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ABSTRACT
In the literature, a number of approaches have been proposed for learning grapheme-to-phoneme (G2P) relationship and infer-
ring pronunciations. The paper presents a multi-stream framework where different G2P relationship learning techniques can be
effectively combined during pronunciation inference. Specifically, analogous to multi-stream automatic speech recognition in
the literature, the framework involves (a) obtaining different streams of estimates of probability of phonemes given graphemes;
(b) combining them based on probability combination rules; and (c) inferring pronunciations by decoding the probabilities
resulting after combination. We demonstrate the potential of the proposed approach by combining state-of-the-art CRF-based
G2P conversion approach and acoustic data-driven G2P conversion approach in the Kullback-Leibler divergence based HMM
framework on the PhoneBook 600 words task.

Index Terms— grapheme-to-phoneme conversion, automatic speech recognition, Kullback-Leibler divergence based
HMM, conditional random fields, multi-stream framework

1. INTRODUCTION

State-of-the-art automatic speech recognition (ASR) and text-to-speech synthesis (TTS) systems are based on
phonemes/phones. This necessitates having a well developed phonetic lexicon which transcribes each word as a sequence
of phonemes. Development of a phonetic lexicon is a semi-automatic process. More precisely, given an initial hand crafted
seed lexicon based on linguistic expertise in the target language, grapheme-to-phoneme (G2P) conversion techniques are used
to generate pronunciations for new words.

In sequence processing terms, the goal of G2P conversion is to predict a sequence of phonemes given a sequence of
graphemes (obtained from orthography of the word). In the literature, this problem has been approached in knowledge-driven
manner [1, 2] and in data-driven manner through application of different statistical pattern recognition methods, namely, deci-
sion trees [3, 4, 5], artificial neural networks (ANNs) [6], hidden Markov models (HMMs) [7], joint multigram modeling [8],
conditional random fields (CRFs) [9], hidden CRFs [10] and bidirectional long short-term (BLSTM) neural networks [11].
These approaches tend to achieve G2P conversion solely based on the seed lexicon. Recently, a G2P conversion approach in
the framework of Kullback-Leibler divergence based HMM (KL-HMM) has been proposed, which uses both acoustic data and
seed lexicon for G2P conversion [12].

More recently, it was elucidated that G2P conversion can be formulated in more abstract terms as estimation of sequence
of probability of phonemes given grapheme input and decoding the phoneme posterior probabilities through an ergodic HMM
to infer a phoneme sequence [13] (Section 2). It was shown that the decision tree based approach, ANN-based approach and
acoustic G2P conversion approach are particular cases of such an abstract formulation. The present paper builds on that abstract
formulation to show that the formulation can be effectively exploited to combine different G2P conversion approaches. More
precisely, the sequence of phoneme posterior probabilities estimated from different G2P conversion techniques are treated
as multiple streams, which are combined and a phoneme sequence is then inferred. This is analogous to multi-stream ASR
framework where phoneme posterior probabilities estimated by classifiers with different feature inputs are combined and then
used for speech recognition [14, 15, 16] (Section 3)

Our motivation to combine multiple G2P conversion techniques stems from the following reasons. Firstly, learning the
relationship between graphemes and phonemes lies at the core of any G2P conversion technique. Such a learning, in statistical
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terms, can be seen as training of probability of phoneme fk given grapheme input gn P (fk|gn) estimator, where k ∈ {1, · · ·K}
and K is the number of phonemes. Given the alignment between the grapheme sequence and phoneme sequence, there are many
methods to learn the probabilistic relationship P (fk|gn), such as by counting, by training a locally discriminative classifier [6]
or by training a globally discriminative classifier [9]. Secondly, as pointed out earlier, there are approaches such as acoustic
data-driven G2P conversion approach that, unlike conventional G2P conversion techniques, employ acoustic information in
addition to the seed lexicon to learn the G2P relationship. Finally, none of the G2P conversion techniques could be outrightly
seen as the best method. This comes from the observation that differences in the pronunciation level performance between G2P
conversion techniques may not necessarily translate as end use case (e.g., ASR) performance differences [10, 13]. Therefore,
there can be benefits in inferring pronunciations by combining multiple estimates of P (fk|gn). We demonstrate that through an
investigation on combination of CRF-based G2P conversion technique and acoustic G2P conversion technique (Section 4 and
Section 5).

