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Abstract

In hidden Markov model (HMM) based automatic speech recognition (ASR) sys-
tem, modeling the statistical relationship between the acoustic speech signal and
the HMM states that represent linguistically motivated subword units such as
phonemes is a crucial step. This is typically achieved by first extracting acoustic
features from the speech signal based on prior knowledge such as, speech per-
ception or/and speech production knowledge, and, then training a classifier such
as artificial neural networks (ANN), Gaussian mixture model that estimates the
emission probabilities of the HMM states. Recent advances in machine learning
techniques, more specifically in the field of image processing and text processing,
have shown that such divide and conquer strategy (i.e., separating feature extrac-
tion and modeling steps) may not be necessary. Motivated from these studies,
we propose an end-to-end acoustic modeling approach using convolution neural
networks (CNNs), where the CNN takes as input raw speech signal and estimates
the HMM states class conditional probabilities at the output. Alternately, in this
approach the relevant features and the classifier are jointly learned from the raw
speech signal. Through ASR studies and analyses on multiple languages and mul-
tiple tasks, we show that: (a) the proposed approach yields consistently a bet-
ter system with fewer parameters when compared to the conventional approach
of cepstral feature extraction followed by ANN training, (b) unlike conventional
method of speech processing, in the proposed approach the relevant feature rep-
resentations are learned by first processing the input raw speech at sub-segmental
level (≈ 2 ms). Specifically, through an analysis we show that the filters in the first
convolution layer automatically learn ”in-parts” formant-like information present
in the sub-segmental speech, and (c) the intermediate feature representations ob-
tained by subsequent filtering of the first convolution layer output are more dis-
criminative compared to standard cepstral features and could be transferred across
languages and domains.

1 Introduction

State-of-the-art automatic speech recognition (ASR) systems typically divide the task of recognizing
speech into several sub-tasks, which are optimized in an independent manner [1, 2]. Specifically,
as a first step, acoustic feature observations, such as Mel frequency cepstral coefficients (MFCCs)
or perceptual linear prediction cepstral features (PLPs), are extracted from the short-term speech
signal based on speech production and speech perception knowledge. Next, likelihood of subword
units, which are typically based on phonemes, are estimated using a statistical model that captures
the relationship between the features and subword units in either generative or discriminative man-
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ner. Finally, given the likelihood estimates of subword units the best matching word hypothesis is
searched by integrating lexical and syntactical constraints.

Recent advances in machine learning have shown that systems can be trained in an end-to-end man-
ner, i.e. systems where every step is learned simultaneously, taking into account all the other steps
and the final task of the whole system. It is typically referred to as deep learning, mainly be-
cause such architectures are usually composed of many layers (supposed to provide an increasing
level of abstraction), compared to classical “shallow” systems. As opposed to “divide and con-
quer” approaches presented previously where each step is independently optimized, deep learning
approaches are often claimed to lead to more optimal systems. As they alleviate the need of finding
the right features by instead training a stack of features in an end-to-end manner, for a given task of
interest.

While there is a good success record of such approaches in the computer vision [3, 4, 5] or text
processing fields [6], deep learning approaches for speech recognition has largely focussed on the
classifier step, where a neural network with many hidden layers is typically trained to classify sub-
word units [7]. These systems still rely on standard short-term spectral-based feature extraction. The
training optionally can involve pre-training schemes. In such a case, it is referred to as deep belief
neural networks (DBNs) otherwise deep neural networks (DNNs).

More recently, there has been efforts toward modeling raw speech signal with little or no pre-
processing [8, 9, 10]. Towards that we proposed a novel approach based on convolution neural
networks [11] in [9]. In this approach, the input to the CNN is raw speech signal. The neural net-
work architecture consists of two stages: a feature learning stage consisting of several convolution
layer followed by a classifier stage consisting of multilayer perceptron, which are jointly learned by
minimizing a cost function based on relative entropy. Phoneme recognition studies on TIMIT corpus
showed that the proposed approach is capable of achieving performance comparable or better than
standard approach of extraction of cepstral features followed by ANN training.

The present paper builds on our previous work [9, 12, 13] along two directions,

1. From phoneme recognition to automatic speech recognition: a first set of fundamental
question that arises is: does the findings on phoneme recognition task apply equally well
to continuous speech recognition task across different languages and domains? In that
respect, we present investigations on large vocabulary continuous speech recognition task
on a variety of corpora that differ in terms of languages, namely, English, Swiss French
and Swiss German as well as in terms of variability, namely, read speech and spontaneous
speech. In all the studies, we observe that the proposed approach scales well to large
vocabulary continuous speech recognition task.

2. Understanding the learned features: As it would be seen in the ASR studies the proposed
approach yields a system that performs better than the system based on conventional ap-
proach with considerably less number of parameters. Thus, a second set of questions that
arise are: what information is the neural network learning and how it is learning? Since
the features are learned along with the classifier automatically from the data, yet another
question that arises is: are these features domain or language dependent? To understand
these aspects we first present analysis of the system that gives insight about: (a) the infor-
mation that is learned by the filters at the first convolution layer and (b) the information
that is modeled by between the first convolution layer and the second convolution layer.
We then focus the analysis at the classifier stage, where we show that the learned features
can be classified with a simple classifier such as a single layer perceptron. Furthermore,
the learned features could be transferred across languages and domains.

The remainder of the paper is organized as follows. Section 2 presents a background survey on fea-
tures extraction using deep neural networks. Section 3 presents the motivations. Section 4 presents
the architecture of the CNN-based system. Section 5 presents the recognition studies and Section 6
presents the analyses. Section 7 presents a discussion and concludes the paper.
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2 Background

This section briefly introduces standard hybrid HMM/ANN ASR system. It then presents a concise
survey on two aspects of acoustic modeling: features and ANN-based classifier upon which the
present paper focusses on.

2.1 Hybrid HMM/ANN ASR system

As presented in Figure 1, hybrid HMM/ANN based ASR system is composed of three parts: features
extraction, classification and decoding. In the first step, input features xt at time t are extracted from
the short-term signal st. They are then given as input to a artificial neural network (ANN). In litera-
ture, ANNs with different architectures have been proposed such as multilayer perceptron (MLP) [2],
time delay neural networks [14] which is also referred to as convolutional neural networks, recurrent
neural networks (RNN) [15, 16]. The ANN estimates the class conditional probabilities P (i|xt) for
each phone class i ∈ {1, . . . , I}. The emission probabilities pe(xt|i) of the HMM states are scaled
likelihoods which as given below are obtained by dividing the ANN output by the prior probability
of the class P (i),

pe(xt|i) ∝
p(xt|i)
p(xt)

=
P (i|xt)

P (i)
∀i ∈ 1, . . . , I (1)

The prior class probability P (i) is often estimated by counting on the training set. The phone classes
{1, . . . , I} can be either context-independent phones or clustered context-dependent HMM states,
typically obtained by decision tree based state clustering and tying. Depending upon that the system
is referred to as either context-independent phone-based ASR system or context-dependent phone-
based ASR system, respectively.

Raw speech
segment

Feature
extraction

MFCC / PLP

Classification
ANN

P (i|xt)

P (i)st xt HMM
Decoding

Word
sequence

Lexicon Language
Model

Figure 1: Hybrid HMM/ANN system. st denotes the input speech segment, xt here denotes cepstral
features and i denotes a phoneme class.

Given the scaled-likelihood estimates, a phonetic lexicon and a language model, the decoder finally
infers the best matching word hypothesis through search.

