.58

• Probabilistic lexical model based system achieves better correlation with the human rat-
ings than the deterministic lexical model based system. Furthermore, probabilistic lexical
model based system achieved optimal correlation using 1013 latent symbols while the
deterministic lexical model based system achieved optimal correlation with 2832 latent
symbols. Interestingly, such a trend has also been observed in ASR studies [18].

• The systems using phone-level confidence measures perform better than the systems using
word-level confidence measures. This result indicates that phone-level confidence mea-
sures are more indicative of the accentedness as perceived by humans than the word-level
confidence measures.

• In [12], on the same experimental setup, a correlation of 0.38 with respect to human
accent ratings was obtained using prosodic models. In comparison to [12], the proposed
approach results in higher correlation with the human ratings.

The results are encouraging given that the approach achieves a correlation of 0.68 without
using any non-native data or the human accent ratings during training.

To understand the differences among different language groups, we analysed the cor-
relation of native German and Italian utterances separately. Figure 2 plots the correlation
achieved with the proposed approach (with 1013 latent symbols) for native German and
Italian speakers for both deterministic and probabilistic lexical models using phone-level
confidence measures. The plot shows that:

• For native Italian speakers, probabilistic lexical model based systems achieved higher cor-
relation than the deterministic lexical model based systems; whereas for native German
speakers, deterministic lexical model based systems achieved higher correlation than the
probabilistic lexical model based systems. Probabilistic lexical modeling is an approach
for pronunciation variability modeling which handles the shortcomings of the determinis-
tic lexical unit to latent symbol modeling of standard HMM-based ASR systems [18, 14].
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Fig. 2. Correlation between human accent ratings and automatic ratings for native German
and Italian speakers using the deterministic and probabilistic lexical modeling approaches.

The results in the paper indicate that for native German speakers whose English is close to
the native English speech such pronunciation variability modeling may not be necessary.

• The correlation between automatic accent ratings and human ratings for native Italian
speakers is higher than for the native German speakers. We speculate the following rea-
sons for this: Firstly, it has been observed that it is difficult to rate the accentedness of
non-native second language speakers whose speech is closer to the native speech [19, 20].
Secondly, the proposed approach focusses on phone-level (or word-level) mismatch be-
tween native and non-native speech. As mentioned in Section 3, according to the manual
mispronunciation labels, native German speakers have relatively less phone errors per
word compared to native Italian speakers. This leaves less scope for the proposed ap-
proach to measure native German speakers accentedness. Also, as noted in [21], for
advanced language speakers with fluent but accented speech, prosodic-level differences
contribute to perceived accent more so than the individual phone mispronunciations.

5 Conclusions and Future Work

In this paper, we extended our previous work on accent assessment by replacing the native
reference posterior probability sequence obtained through an instance of native speech sig-
nal with a native posterior probability sequence obtained through an HMM-based lexical
model. The HMM-based lexical model offered flexibility to compute confidence measures
at various levels (word and phone levels) which were used to compute utterance level ac-
cent scores. Our studies on the ISLE corpus show that the utterance level accent scores
directly correlate well with the human accent ratings. Furthermore, the accent scores based



on phone-level confidence measures correlated better with the human accent scores than
the scores based on word-level confidence measures. The results are interesting given that
the HMM-model was trained on an auxiliary out-of-domain native speech corpus and the
approach did not use any non-native speech data or human accent ratings during system
development.

Our analysis has shown how native language background of the non-native speakers in-
fluences the correlation between automatic accent ratings and human accent ratings. Specif-
ically, we found that for native German speakers (with fewer phone errors per word) the
correlation with the human accent ratings is poor compared to native Italian speakers. As
indicated in the literature, for advanced non-native speakers, prosodic characteristics may
play an important role in accent perception. Therefore, in future we will focus on integrat-
ing prosodic characteristics in our formulation (for example, using prosodic representations
as given in [12]). Furthermore, we will extend the approach to mispronunciation detection
at the phone or word levels by thresholding the confidence measures as done in [22].
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