2. POSTERIOR-BASED G2P CONVERSION FORMALISM

Given a sequence of graphemes G = (g1, . . . , gn, . . . , gN ), the G2P conversion problem in an HMM-based framework can be
expressed as finding the most probable phoneme sequence F ∗ that can be achieved by finding the most likely state sequence
S∗:

S∗ = arg max
S∈S

P (G,S|Θ) = arg max
S∈S

P (G|S,Θ)P (S|Θ) (1)

where Θ denotes the parameters of the system, S denotes the set of possible HMM state sequences, and S =
(s1, · · · , sn, · · · , sN ) denotes a sequence of HMM states which corresponds to a phoneme sequence hypothesis with sn ∈
F = {f1, . . . , fk, . . . , fK} where K is the number of phoneme units. By applying i.i.d. and first order Markov assumption,
Equation 1 can be simplified as:

S∗ = arg max
S∈S

N∏
n=1

P (gn|sn = fk,Θ)P (sn = fk|sn−1 = fk′ ,Θ) (2)

Then through applying Bayes rule and ruling out the parameters that do not affect the maximization, i.e., P (gn|Θ), Equation 2
can be written as:

S∗ = arg max
S∈S

N∏
n=1

P (sn = fk|gn,Θ)

P (sn = fk|Θ)︸ ︷︷ ︸
local emission score

P (sn = fk|sn−1 = fk′ ,Θ)︸ ︷︷ ︸
transition probability

. (3)

Estimation of the prior probability P (sn = fk|Θ) is a challenging problem as we have access to only a few words (not all the
words in the language) in the seed lexicon. Therefore, rather than estimating P (sn = fk|Θ) we assume equal phoneme prior
probabilities:

S∗ = arg max
S∈S

N∏
n=1

P (sn = fk|gn,Θ)︸ ︷︷ ︸
local emission score

P (sn = fk|sn−1 = fk′ ,Θ)︸ ︷︷ ︸
transition probability

. (4)

Finally, if the transition probabilities are assumed to be uniform, i.e., ergodic HMM, then,

S∗ = arg max
S∈S

N∏
n=1

P (sn = fk|gn,Θ)︸ ︷︷ ︸
local score

. (5)

Such an assumption is reasonable as robust estimation of transition probabilities from the few pronunciations present in the
seed lexicon is not trivial.

In this paper, we will see that P (sn = fk|gn,Θ) can be estimated as combination of estimates obtained from different G2P
conversion techniques, which eventually yields a pronunciation lexicon that helps in building better ASR systems.



3. COMBINATION OF G2P RELATIONSHIP LEARNING TECHNIQUES AND PRONUNCIATION INFERENCE

In this paper, we demonstrate the potential of the multi-stream formulation through an investigation on combining CRF-based
approach and acoustic data-driven G2P conversion approach. This section gives a brief overview about the G2P conversion
approaches investigated and the multi-stream combination mechanism for pronunciation inference. In addition to that, we
provide a theoretical insight into the investigated combination through a link to the ASR literature.

3.1. CRF-Based G2P Conversion Approach

The CRF-based G2P conversion approach is a probabilistic sequence modeling-based approach which enables global inference,
discriminative training and relaxing the independence assumption existing in HMMs [17]. In the case of G2P conversion, the
input to the CRF is the grapheme sequence obtained from the orthography of the word, and the CRF output is the predicted
phoneme sequence. In this approach, the posterior probability for each phoneme fk given the entire grapheme sequence G
denoted as Pcrf (sn = fk|G) can be efficiently estimated using the well-known forward-backward algorithm [17]. In other
words, each time instance n will yield a probability vector [Pcrf (sn = f1|G) · · ·Pcrf (sn = fK |G)]T.