2.2 Feature and classifier

Speech signal is a non-stationary signal. Alternately, the statistical characteristics of the signal
change over the time due to various reasons such as speech sound being produced, speaker variation,
emotional state variation etc. In the case of ASR, we are primarily interested in the characteristic
of the speech signal that relates to or differentiates the speech sounds. In other words, the primary
goal is to estimate statistical evidence about speech sounds given the speech signal. To achieve that,
guided by statistical pattern recognition techniques, originally the problem has been split into two
steps, namely, feature extraction and modeling of the features by a statistical classifier.

Speech coding studies in telephony have shown that speech can be processed as short segments,
transformed, transmitted and reconstructed while keeping the intelligibility or message intact [17].
In particular, the studies have shown that short-term speech signal could be considered as output of
a linear time invariant vocal tract filter excited by periodic or aperiodic vibration of vocal cords [17].
Furthermore, speech intelligibility can be preserved by preserving the envelop structure of the short-
term spectrum of speech signal, which characterizes the vocal tract system [18]. The two most com-
mon spectral-based features Mel frequency cepstral coefficient (MFCC) [19] and perceptual linear
prediction cepstral coefficient (PLP) [20] are built on those aspects while integrating the knowledge
about speech and sound perception.
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(a) MFCC and PLP extraction pipelines.

Raw speech
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|DFT| Critical bands
filtering

Derivatives
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+ CNN
NN

classifier
P (i|xt)

xt

(b) Typical CNN based pipeline using Mel filterbank [22, 23]

Figure 2: Illustration of several features extraction pipelines. |DFT| denotes the magnitude of the
discrete Fourier transform, DCT denotes the magnitude of the discrete cosine transform, AR mod-
eling stands for auto-regressive modeling, ∆ and ∆∆ denote the first and second order derivatives
across time, respectively. P (i|xt) denotes the conditional probabilities for each input frame xt, for
each label i. It is worth noting that typically, in addition to xt, the input to the ANN also consists of
features from preceding and following frames.

As illustrated in Figure 2(a), the extraction of MFCC or PLP feature involves: (1) transformation
of short-term speech signal to frequency domain; (2) filtering the spectrum based on critical bands
analysis, which is derived from speech perception knowledge; (3) applying a non-linear operation;
and (4) applying a transformation to get reduced dimension decorrelated features. This process only
models the local spectral level information on a short time window typically of 20-30 ms. The
information about speech sound is spread over time. To model the temporal information intrinsic in
the speech signal dynamic features are computed by taking approximate first and second derivative
of the static features [21].

To estimate statistical evidence of speech sounds given the speech signal, the cepstral features are
modeled by classifiers such as k-means (or vector quantization), Gaussian mixture models, ANNs,
k-nearest neighbor. In the beginning of hybrid HMM/ANN theory, the ANNs typically had single
hidden layer. There were two particular reasons for that. First, it has been shown theoretically
that ANN with single hidden layer is an universal approximator [24]. Second, both acoustic and
computing resources were then limited. In the recent years, with the advancements in computing
and availability of increased amount of acoustic resources, it has been shown that ANNs with deep
architecture, i.e. with multiple hidden layers, can yield better systems [25, 26, 27, 7].

3 Motivation

The standard acoustic modeling mechanism can be seen as a process of applying transformations
guided by prior knowledge about speech production and perception on the speech signal, and sub-
sequent modeling of the resulting features by a statistical classifier. More recently, inspired by the
success of deep learning approaches in the field of text processing and vision towards building end-
to-end systems as well as by the success of DNNs in ASR, researchers have started questioning the
intermediate step of feature extraction. In that direction, several studies have been carried where fil-
terbank or critical band energies estimated from the short-term signal instead of cepstral features are
used as input of convolutional neural networks based systems [28, 22, 23] or short-term magnitude
spectrum is used as input to DNN proposed [29, 30]. Figure 2(b) illustrates a case where, instead
of transforming the critical band energies into cepstral features, the critical band energies and its
derivatives are fed as input to the ANN.

In this article, we go one step further where the features and the classifier are jointly learned. Al-
ternately, in this approach the raw speech signal is input to an ANN that classifies speech sounds.
During training the neural network automatically learns both the relevant features and the classifier.
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The output of the trained neural network is then used as emission probabilities of HMM states as
done in hybrid HMM/ANN approach. Such an approach can not only be motivated by recent ad-
vances in machine learning but also from previous works in the speech literature in which direct
modeling of raw speech signal has been proposed for speech recognition.

The first initiative towards directly modeling the raw speech signal was inspired by speech produc-
tion model, i.e. an observed speech signal can be seen as an output of a time varying filter excited by
a time varying source. Specifically, one of the first theoretical work in that direction by [31] was in-
spired by linear prediction technique, which can deconvolve the excitation source and the vocal tract
system through time domain processing. Poritz’s work was later revisited as switching autoregres-
sive HMM [32], and more recently in the framework of switching linear dynamical systems [33].
These techniques were investigated in an isolated word recognition setup where word-based models
are trained. It was found that in comparison to HMM-based ASR system using cepstral features
these approaches yield performance comparable under clean conditions and significantly better per-
formance under noisy conditions [33]. In [34], an approach to model raw speech signal was proposed
using auto-regressive HMM. In this approach, each sample of the speech signal is the observation
as opposed to a vector of speech samples in the approach proposed in [31]. Each state models the
observed speech sample as a linear combination of past samples plus a ”driving sequence” (assumed
to be a Gaussian i.i.d process). The potential of the approach was demonstrated on classification of
speaker-dependent discrete utterances consisting of 18 highly confusable stop consonant-vowel syl-
lables. However, their gain compared to conventional cepstral-based features is not clear, and they
were never studied on continuous speech recognition task.

More recently, using raw speech signal as input to discriminative systems has been investigated.
Combination of raw speech and cepstral features in the framework of support vector machine has
been investigated for noisy phoneme classification [35]. Features learning from raw speech using
neural networks-based systems has been investigated in [8]. In this approach, the learned features
are post-processed by adding their temporal derivatives and used as input for another neural network.
Thus, this approach still follows the “divide and conquer” approach. In comparison to that, in our
approach, the features are learned jointly with the acoustic model in an end-to-end manner. There
are other more recent works that have followed the proposed approach. We discuss them later in
Section 7.

4 Proposed CNN-based Approach

Raw speech
segment sct

CNNs MLP HMM
Word

sequence

Language
ModelLexicon

P (i|sct)
P (i)

Joint Training

Figure 3: Overview of the proposed CNN-based approach.

Raw speech
segment sct

Convolution
Max

pooling
Hard

Tanh(·)

Filter stage × N

(feature learning)

MLP SoftMax

Classification stage

P (i|sct)

Figure 4: Overview of the convolutional neural network architecture. Several stages of convolu-
tion/pooling/HardTanh might be considered. Our network included 3 stages. The classification
stage can have multiple hidden layers.
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We propose a novel acoustic modeling approach based on convolutional neural networks (CNN),
where the input speech signal sct = {st−c . . . st . . . st+c} is a segment of the raw speech signal
taken in context of 2c frames spanning win milliseconds. The input signal is processed by several
convolution layers and the resulting intermediate representations are classified to estimate P (i|sct),
∀i, as illustrated in Figure 3. P (i|sct) is subsequently used to estimate emission scaled-likelihood
pe(s

c
t |i). As presented in Figure 4, the network architecture is composed of several filter stages, fol-

lowed by a classification stage. A filter stage involves a convolutional layer, followed by a temporal
pooling layer and a non-linearity, HardTanh(·). The number of filter stages is determined during
training. The feature stage and the classifier stage are jointly trained using the back propagation
algorithm.

The proposed approach employs the following understanding:

1. Speech is a non-stationary signal. Thus, it needs to be processed in short-term manner. Tra-
ditionally, in the literature guided by Fourier spectral theory and speech analysis-synthesis
studies the short-term window size is set as 20-40 ms. The proposed approach follows the
general idea of short-term processing. However, the size of the short-term window is a
hyper-parameter which is automatically determined during training.

2. Feature extraction is a filtering operation. This can be simply observed from the fact that
generic operations such as Fourier transform, discrete cosine transform etc. are filtering
operations. In conventional speech processing, the filtering takes place in both frequency
(e.g. filter-bank operation) and time (e.g. temporal derivative estimation). The convolution
layers in the proposed approach build on these understandings. However, aspects such as
the number of filter-banks and their parameters are automatically learned during training.

3. Though the speech signal is processed in short-term manner, the information about the
speech sounds is spread across time. In conventional approach, the information spread
across time is modeled by estimating temporal derivatives and by using contextual infor-
mation, i.e. by appending features from preceding and following frames, at the classifier
input. In the proposed approach the intermediate representations feeding into the classifier
stage are estimated using long time span of input speech signal, which is again determined
during training. Alternately, win is a hyper-parameter.

In essence the proposed approach with minimal assumptions or prior knowledge learns to process
the speech signal to estimate P (i|sct).

4.1 Convolutional layer

While “classical” linear layers in standard MLPs accept a fixed-size input vector, a convolution
layer is assumed to be fed with a sequence of T vectors/frames: {y1 . . . yt . . . yT }. As illustrated
in Figure 5, a convolutional layer applies the same linear transformation over each successive (or
interspaced by dW frames) windows of kW frames. In this work, yt is either a segment of input raw
speech sct (for the first convolution layer) or an intermediate representation output by the previous
convolution layer. Formally, the transformation at frame t is written as:

M

 yt−(kW−1)/2

...
yt+(kW−1)/2

 , (2)

where M is a dout × din matrix of parameters, din denotes the input dimension and dout denotes
the output dimension of each frame. In other words, dout filters (rows of the matrix M ) are applied
to the input sequence.

4.2 Max-pooling layer

These kind of layers perform local temporal max operations over an input sequence. More formally,
the transformation at frame t is written as:

max
t−(kWmp−1)/2≤k≤t+(kWmp−1)/2

yd
k ∀d (3)

with y being the input and d ∈ {1, · · · dout} These layers increase the robustness of the network to
minor temporal distortions in the input.
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Convolution
M × ·

din

dout

kWdW

Figure 5: Illustration of a convolutional layer. din and dout are the dimensions of the input and
output frames. kW is the kernel width (here kW = 3) and dW is the shift between two linear
applications (here, dW = 2).

Max-Pooling
max(·)

d

d

kWmp

Figure 6: Illustration of max-pooling layer. kW is the number of frame taken for each max operation
(here, kWmp = 2 and dWmp = 2) and d represents the dimension of input/output frames (which
are equal).

4.2.1 Non-linearity

This kind of layer applies a non-linearity to the input. In this work, we use the HardTanh layer,
defined as:

HardTanh(x) =

{ −1 if x < −1
x if − 1 ≤ x ≤ 1
1 if x > 1

(4)

4.3 SoftMax layer

The Softmax [36] layer interprets network output scores fi(sct) as conditional probabilities, for
each class label i:

P (i|sct) =
efi(s

c
t)∑

j

efj(s
c
t)

(5)

4.4 Network training

The network parameters θ are learned by maximizing the log-likelihood L, given by:

L(θ) =
∑
t

log(P (i|sct , θ)) (6)
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for each speech segment sct and label i, over the whole training set, with respect to the parameters
of each layer of the network. Defining the logadd operation as:

logadd
j

(zj) = log(
∑
j

ezj ) (7)

the likelihood can be expressed as:

L = log(P (i|sct)) = fi(s
c
t)− logadd

j
(fj(s

c
t)) (8)

where fi(sct) described the network score for class i. Maximizing this likelihood is performed using
the stochastic gradient ascent algorithm [37].

4.5 Illustration of a trained network

In the proposed approach, in addition to the number of hidden units in each hidden layer of the
classification stage, the filter stage has number of hyper-parameters, namely, time span of input
speech signal win used to estimate P (i|sct), number of convolution layers, kernel or temporal win-
dow width kW at input of each convolution layer, dW shift of the temporal window at the input of
each convolution layer, max pooling kernel width kWmp and shift of max pooling kernel dWmp. In
the present work, all of these hyper-parameters are determined during training based on frame level
classification accuracy on validation data.

Figure 7 illustrates the trained feature stage of the proposed CNN approach on TIMIT corpus. The
details of the training can be found in the following Section 5. The filter stage has three convolution
layers and it takes a window of 250 ms speech signal win as input to estimate P (i|sct) every 10 ms.
The figure also illustrates the temporal information κ modeled by the output of each convolution
layer and the temporal shift δ. Briefly, the first convolution layer models in a fine grain manner the
changes in the signal characteristics over time, i.e. processes 1.8 ms of speech (kW = 30 samples)
every 0.6ms (dW = 10 samples). The subsequent convolution layers then filter and temporally
integrate the output of the first convolution layer to yield an intermediate feature representation that
is input to the classifier stage, which eventually yields an estimate of P (i|sct)
It is worth pointing out that the dimensionality of the intermediate representation at the feature
learning stage output depends upon the number of convolution stages and the max-pooling kernel
width. As it can be seen that max-pooling is done without temporal overlap. So at each convolution
stage, in addition to filtering minor temporal distortions, max-pooling operation acts as a down
sampler.

5 Recognition Studies

In this section, we present automatic speech recognition studies to show the potential of the proposed
approach. We compare it against the conventional approach of spectral-based feature extraction
followed by ANN training on different tasks and languages, namely, (a) TIMIT phoneme recognition
task, (b) Wall street journal (WSJ) 5k task, (c) Swiss French Mediaparl task and (d) Swiss German
Mediaparl task. The objective of these studies is to demonstrate the potential of the proposed end-to-
end acoustic modeling approach by comparing it against the standard cepstral feature-based acoustic
modeling for estimating phoneme class posterior probability.

The reminder of the section is organized as follows. Section 5.1 presents the different datasets and
setup used for the studies. Section 5.2 presents the different systems that are trained and evaluated.
Section 5.3 presents the recognition studies.

5.1 Databases and setup

5.1.1 TIMIT

The TIMIT acoustic-phonetic corpus [38] consists of 3,696 training utterances (sampled at 16kHz)
from 462 speakers, excluding the SA sentences. The validation set consists of 400 utterances from
50 speakers. The core test set was used to report the results. It contains 192 utterances from 24
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Figure 7: Illustration of the feature stage of CNN trained on TIMIT to classify 183 phoneme classes.
κ and δ indicates the temporal information modeled by the layer and the shift respectively. Non-
linearity layers are applied after each max-pooling.

speakers, excluding the validation set. Experiments were performed using 61 phoneme labels, with
three states, for a total of 183 targets as in [39]. After decoding, the 61 hand labeled phonetic
symbols are mapped to 39 phonemes, as presented in [40].

5.1.2 Wall Street Journal

The Wall Street Journal (WSJ) corpus is an English corpus consisting of read microphone
speech [41]. The SI-284 set of the corpus is formed by combining data from WSJ0 and WSJ1
databases [42]. The set contains 36416 sequences sampled at 16 kHz, representing around 80 hours
of speech. Ten percent of the set was taken as validation set. The Nov’92 set was selected as test set.
It contains 330 sequences from 10 speakers. The dictionary was based on the CMU phoneme set,
40 context-independent phonemes. We obtained 2776 clustered context-dependent (cCD) units, i.e.
tied-states, by training a context-dependent HMM/GMM system with decision tree based state tying
using HTK [43]. We used the bigram language model provided with the corpus. The test vocabulary
contains 5000 words.