3.2. Acoustic Data-Driven G2P Conversion Approach

The acoustic data-driven G2P conversion approach is a particular case of the posterior-based G2P conversion formalism pre-
sented in Section 2, in which estimation of probability of each phoneme fk given a local grapheme context gn, denoted as
Pag2p(sn = fk|gn), at each time instance n is done in two stages. In the first stage, a probabilistic grapheme-to-phoneme
relationship is learned through acoustic data using KL-HMM [18, 19]. Briefly, this involves first training of an ANN to classify
phonemes. This is then followed by training of KL-HMM, in which phoneme posterior probabilities estimated by ANN are
used as feature observations. Each KL-HMM state represents a context-dependent grapheme and is parameterized by a cate-
gorical distribution of phonemes. The KL-HMM parameters are estimated using Viterbi Expectation-Maximization algorithm
with a cost function based on KL-divergence. In the second stage, given a word, the KL-HMM is used to generate sequence of
probability vectors [Pag2p(sn = f1|gn) · · ·Pag2p(sn = fK |gn)]T,∀n based on the sequence of graphemes in the orthography
of the word. In order to infer the pronunciation of the word, the sequence of probability vectors are decoded according to
Equation (5). For more details the readers are referred to [12, 13].

3.3. Multi-Stream Combination

Figure 1 depicts a schematic view of the multi-stream combination. Briefly, given the two sequences of phoneme poste-
rior probabilities estimated by the two approaches, at each time instance n the phoneme probability estimates [Pcrf (sn =
f1|G) · · ·Pcrf (sn = fK |G)]T and [Pag2p(sn = f1|gn) · · ·Pag2p(sn = fK |gn)]T are combined using probability combination
rules [20]. The resulting sequence of phoneme probabilities is then decoded according to Equation (5).

In addition to the fact that the CRF-based approach and the acoustic data-driven approach use different statistical mod-
els and information to learn the G2P relationship, theoretically, the combination presented here is synonymous to an ap-
proach studied in the literature to combine ”global/hierarchical” phoneme posterior probability estimates with local phoneme
posterior probability estimates [21] to improve performance of the ASR system. Specifically, in comparison to that ap-
proach, [Pcrf (sn = f1|G) · · ·Pcrf (sn = fK |G)]T is synonymous to global phoneme posterior probability, i.e., phoneme
posterior probabilities estimate given the whole acoustic feature sequence using forward-backward algorithm [22]. While
[Pag2p(sn = f1|gn) · · ·Pag2p(sn = fK |gn)]T is synonymous to phoneme posterior probabilities given a local acoustic feature
input (in simple terms, the output of ANN given a local acoustic feature input), as the KL-HMM states only model a local
grapheme context. Thus, we hypothesize that the combination investigated in this paper should be beneficial.

4. EXPERIMENTAL SETUP

We evaluated the G2P conversion task on the PhoneBook corpus [23]. It is a challenging task for several reasons: 1) in English
the G2P relationship is highly irregular; 2) the training and test vocabulary sets are entirely different; 3) the corpus contains
uncommon English words and proper names (e.g. Witherington, Gargantuan, etc); and 4) the number of words in the seed
lexicon is relatively small which makes reliable estimation of Pcrf (sn = fk|G) and Pag2p(sn = fk|gn) really challenging.
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Fig. 1: Illustration of pronunciation inference using multi-stream combination of CRF-based phoneme posterior probabilities
sequence and acoustic data-driven G2P-based phoneme posterior probabilities sequence.

4.1. Dataset

We use the medium size vocabulary task with 602 unique words setup defined for speaker-independent task-independent isolated
word recognition in [24]. Table 1 gives an overview of the dataset. All the words and speakers across train, cross-validation
and test set are entirely different. The PhoneBook pronunciation lexicon is transcribed using 42 phonemes (including silence).

Number of Train Cross-validation Test
Utterances 19421 7290 6598

Hours 7.7 2.9 2.6
Speakers 243 106 96

Words 1580 603 602

Table 1: Overview of the PhoneBook corpus.

4.2. Lexicon Generation

This section explains the different lexicon generation setups studied.