5.1.3 Mediaparl

MediaParl is a bilingual corpus [44] containing data (debates) in both Swiss German and Swiss
French which were recorded at the Valais parliament in Switzerland. Valais is a state which has
both French and German speakers with high variability in local accents specially among German
speakers. Therefore, MediaParl provides a real-speech corpus that is suitable for ASR studies. In
our experiments, audio recordings with 16 kHz sampling rate are used.
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The Swiss German part of the database, referred to as MP-DE, is partitioned into 5955 sequences
from 73 speakers for training (14 hours), 876 sequences from 8 speakers for validation (2 hours) and
and 1692 sequences from 7 speakers (4 hours) for test. 1101 tied-states were used in the experiments,
following the best system available on this corpus [45]. The vocabulary size is 16,755 words. The
dictionary is provided in SAMPA format with a phone set of size 57 (including sil) and contains all
the words in the train, development and test set. A bigram language model was used.

The Swiss French part of the database, referred to as MP-FR, is partitioned into 5471 sequences from
107 speakers for training (14 hours) , 646 sequences from 9 speakers for validation (2 hours) and
and 925 sequences from 7 speakers (4 hours) for test. 1084 tied-states were used in the experiments,
as presented in [46]. The vocabulary size is 12,035 words. The dictionary is provided in SAMPA
format with a phone set of size 38 (including sil) and contains all the words in the train, development
and test set. A bigram language model was used.

5.2 Systems

In this section, for each task studied, we present the details of the conventional spectral feature based
baseline systems (Section 5.2.1) and the proposed CNN-based system using raw speech signal as
input (Section 5.2.2).

5.2.1 Conventional cepstral feature based system

On each task, we have two baseline hybrid HMM/ANN systems which differ in terms of ANN
architecture. More precisely, 1 hidden layer MLP (denoted as ANN-1H) based system and 3 hidden
layers MLP (denoted as ANN-3H) based system. These ANNs estimate P (i|xt) where xt is a
cepstral feature vector. The details of the baseline systems for the different tasks are as follows,

• TIMIT: We treat the one hidden layer MLP based system and the three hidden layers MLP
based system without pre-training i.e. random initialization reported in [29, Figure 6] as
the baseline systems. Our motivation in doing so is that they are one of the best cepstral
feature based systems reported in the literature on this task. In these systems, the input to
the MLPs were 39 dimensional MFCC features (c0 − c12 + ∆ + ∆∆) with five frames
preceding and five frames following context (i.e. input dimension 39 × 11). ANN-1H has
2048 nodes in the hidden layer and ANN-3H has 1024 nodes in each of the three hidden
layers.

• WSJ: We trained an ANN-1H and an ANN-3H to classify 2776 tied-states. The input to the
MLP was 39 dimensional MFCC features (c0−c12 +∆+∆∆) with four frames preceding
and four frames following context (i.e. input dimension 39× 9). The MFCC features were
computed using HTK with a frame size of 25ms and a frame shift of 10 ms. ANN-1H had
1000 nodes in the hidden layer and ANN-3H had 1000 nodes in each hidden layer. The
ANNs were trained using Torch7 toolbox [47].

• MP-DE: We use the setup of the best performing hybrid HMM/ANN system using a three
hidden layers MLP classifying 1101 clustered context-dependent units reported in [45] as
the baseline ANN-3H system. The ANN has 1000 nodes in each hidden layer. We trained
an ANN-1H with 1000 hidden units for the present study using Torch7 toolbox. The inputs
to the ANNs were 39 PLP cepstral features (c0 − c12 + ∆ + ∆∆) extracted using HTK
with four frames preceding and four frames following context. The frame size and frame
shift were 25 ms and 10ms, respectively.

• MP-FR: We use the setup of the best performing hybrid HMM/ANN system using a three
hidden layers MLP classifying 1084 clustered context-dependent units reported in [46] as
the baseline ANN-3H system. The ANN has 1000 nodes in each hidden layer. We trained
an ANN-1H with 1000 hidden units for the present study using Torch7 toolbox. The inputs
to the ANNs were 39 PLP cepstral features (c0 − c12 + ∆ + ∆∆) extracted using HTK
with four frames preceding and four frames following context. The frame size and frame
shift were 25 ms and 10ms, respectively.
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5.2.2 Proposed CNN-based system

We trained the proposed CNN-based P (i|sct) estimator using raw speech signal. The inputs are
simply composed of a window of the speech signal (hence din = 1, for the first convolutional layer).
The utterances are normalized such that they have zero mean and unit variance, which is in line with
the literature [34]. No further pre-processing is performed. The hyper-parameters of the network
are: the time span of the input signal (win), the kernel width kW and shift dW of the convolutions,
the number of filters dout, maxpooling kernel width kWmp, maxpooling kernel shift dWmp and the
number of nodes in the hidden layer(s). Note that the input din for the first convolution layer is one
(i.e. a sample of the speech signal). For the remaining layers, the din is the product of dout of the
previous layer and kW of that layer. These hyper parameters were determined by early stopping
on the validation set, based on frame classification accuracy. The ranges which were considered for
a coarse grid search are reported in Table 1. We used the TIMIT task to narrow down the hyper-
parameters search space, as it provided fast turn around experiments.

Table 1: Range of hyper parameters for the grid search.

Parameters Units Range
Input window size (win) ms 100-700

Kernel width of the first conv. (kW1) samples 10-90
Kernel width of the nth conv. (kWn) frames 1-11

Number of filters per kernel (dout) filters 20-100
Max-pooling kernel width (kWmp) frames 2-6

Number of hidden units in the classifier units 200-1500

For each of the tasks, we trained CNNs with one hidden layer (denoted as CNN-1H) and three hidden
layers (denoted as CNN-3H) similar to the different MLP architectures in the baseline systems.
The CNNs were trained using the Torch7 toolbox [47]. We found that three convolution layers
consistently yields the best cross validation accuracy across all the tasks. The CNN architecture
found for each of the task is presented in Table 2. The shift of max-pooling kernel dWmp = 3
was found for all the layers on all the tasks. As we will observe later, the complexity of the CNN-
based approach in terms of number of parameters lies at the classifier stage. So, for fair comparison
with the baseline systems, we restricted the search for the number of hidden nodes in the hidden
layer(s) such that the number of parameters are comparable to the respective baseline systems. The
output classes were same as the case of cepstral feature-based system, i.e. for TIMIT task 183 phone
classes, for WSJ task 2776 cCD units, for MP-DE task 1101 cCD units and for MP-FR task 1084
cCD units.

Table 2: Architecture of CNN-based system for different tasks. HL=1 denotes CNN-1H and HL=3
denotes CNN-3H. win is expressed in terms of milliseconds. The hyper-parameters kW , dW , dout
and kWmp for each convolution layer is comma separated. HU denotes the number of hidden units.
3× 1000 means 1000 hidden units per hidden layer.

HL win kW dW dout kWmp HU
TIMIT 1 250 30,7,7 10,1,1 80,60,60 3,3,3 1000

3 250 30,7,7 10,1,1 80,60,60 3,3,3 3x1000
WSJ 1 210 30,7,7 10,1,1 80,60,60 3,3,3 1000

3 310 30,7,7 10,1,1 80,60,60 3,3,3 3x1000
MP-DE 1 210 30,7,7 10,1,1 80,60,60 3,3,3 1000

3 310 30,7,7 10,1,1 80,60,60 3,3,3 3x1000
MP-FR 1 190 30,7,7 10,1,1 80,60,60 3,3,3 1000

3 310 30,7,7 10,1,1 80,60,60 3,3,3 3x1000

5.3 Results

In this section we present the results of the studies on different tasks. For the sake of completeness,
for the speech recognition studies we also report performance on HMM/GMM system. For MP-DE
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and MP-FR, the best performing HMM/GMM systems reported in [45] and [46], respectively are
presented. They have more number of tied states than the hybrid HMM/ANN and the CNN-based
system presented here.

5.3.1 TIMIT

Table 3 presents the results on TIMIT phone recognition task in terms of phoneme error rate (PER).
It can be observed that the proposed CNN based approach outperforms the conventional cepstral
feature based system. In [29, Figure 6], ANNs with different hidden layers were investigated with
cepstral feature as input. The best performance of 23.0% PER for the case of random initialization
is achieved with 7 hidden layers, 3072 hidden nodes per layer and 17 frames temporal context (8
preceding and 8 following). With pre-training, the best performance of 22.3% PER is achieved with
6 hidden layers, 3072 hidden nodes per layer and 17 frames temporal context. The CNN-3H system
performs better than those systems as well.

Table 3: Phoneme error rate of different systems on the core test set of the TIMIT corpus. The
ANN-1H and ANN-3H performances are reported in [29].

#Conv. #Class. PER
Input System params. params. (in %)

MFCC ANN-1H na 1.2M 24.5
MFCC ANN-3H na 2.6M 22.6
RAW CNN-1H 63k 920k 22.8
RAW CNN-3H 52k 2.9M 21.9

Table 4 contrasts our results with a few prominent results on TIMIT using ANNs. Inputs of these
systems are either MFCCs (computed as presented in Section 5.2.1), Mel filterbanks energies (ab-
breviated FBANKs) or “improved” MFCC features (denoted MFCC+LDA+MLLT+fMLLR), which
are obtained by applying decorrelation processes (linear discriminant analysis and maximum likeli-
hood linear transform) and speaker normalization (feature-space maximum likelihood linear regres-
sion) [48] to the original MFCC coefficient. One can see that the proposed approach outperforms
most of the systems using MFCCs features. Systems using improved MFCCs features yields better
results than the proposed approach, mainly due to the speaker normalization technique, which could
be developed for the proposed approach. Finally, one can see that RNN-based systems (the three
last entries of Table 4) clearly yield the best performance.

Table 4: Phoneme error rate of different systems reported in literature on the core test set of the
TIMIT corpus.

Method (input) PER (in %)
Augmented CRFs (MFCC) [49] 26.6
HMM/DNNs 6 layers (MFCC) [29] 22.3
Deep segmental NN (MFCC) [50] 21.9
Proposed approach 21.9
HMM/DNNs 6 layers (MFCC+LDA+MLLT+fMLLR) [51] 18.5
CTC transducers (FBANKs) [16] 17.7
Attention-based RNN (FBANKs) [52] 17.6
Segmental RNN (MFCC+LDA+MLLT+fMLLR) [51] 17.3

5.3.2 WSJ

The results for the LVCSR study on the WSJ corpus in presented in Table 5. for the baseline systems
and the proposed system. As it can be observed, the CNN-1H based system outperforms the ANN-
1H based baseline system, and the CNN-3H based system also outperforms the ANN-3H based
system with as many parameters.
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Table 5: Word Error Rate on the Nov’92 testset of the WSJ corpus

#Conv. #Class. WER
Input System params. params. (in %)

MFCC GMM na 4M 5.1
MFCC ANN-1H na 3.1M 7.0
MFCC ANN-3H na 5.6M 6.4
RAW CNN-1H 46k 3.1M 6.7
RAW CNN-3H 61k 5.6M 5.6

5.3.3 MP-DE

The results on the Mediaparl German corpus are presented in Table 6. The CNN-1H based system
outperforms the GMM-based system, the ANN-1H based system and the ANN-3H system with four
times less parameters. The CNN-3H system also outperforms the baseline.

Table 6: Word Error Rate on the testset of the MP-DE corpus. The GMM and ANN-3H baseline
performances are reported in [45]

#Conv. #Class. WER
Input System params. params. (in %)
PLP GMM na 3.8M 26.6
PLP ANN-1H na 2.2M 26.7
PLP ANN-3H na 8.8M 25.5

RAW CNN-1H 61k 1.6M 24.4
RAW CNN-3H 92k 8.7M 23.5

5.3.4 MP-FR

The results on the Mediaparl French corpus are presented in Table 7. Again, a similar trend can
be observed, i.e. the CNN-1H based system outperforms the ANN-1H baseline and the CNN-3H
outperforms the ANN-3H based system.

Table 7: Word Error Rate on the testset of the MP-FR corpus. The GMM and ANN-3H performances
are reported in [46]

#Conv. #Class. WER
Input System params. params. (in %)
PLP GMM na 3.8M 26.8
PLP ANN-1H na 2.2M 27.0
PLP ANN-3H na 8.8M 25.5

RAW CNN-1H 61k 1.5M 25.9
RAW CNN-3H 92k 8.7M 23.9

In summary, these studies show that with minimal assumptions the proposed approach is able to
learn to process the speech signal to estimate phone class conditional probabilities P (i|sct) and yield
a system that outperforms conventional cepstral feature based system using DNNs. Furthermore, we
consistently observe that the CNN-1H system yields performance comparable to ANN-3H system
with considerably fewer parameters.

6 Analysis

The aim of this section is to gain insight into the proposed approach. Towards that this section
focuses on analysis at two levels: (a) analysis of the first convolution layer (Section 6.1) which
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operates on the speech signal directly. Thus, can be related to and contrasted with traditional speech
processing; and (b) analysis of the intermediate feature representations obtained at the output of the
feature stage (Section 6.2).

6.1 First convolution layer

In this section, we present an analysis of the first convolution layer. We first provide an input level
analysis, where the hyper-parameters of the layer (found experimentally) are compared against the
conventional speech processing approach. We then show that the convolution layer can be inter-
preted as a bank of matching filters. Finally, we analyze how these filters respond to various inputs
and present a method to understand the filtering process.

6.1.1 Input level analysis

To learn to process raw speech signal and estimate P (i|sct) the proposed approach employs many
hyper-parameters which are decided based on validation data. We can get insight into the approach
by relating or contrasting a few of the hyper-parameters to the traditional speech processing. First
among that is time span of the signal win used to estimate P (i|sct). From Table 2, we can observe
that win varies from 190 ms - 310 ms. This is consistent with the literature which supports the idea
of processing syllable length speech signal (around 200 ms) for classification of phones [53]. This
aspect can be also observed in another way. Usually, in hybrid HMM/ANN system the input is the
cepstral features (static + ∆ + ∆∆) at the current time frame and features of four preceding frames
and four following frames. If the frame shift is 10 ms and the temporal derivatives are computed
using two frames preceding and two frames following context then the 9 frame feature input models
170 ms of speech signal.

Next we can understand how the speech signal of time span of 190 ms - 310 ms is processed at the
input of the network through the kernel width (kW ) and kernel shift (dW ) of the first convolution
stage. We can see from Table 2 that for all tasks kW is 30 speech samples and dW is 10 speech
samples. Given that the sampling frequency is 16 kHz, this translates into a window of 1.8 ms and
shift of about 0.6 ms. This is contrary to the conventional speech processing where typically the
window size is about 25 ms, the shift is about 10 ms and the resulting features are concatenated at
the classifier input. Note that in our case win is shifted by 10ms, however with in the window of
190 ms - 310 ms the speech is processed at sub-segmental level at the first convolution layer and
subsequently processed by later convolution layers to estimate P (i|sct).