4.2.1. CRF-based G2P conversion approach

In order to train the CRFs, a preliminary alignment between the graphemes and phonemes in the training lexicon is required.
In this paper, we use the m2m-aligner [25] to determine the G2P alignment. To train and decode the CRF, we used the publicly
available CRF++ software1. We used bigram features and set the grapheme context to 9, i.e., four preceding and following
graphemes as done in [26].

4.2.2. Acoustic data-driven G2P conversion approach

To learn the probabilistic grapheme-to-phoneme relationship, we first trained a 5-layer multilayer perceptron (MLP) using
the Quicknet software [27]. The input to the MLP was 39-dimensional PLP cepstral features with four preceding and four

1https://taku910.github.io/crfpp/



following frame context. The MLP output units were 313 clustered context-dependent (CD) phonemes derived by clustering CD
phonemes in HMM/Gaussian mixture model framework. We then trained a single preceding and following CD grapheme-based
KL-HMM system. In the cost function based on the KL-divergence, the output of MLP was used as the reference distribution.
To handle unseen contexts, we used the KL-divergence based decision tree state tying method proposed in [28]. After the KL-
HMM training, as we are interested in inferring context-independent phoneme sequence, the clustered CD phoneme categorical
distribution estimated for each state was marginalized based on the central phoneme information.

4.2.3. Multi-stream combination and pronunciation inference

We investigated two probability combination rules, namely product rule and sum rule [20, 29], with static weighting. More
precisely,

Comb-prod =
1

Z
·

K∏
k=1

Pcrf (sn = fk|G)wcrf · Pag2p(sn = fk|gn)wag2p (6)

Comb-sum =
1

Z
·

K∑
k=1

wcrf · Pcrf (sn = fk|G) + wag2p · Pag2p(sn = fk|gn) (7)

where Z is a normalization factor, wcrf is the weight given to CRF G2P relationship stream and wag2p is the weight given to
acoustic data driven G2P relationship stream, 0 ≤ wcrf , wag2p,≤ 1 and wcrf + wag2p = 1. wcrf and wag2p were estimated
by running the multi-stream combination-based pronunciation inference on the training data and selected the one yielded the
lowest phone error rate.

4.3. Evaluation

We evaluated the performance of the generated lexicons at two different levels, namely, at pronunciation level as conventionally
done in G2P conversion literature and at ASR level. One of the easiest approaches to combine CRF-based G2P conversion
approach and acoustic data-driven G2P conversion approach is to combine the lexicons generated by the two methods. So, at
ASR level we compared the multi-stream approach against lexicon combination approach by generating 2-best pronunciations.

For the ASR study, we trained standard cross-word context-dependent phoneme-based HMM/Gaussian mixture model
(GMM) systems for each of the phonetic lexicons generated through the G2P conversion approaches using HTK [30]. We used
39 dimensional PLP cepstral features (static+dynamic features). Each subword unit was modeled with three HMM states. Each
HMM state was modeled by a mixture of 8 Gaussians. The HMM states were tied using singleton question set.

5. ANALYSIS AND RESULTS

This section first provides a brief analysis about the possible benefits of combining G2P conversion techniques. Then it presents
the evaluation results at both pronunciation and ASR levels.

5.1. Analysis

In the proposed approach, the first question that arises is: how different are [Pcrf (sn = f1|G) · · ·Pcrf (sn = fK |G)]T and
[Pag2p(sn = f1|gn) · · ·Pag2p(sn = fK |gn)]T? To understand that we estimated the entropy of these distributions on the
training set. Figure 2 plots a histogram of it. As it can be seen, the probabilities estimated by CRF have low entropy compared
to acoustic G2P conversion approach. There is very little overlap between the distributions. In other words, CRF output has
high confidence. The static weight capture this difference. For the product rule (Comb-prod) wcrf = 0.8 and for the sum rule
(Comb-sum) wcrf = 0.7.