Such a sub-segmental processing at the first convolution layer could possibly be reasoned through
signal stationarity assumptions. More precisely, the convolution filters at the first stage are learned
by discriminating the phone classes at the output of the CNN. So, for the output of the convolution
filter to be informative (for phone classification), the filter has to operate on stationary segments of
the speech signal spanned by win. It can be argued that such a stationary assumption would clearly
hold for one glottal cycle or pitch period of the speech signal. In such a case suppose if the limit of
the observed pitch frequency is assumed to be 500 Hz, i.e. beyond adult speakers pitch frequency
range, then a window size of 2 ms or less would ensure that the filters operate on stationary segments
i.e. with in a glottal cycle. This line of argument is also consistent with traditional feature extraction
methods which tend to model the smooth envelop of the short-term spectrum, i.e. information more
related to vocal tract response, with quasi-stationarity assumptions.

6.1.2 Learned filters

The first convolution layer learns a set of filters that operates on the speech signal in a similar way to
filter bank analysis during MFCC or PLP cepstral feature extraction. In the case of MFCC or PLP
cepstral feature extraction the number of filter banks and their characteristics are determined a priori
using speech perception knowledge. For instance, the filters are placed either on Mel scale or on
Bark scale. Further, each of the filters cover only a part of the bandwidth, out of which the response
is strictly zero. The number of filters are chosen based on bandwidth information. For instance, in
the case of Mel scale around 24 filters for 4 kHz bandwidth (narrow band speech) and 40 filters for
8 kHz bandwidth (wide band speech) are typically used. While in the case of Bark scale, there are
15 filters for 4 kHz bandwidth and 19 filters for 8 kHz bandwidth [54].
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Figure 8: Examples of three close pairs of filters learned. The left column is from CNN-1H WSJ, the
center one is from CNN-1H MP-DE, the right one is from CNN-1H MP-FR.

In contrast, in the proposed approach the number filters and their responses are automatically learned
in data-driven manner, i.e., while learning to estimate P (i|sct). It can be observed from Table 2 that
the number of filters for all the tasks is 80. This is well above the range typically used in speech
processing. In order to understand the learned filter characteristics, we analyzed the filters learned
on WSJ, MP-DE and MP-FR task in the following manner:

(i) The complex Fourier transform F of the filters learned on the WSJ, MP-DE and MP-FR
tasks for CNN-1H case are computed using 1024 point FFT. The 512 point magnitude
spectrum |Fm| of each filter m is then normalized, i.e. converted into a probability mass
function. Fm denotes the normalized magnitude spectrum of filter m.
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(ii) For each filter m = 1, . . . , 80 learned on WSJ, we find the closest filter n = 1, . . . , 80
learned on MP-DE and MP-FR using symmetric Kullback-Leibler divergence,

d(Fm, Fn) =
1

2
· [DKL(Fm||Fn) +DKL(Fn||Fm)], (9)

DKL(Fm||Fn) =

512∑
u=1

Fu
m ln

Fu
m

Fu
n

, (10)

where Fu
m is the normalized magnitude at uth point of FFT of filter m of WSJ CNN-1H

and Fu
n is the normalized magnitude at uth point of FFT of filter n of MP-DE CNN-1H or

MP-FR CNN-1H.

Figure 8 presents normalized frequency responses of a few filters learned on WSJ (on the left col-
umn) and the closest filters learned on the MP-DE task (on the middle column) and on the MP-FR
task (on the right column). We can make two observations. First, the filters are focussing on dif-
ferent parts of the spectrum. However, unlike the filter banks in the MFCC or PLP cepstral feature
extraction, the frequency response of the filters cover the whole bandwidth. Second, it can be ob-
served that similar filters can be found across domain and languages, although there is a difference
in the spectral balance, especially as observed in the case of Figure 8(b).

To further understand the characteristics of the learned filters, we estimated the cumulative frequency
response of all the filters in the filterbank:

Fcum =

80∑
n=1

Fn (11)

Figure 9 presents the gain normalized cumulative frequency responses for CNN-1H WSJ, CNN-1H
MP-DE and CNN-1H MP-FR. We can make three key observations,

(i) Emphasis is given to frequency regions below 3500 Hz (telephone bandwidth) and high
frequency region in the range of 6000 Hz - 8000 Hz.

(ii) Though the filters are learned on different languages and corpora, we can see that below
4000 Hz and above 6500 Hz the frequency response for WSJ, MP-DE and MP-FR are
similar. As the filters are operating on sub-segmental speech, we speculate that the peaks
(high energy regions) are more related to the resonances in the vocal tract or phoneme
discriminative invariant information. Between 4000 Hz and 6500 Hz, we can see that MP-
DE and MP-FR have responses that closely match, but are different than WSJ. Overall we
observe that the spectral balance for WSJ is different than for MP-DE and MP-FR. We
attribute this balance mismatch mainly to the fact that the WSJ and the Mediaparl corpora
are different domains in terms of type of speech (read vs. spontaneous) and recording
environment (controlled vs real world). In the following sub-section and Section 6.2.2 we
touch upon this aspect again.

(ii) Auditory filterbanks such as Mel scale filterbanks or Bark scale filterbanks are usually
designed to have a cumulative frequency response that is flat. In other words, constant
Q bandpass filterbank. In contrast to that, it can be seen that the cumulative frequency
response of the learned filters is not constant Q bandpass. The main reason for that is stan-
dard filterbanks emerged from human sound perception studies considering the complete
auditory frequency range or the bandwidth, so as to aid analysis and synthesis (reconstruc-
tion) of the audio signal. However, in our case these filters are learned for the purpose of
discriminating phones, and the speech signal contains information other than just phones.
The figure suggests that, for discriminating only phones, constant Q bandpass filterbank is
not a necessary condition.

6.1.3 Response of filters to input speech signal

In Section 6.1.1, we observed that the speech signal of time span 190 ms - 310 ms is processed
in sub-segmental manner. In the previous section, we observed that the filters that operate on sub-
segment of speech signal are tuned to different parts of the spectrum during training. In other words,
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Figure 9: Cumulative frequency responses of the learned filterbank on WSJ, MP-DE and MP-FR.

matched to different parts of the spectrum relevant for phone discrimination. In this section, we
ascertain that by analyzing the response of the filters to the the input speech signal in relationship
with phones.

The CNNs in the WSJ, MP-DE and MP-FR studies were trained to classify cCD units, which can be
quite distinctive across languages. So, in order to facilitate the analysis across languages, we trained
CNNs with single hidden layer on WSJ, MP-DE and MP-FR data to classify context-independent
phones with same hyper parameters. We denote these CNNs as CNN-1H-mono WSJ, CNN-1H-
mono MP-DE and CNN-mono MP-FR, respectively.

As a first step, we analyzed the energy output of the filters to the input speech signal. Formally, for
a given input st = {st−(kW−1)/2 ... st+(kW−1)/2}, the output yt of the first convolution layer is
given by:

yt[m] =

l=+(kW−1)/2∑
l=−(kW−1)/2

fm[l] · st+l ∀m = 1, .., dout (12)

where fm denotes themth filter in first convolution layer and yt[m] denotes the output of the filter at
time frame t. Figure 10 presents the output of the filters of CNN-1H-mono WSJ given a segment of
speech signal corresponding to phoneme /I/ as input. It can be seen that at each time frame only a
few filters out of the 80 filters have high energy output. An informal analysis across different phones
showed similar trends, except that the filters with high energy output were different for different
phones. Together with the findings of the previous section, this suggests that the learned filters in
could be a dictionary that models the information in the frequency domain in-parts for each phone.
With that assumption, we performed extended the analysis where,

1. the magnitude spectrum or frequency response St of the input signal st based on the dic-
tionary is estimated as:

St = |
M∑

m=1

yt[m] · Fm|, (13)

where yt[m] is the output of filter m as in Equation (12) and Fm is the complex Fourier
transform of filter fm.
It is worth noting that if the filter-bank was to correspond to a bank of Fourier sine and
cosine bases then St is nothing but the Fourier magnitude spectrum of the input signal st.
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Figure 10: Normalized energy output of each filter in the first convolution layer of CNN-1H-mono
WSJ for an input speech segment corresponding to phoneme /I/.