Given that the entropies are so different, a question that arises is: would we get any different pronunciation than the one
estimated by CRF by combination? Table 2 presents a few of the generated pronunciations through each approach together with
the manual pronunciation. It can be observed that indeed the multi-stream combination paradigm is able to exploit the merits
of both approaches.
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Word
CRF-based
pronunciation

ag2p-based
pronunciation

Comb-prod
pronunciation

Manual
pronunciation

attribution @ t r x b u S x n @ t r Y b ˆS x n @ t r x b y u S x n @ t r x b y u S x n
beirut b i r ˆt b Y r u t b i r u t b e r u t
exorbitant x k s c r b x t x n t x g z c r b x t @ n t x g z c r b x t x n t x g z c r b x t x n t

Table 2: Pronunciations generated by different G2P approaches along with the manual pronunciations.

5.2. Pronunciation Level Results

Table 3 provides pronunciation level evaluation results in terms of phone error rate (PER) and word error rate (WER). It can be
observed that the proposed method leads to significant improvements at the pronunciation level compared to the acoustic G2P
conversion approach. However, there is no gain at the pronunciation level over the CRF-based G2P conversion approach.

Acoustic
G2P

CRF
G2P

Comb-
sum

Comb-
prod

PER 23.1 11.5 12.4 12.9
WER 82.4 49.2 53.8 55.7

Table 3: Pronunciation level evaluations in terms of PER and WER

5.3. Comparison Across G2P Conversion Approaches

Table 4 presents the ASR evaluation results in terms of word error rate (WER). Comparison across individual G2P conversion
approaches shows that the lexicon based on CRF approach yields the best system. This performance is similar to that of joint
multigram approach (WER of 10.6%[13]), which is another the state-of-the-art G2P conversion approach. We also ran an exper-
iment where the probabilities obtained from the CRF are decoded according to Equation (5), which assumes uniform transition
probability. Interestingly, we obtained a performance of 10.9% WER, thus suggesting that the posterior-based formulation is
quite generic. It can be observed that despite wide difference in PER and WER at pronunciation level we see that the lexicon
from the acoustic G2P conversion approach yields a system that is not too far from the CRF-based lexicon. Such a trend has
been observed before in comparison to other G2P conversion approaches [13].

Though the multi-stream approaches perform poor at the pronunciation inference level when compared to CRF-based ap-
proach, at ASR level we see improvements. The improvements obtained with product rule (Comb-prod) are statistically sig-
nificant, while with sum rule (Comb-sum) the improvements are marginal. The trend could be related to the fact that the
entropies of the probability distributions estimated by the two approaches are very different. We speculate that the product rule
is giving more importance to the estimates of CRF. Finally, these results also show that the pronunciation level performance is
not necessarily indicative of the performance at the recognition level. Such a trend has been observed in the G2P conversion
literature [26, 10, 13].



Acoustic
G2P

CRF
G2P

Comb-
sum

Comb-
prod

Manual
lexicon [13]

WER 11.5 10.8 10.6 10.1 1.8

Table 4: ASR level evaluations in terms of WER.

5.4. Comparison to Combination at Lexicon Level

Table 5 presents results of the ASR study comparing lexical level combination of CRF-based approach and acoustic G2P
conversion approach, i.e. simply merging the lexicons, (Acoustic G2P+CRF) against the multi-stream approach (Comb-prod
and Comb-sum) with 2-best pronunciations. We observe that the multi-stream approach yields better systems. Again the lexicon
based on product rule yields a significantly better system.

Acoustic G2P
+CRF

Comb-
sum

Comb-
prod

WER 8.3 8.2 7.6

Table 5: Lexical level combination versus 2-best.

6. CONCLUSION AND FUTURE DIRECTIONS

The paper presented a posterior-based formulation to combine multiple estimates of phoneme probabilities conditioned on
graphemes obtained by applying different G2P relationship learning mechanisms proposed in the literature for pronunciation
lexicon development. Our study on combining posterior probability estimates obtained through CRF-based approach and
acoustic G2P conversion approach showed that combining multiple estimates can yield pronunciation lexicons, which despite
being relatively poor at pronunciation level, can help in building better ASR systems. As an extension to the present work,
we aim to investigate: (a) combination with other G2P conversion approaches; (b) applying dynamic weighting techniques for
combining probability distributions [15, 16]; and (c) evaluation on large vocabulary tasks and other languages.

In the literature, one technique to improve a pronunciation lexicon obtained with G2P conversion is to use acoustic realiza-
tion of words either to select from pronunciation variants inferred by G2P conversion [31, 32] or to adapt graphoneme model
parameters [33]. In Equation (5), it can be observed that if the input gn is replaced by an acoustic feature input from a speech
signal (in other words, if the input grapheme sequence is replaced by an acoustic speech signal), then the formulation reduces to
acoustic data-driven pronunciation variant extraction framework [34]. Alternately, the orthographic information (i.e., sequence
of probability of phonemes given graphemes) and the information from the acoustic realizations of the words (i.e., sequence of
probability of phonemes given acoustic features) could be trivially combined in the proposed multi-stream formulation. Such
a method could have potential implications towards development of lexicon for names, children speech and accented speech.
Our future work will also focus along this direction together with the extensions pointed out earlier.



7. REFERENCES

[1] R.M. Kaplan and M. Kay, “Regular Models of Phonological Rule Systems,” Computational Linguistics, vol. 20, pp.
331–378, 1994.

[2] M. Davel and E. Barnard, “Pronunciation prediction with Default&Refine,” Computer Speech and Language, vol. 22, pp.
374–393, 2008.

[3] A. W. Black, K. Lenzo, and V. Pagel, “Issues in Building General Letter to Sound Rules,” ESCA Workshop on Speech
Synthesis, pp. 77–80, 1998.

[4] W. Daelemans and A. Van Den Bosch, “Language Independent Data-Oriented Grapheme-to-Phoneme Conversion,”
Progress in speech synthesis, pp. 77–89, 1997.

[5] V. Pagel, K. Lenzo, and A. W. Black, “Letter to sound rules for accented lexicon compression,” in Proceedings of ICSLP,
1998, vol. 5, pp. 2015–2020.

[6] T. J. Sejnowski and C. R. Rosenberg, “Parallel Networks that Learn to Pronounce English Text,” Complex Systems, vol.
1, pp. 145–168, 1987.

[7] P. Taylor, “Hidden Markov Models for Grapheme to Phoneme Conversion.,” in Proceedings of Interspeech, 2005, pp.
1973–1976.

[8] M. Bisani and H. Ney, “Joint-Sequence Models for Grapheme-to-Phoneme Conversion,” Speech Communication, vol. 50,
no. 5, pp. 434–451, May 2008.

[9] D. Wang and S. King, “Letter-to-Sound Pronunciation Prediction Using Conditional Random Fields,” Signal Processing
Letters, IEEE, vol. 18, no. 2, pp. 122–125, 2011.

[10] S. Hahn, P. Lehnen, S. Wiesler, R. Schlter, and H. Ney, “Improving LVCSR with Hidden Conditional Random Fields for
Grapheme-to-Phoneme Conversion.,” in Proceedings of Interspeech, 2013, pp. 495–499.

[11] K. Yao and G. Zweig, “Sequence-to-Sequence Neural Net Models for Grapheme-to-Phoneme Conversion,” in Proceedings
of Interspeech, May 2015.

[12] R. Rasipuram and M. Magimai-Doss, “Acoustic Data-driven Grapheme-to-Phoneme Conversion using KL-HMM,” in
Proceedings of ICASSP, Mar. 2012.

[13] M. Razavi, R. Rasipuram, and M. Magimai.-Doss, “Acoustic Data-Driven Grapheme-to-Phoneme Conversion in the
Probabilistic Lexical Modeling Framework,” Idiap-RR Idiap-RR-10-2015, Idiap, 5 2015.

[14] A. Janin, D. Ellis, and N. Morgan, “Multi-stream speech recognition: ready for prime time?,” in EUROSPEECH. 1999,
ISCA.

[15] H. Misra, H. Bourlard, and V. Tyagi, “New entropy based combination rules in HMM/ANN multi-stream ASR,” in
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2003.

[16] F. Valente, “Multi-stream speech recognition based on Dempster-Shafer combination rule,” Speech Communication, vol.
52, no. 3, pp. 213–222, 2010.

[17] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional Random Fields: Probabilistic Models for Segmenting and
Labeling Sequence Data,” in Proceedings of ICML, San Francisco, CA, USA, 2001, ICML ’01, pp. 282–289, Morgan
Kaufmann Publishers Inc.