As yt[m] would be a projection on to the Fourier basis corresponding to discrete frequency
m, and Fm would ideally be a Dirac delta distribution centred at the discrete frequency m.

2. gain-normalized magnitude spectrum St is computed and averaged across different frames
and speakers for each phone. The resulting average magnitude spectrums for the phones
are then compared.

We performed the analysis on the validation data of WSJ, MP-DE and MP-FR using the filters in the
first convolution layer of respective CNN-1H-mono. Figure 11 displays the magnitude spectrums
of a few prominent vowels (notated in SAMPA format) for WSJ, MP-DE and MP-FR. It can be
observed that the average power spectrum is capturing envelop of the sub-segmental speech and it is
different for each vowel. This difference is particularly observable in the frequency regions below
4000 Hz and in the frequency regions between 6000 Hz and 8000 Hz. We had earlier observed in
Section 6.1.2 that these are frequency regions that the learned filters give emphasis to. The prominent
spectral peaks could be related to the formants. However, a detailed formant analysis is practically
infeasible for three main reasons:

(a) First, poor frequency resolution. The filters are operating on sub-segmental speech of about
1.8ms. This leads to poor frequency resolution. It can be also noticed from the ripples in
the magnitude spectrums (especially in the high frequency region);

(b) Second, the formant frequencies and their bandwidths for males and females are different.
The frequency responses here are result of averaging over several male and female speakers
in the respective validation data set; and

(c) Third, the analysis here has been carried on validation data, not on actual training data. So
there can be spurious information present due to unseen condition or variation.

For instance, in the case of /A/, see Figure 11(e), we observe a prominent peak at around 1000
Hz, which could be seen as merger of first formant and second formant as a consequence of window
effect and averaging over male and female speakers. Taking these aspects into account, we examined
the frequency responses in the case of WSJ (Figure 11(a)). We found that the prominent spectral
peak locations tend to relate well to the first formant, second formant and third formant information
provided for English vowels in [55, p. 233]. When comparing across the languages (Figure 11(d)
and Figure 11(e)) we observe a trend similar to the cumulative response of the filters (Figure 9).
Specifically, the spectral peak locations and spectral balance match well for MP-DE and MP-FR.
However, in the case of WSJ the spectral peak locations tend to match but the spectral balance is
different than MP-DE and MP-FR.

Given the understanding gained by the first convolution layer analysis and the CNN architecture, it
can be hypothesized that the second convolution layer model the modulation of the first layer filter
outputs.
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Figure 11: Mean power spectrum (a) for phonemes /E/, /A/, /O/, /I/ and /U/ estimated by
CNN-1H-mono WSJ; (b) for phonemes /E/, /A/, /O/, /I/ and /U/ estimated by CNN-1H-mono
MP-DE; (c) for phonemes /E/, /A/, /O/, /I/ and /U/ estimated by CNN-1H-mono MP-FR; (d)
for phoneme /I/ in WSJ, MP-DE and MP-FR; and (e) for phoneme /A/ in WSJ, MP-DE and MP-FR.
The phonemes are notated in the SAMPA format.
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6.2 Intermediate feature level analysis

In this section, we focus on the analysis of intermediate feature representations that are being learned
at the output of the feature learning stage. In that regard, Section 6.2.1 focuses on the discriminative
aspects of the learned feature representations. Section 6.2.2 then focuses on the cross-domain and
cross-lingual aspects.

6.2.1 Discriminative features

In the recognition studies presented earlier in Section 5, it was observed that CNN-1H system with
much fewer parameters outperforms ANN-3H system on all the tasks. Furthermore, we also ob-
served that the complexity of the proposed CNN-based system lies more at the classifier stage.
Given that the intermediate feature representations are learned in the process of training P (i|sct)
estimator, it can be presumed that these features are more discriminative compared to cepstral-based
feature representations, and thus needs less parameters at the classifier stage. To fully ascertain that
aspect we conducted an experiment to compare the cepstral features and the intermediate feature
representations learned by the CNN. Specifically, we trained and tested three single layer perceptron
(SLP) based systems on WSJ task. One with the MFCCs with temporal context (39 × 9) as input
and the others with intermediate features learned by CNN-1H and CNN-3H. In the case of CNN-3H,
win was kept same as CNN-1H i.e. 210 ms. Table 8 presents the performances of the three systems.
We can observe that the learned features lead to a better system than the cepstral features. Thus,
indicating that the learned features are indeed more discriminative than the cepstral feature repre-
sentation. Furthermore, it is interesting to note that the features learned by CNN-1H and CNN-3H
yield similar systems. It suggests that the gain in ASR performance for WSJ task using CNN-3H is
largely due to more hidden layers

Table 8: Single layer perceptron based system results on the Nov’92 testset of the WSJ task.

Features Dimension WER
(in %)

MFCC 351 10.6
CNN-1H 540 7.9
CNN-3H 540 7.9

6.2.2 Cross-domain and cross-lingual studies

Conventional cepstral-based features, like MFCC, are known to be independent of the language or
the domain, which is one of the main reason they become “standard” features. In the proposed sys-
tem, the features are learned in a data-driven manner, thus they may have some level of dependencies
on the data. In order to ascertain to what level the learned features are domain or language inde-
pendent, we conducted cross-domain and cross-lingual experiments. More precisely, as illustrated
in Figure 12, in these experiments the filter stage is first trained on one domain or language. It is
then used as feature extractor to train the classifier stage of another domain or language.

We used the TIMIT task and WSJ task for cross-domain experiments. We investigated

1. the use of feature stage of CNN-1H of WSJ task as feature extractor for TIMIT task. The
classifier stage with single hidden layer was trained on TIMIT to classify 183 phone classes.

2. the use of feature stage of CNN-1H of TIMIT task as feature extractor for WSJ task. The
classifier stage with single hidden layer was trained to classify 2776 clustered context-
dependent units.

In both the studies, we set the number of hidden nodes to 1000, similar to the systems reported
in Section 5. The results of the two studies are presented in Table 9. In the case of TIMIT task
the results are presented in terms of PER, and in the case of WSJ task in terms of WER. In the
TIMIT task, we can observe that, despite the feature stage being trained to classify clustered context
dependent units on much larger corpus, the PER is inferior to the case where the feature stage is
learned on TIMIT. In the case of WSJ task, we observe that with feature stage trained on TIMIT the
WER is slighty superior.
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Figure 12: Illustration of the cross-domain experiment. The filter stage is trained on domain 1, then
used as feature extractor on domain 2.

Table 9: Cross-domain results on English. The TIMIT results are in terms of PER. The WSJ task
results are in terms of WER.