[18] M. Magimai.-Doss, R. Rasipuram, G. Aradilla, and H. Bourlard, “Grapheme-based Automatic Speech Recognition using
KL-HMM,” in Proceedings of Interspeech, 2011, pp. 445–448.

[19] G. Aradilla, H. Bourlard, and M. Magimai Doss, “Using KL-Based Acoustic Models in a Large Vocabulary Recognition
Task ,” in Proceedings of Interspeech, 2008, pp. 928–931.



[20] C. Genest and J. V. Zidek, “Combining Probability Distributions: A Critique and an Annotated Bibliography,” Statist.
Sci., vol. 1, no. 1, pp. 114–135, 02 1986.

[21] H. Ketabdar and H. Bourlard, “Enhanced Phone Posteriors for Improving Speech Recognition Systems.,” IEEE Transac-
tions on Audio, Speech & Language Processing, vol. 18, no. 6, pp. 1094–1106, 2010.

[22] H. Bourlard, S. Bengio, M. Magimai Doss, Q. Zhu, Mesot B., and N. Morgan, “Towards Using Hierarchical Posteriors
for Flexible Automatic Speech Recognition Systems,” in Proceedings of RT04, 2004.

[23] J. Pitrelli, C. Fong, S.H. Wong, J.R. Spitz, and H.C. Leung, “PhoneBook: a Phonetically-Rich Isolated-Word Telephone-
Speech Database,” in Proceedings of ICASSP, 1995, vol. 1, pp. 101–104.

[24] S. Dupont, H. Bourlard, O. Deroo, V. Fontaine, and J. M. Boite, “Hybrid HMM/ANN Systems for Training Independent
Tasks: Experiments on ’Phonebook’ and Related Improvements,” in Proceedings of ICASSP, 1997.

[25] S. Jiampojamarn, G. Kondrak, and T. Sherif, “Applying Many-to-Many Alignments and Hidden Markov Models to
Letter-to-Phoneme Conversion,” in Proceedings of NAACL, Rochester, New York, April 2007, pp. 372–379, Association
for Computational Linguistics.

[26] D. Jouvet, D. Fohr, and I. Illina, “Evaluating Grapheme-to-Phoneme Converters in Automatic Speech Recognition Con-
text,” in Proceedings of ICASSP, 2012, pp. 4821–4824.

[27] D. Johnson et al., “ICSI Quicknet Software Package,” http://www.icsi.berkeley.edu/Speech/qn.html, 2004.

[28] D. Imseng, J. Dines, P. Motlicek, P. N. Garner, and H. Bourlard, “Comparing Different Acoustic Modeling Techniques
for Multilingual Boosting,” in Proceedings of Interspeech, Sept. 2012.

[29] D. M.J. Tax, M. van Breukelen, R. P.W. Duin, and J. Kittler, “Combining multiple classifiers by averaging or by multiply-
ing?,” Pattern Recognition, vol. 33, no. 9, pp. 1475 – 1485, 2000.

[30] S.J. Young et al., The HTK Book (for HTK Version 3.4), Cambridge University Engineering Department, UK, 2006.

[31] I. McGraw, I. Badr, and J.R. Glass, “Learning Lexicons From Speech Using a Pronunciation Mixture Model,” IEEE
Trans. on Audio, Speech, and Language Processing, vol. 21, no. 2, pp. 357–366, 2013.

[32] L. Lu, A. Ghoshal, and S. Renals, “Acoustic Data-Driven Pronunciation Lexicon For Large Vocabulary Speech Recogni-
tion,” in Proceedings of ASRU, 2013, pp. 374–379.

[33] L. Xiao, A. Gunawardana, and A. Acero, “Adapting Grapheme-to-Phoneme Conversion for Name Recognition,” in
Proceedings of ASRU, 2007, pp. 130–135.

[34] H. Mokbel and D. Jouvet, “Derivation of the Optimal Set of Phonetic Transcriptions for a Word from its Acoustic
Realizations ,” Speech Communication, vol. 29, no. 1, pp. 49 – 64, 1999.