Classifier stage Feature stage Error Rate
(Domain 2) (Domain 1) (in %)

TIMIT Learned on TIMIT 22.8
Learned on WSJ 23.3

WSJ Learned on WSJ 6.7
Learned on TIMIT 7.8

In addition to the fact that TIMIT and WSJ are two different corpora, there are two other differences
which could have had influence. First, WSJ is a much larger corpus than TIMIT in terms of data.
Second, in TIMIT CNN-1H the feature stage is learned by classifying context-independent phones,
while in WSJ CNN-1H the feature stage is learned by classifying clustered context-dependent units.
So, we conducted a study on WSJ task to understand the influence of the type of units at the output
of the CNN on the feature stage learning, while negating the data effect. More precisely, we used
the feature stage of WSJ CNN-1H-mono (presented earlier in Section 6.1.3) as feature extractor and
trained the classifier stage to classify 2776 clustered context-dependent units. This system leads to
a performance of 7.3% WER, which is inferior to 6.7% WER. This shows that indeed the type of
units in the output of CNN has an influence on the feature learning stage. When compared to the
case where the feature stage is learned on TIMIT, this result indicates that the performance gap is
combined effect of the difference between the WSJ and TIMIT data sets and the units used at the
output of the CNN learn the features. Finally, it is worth observing that TIMIT is a very small corpus
compared to WSJ (3 hours vs 88 hours). However, the performance difference is not drastic, which
suggests that the relevant features can be learned on relatively small amount of data.

We investigated the cross-lingual aspects on WSJ, MP-DE and MP-FR tasks. We conducted studies
where the feature stage is learned on one language and the classifier stage is learned on the other
language. For these studies, we used the feature stages of WSJ CNN-1H, MP-DE CNN-1H and
MP-FR CNN-1H systems presented in Section 5. The classifier stage in all the studies consisted of
a single hidden layer with 1000 nodes. The classes at the output of classifier stage remained same
as before, i.e. 2776 cCD units for WSJ task, 1101 cCD units for MP-DE task and 1084 cCD units
for MP-FR task. Table 10 presents the results of the study.

Before we analyze the results in detail, we can consider broader aspects. Specifically, in terms
of family of languages, English and German belong to Germanic language family while French
belongs to Romance language family. Given that, it can be expected that the feature stage learned
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Table 10: Crosslingual studies result on English, German and French. The feature stage is learned
on Domain 1 and the classifier stage is learned on Domain 2.

Classifier stage Feature stage WER
(Domain 2) (Domain 1) (in %)

WSJ Learned on WSJ 6.7
Learned on MP-DE 12.1
Learned on MP-FR 12.8

MP-DE Learned on MP-DE 24.4
Learned on MP-FR 26.1

Learned on WSJ 30.9
MP-FR Learned on MP-FR 25.9

Learned on MP-DE 26.8
Learned on WSJ 31.7

on MP-DE to suit well for WSJ task when compared to feature stage learned on MP-FR and vice
versa. In the case of WSJ task this trend is observed (12.1% vs. 12.8%). However, it is not observed
in the case of MP-DE task (30.9% vs. 26.1%). In general we observe that feature stage learned on
another language leads to inferior system. The performance gap is drastic when the feature stage is
learned on WSJ and the classifier stage is learned on Medialparl (MP-DE or MP-FR) and vice versa.
In addition to language differences, this can be attributed to the other differences in WSJ corpus
and Medialparl corpus. More precisely, WSJ corpus contains read speech collected in controlled
environment while Mediaparl contains spontaneous speech collected in real world conditions. This
is also supported by the findings of the analysis presented in Section 6.1.2. Since MP-DE and MP-FR
are similar kind of data except for the language, the drop in performance is small (24.4% to 26.1% in
the case of MP-DE task and 25.9% to 26.8% in the case of MP-FR task). Languages typically have
different phone sets and this difference gets further enhanced when modeling context-dependent
phones. As we saw earlier in the cross-domain studies the choice of output units influences the
feature stage. So, the small drop in performance in this case can be more attributed to the phonetic
level differences between German language and French language.

7 Discussion and Conclusions

Motivated from recent advances in deep learning, the present paper investigated a novel CNN-based
acoustic modeling approach that automatically learns relevant representations from the speech sig-
nal and estimates phone class conditional probabilities for ASR. In this approach, the acoustic model
consists of a feature stage and a classifier stage which are jointly learned during training. Specif-
ically, the input to the acoustic model is raw speech signal, which is processed by several con-
volution layers (feature stage) and classified by an MLP (classifier stage) to estimate phone class
conditional probabilities. We evaluated the approach against the conventional acoustic modeling
approach, which consists of independent steps: short-term spectral based feature extraction and
classifier training. Phone recognition studies on English and ASR studies on multiple languages
(English, French, German) showed that the proposed acoustic modeling approach can yield better
recognition systems.

To gain further insight, we performed analysis that largely focused on the filter stage of the approach.
The key findings of the analysis are the following:

1. Both the conventional acoustic modeling approach and the proposed approach tend to
model spectral information present in time span of about 200 ms for phone classification.
However, they differ in the manner analysis is performed over that time span and feature
representations are obtained. Indeed in the proposed approach, contrary to the conventional
wisdom of short-term processing, the signal is processed at sub-segmental level (speech
signal of about 2 ms) by the first convolution layer. The subsequent convolution layers
temporally filter and integrate the output of first convolution layer to yield an intermediate
representation. In other words, as illustrated in Figure 7, the intermediate representation is
obtained by processing the information at multiple temporal resolutions.
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2. The filters in the first convolution layer learn from the sub-segmental speech a spectral dic-
tionary that discriminate phones. Specifically, this dictionary was found to model formant-
like information in the spectral envelop of the sub-segmental speech. These findings are
particularly interesting. First, it validates the notion of formants and phone discrimination
in a data-driven manner, i.e. without making an explicit assumption about speech produc-
tion model. Secondly, sub-segmental spectral processing means high time resolution and
low frequency resolution. Conventional method of short-term processing (i.e. determina-
tion of the window size) has been developed considering the trade-off between time reso-
lution and frequency resolution. Our investigations show that loss of frequency resolution
due to sub segmental speech processing is not affecting the ASR performance.

3. The intermediate feature representations learned at the output of the convolution stage are
more discriminative than standard cepstral-based features. This reaffirms the point that
learning the features and the classifiers jointly leads to more optimal systems when com-
pared to conventional ”divide and conquer” approach.

4. The intermediate feature representations learned have some level of invariance across do-
mains and languages. More specifically, in our analysis we observed that the variation of
the learned features seems to come more from the domain characteristics as opposed to the
set of subword units from the languages. This suggests that learning features in data-driven
manner, as done using the proposed approach, could lead to language-independent features.
This needs to be further investigated.

More recently, there are other works, similar to ours, that have investigated modeling of raw speech
signal directly using ANNs [10, 56, 57]. In [10], use of DNNs (or fully connected MLP) was inves-
tigated. It was found that such an acoustic model yields inferior system when compared to standard
acoustic modeling. In a subsequent follow up work [56], it was found that addition of convolution
layers at the input helps in improving the system performance and reducing the performance gap
w.r.t standard acoustic modeling technique. In [57], an approach was proposed using convolutional
long short-term memory deep neural network (CLDNN), where the input to CLDNN is raw speech
signal. This approach was found to yield performance comparable to the case where the input to
CLDNN is log filter bank energies. In comparison to these works, our work mainly differs at the
feature stage or convolution layers. Specifically, in these works the short-term window size is set to
about 16ms based on prior knowledge, while in our case it is a hyper-parameter and was determined
to be around 2ms. Furthermore, in these works the filters learned at the first convolution layer were
found to be similar to auditory filter-banks. In [57], these filters were close to Mel filter banks, while
in [56] the filters were found to be close to spectro-temporal filters such as MRASTA filters [58]
and Gabor filters [59]. In our case, the filters are a spectral dictionary or a set of matched filters
that model in-parts formant-like information in the sub-segmental speech. As a whole, these works,
similar to ours, show that the relevant features from the speech signal can be automatically learned
along with the classifier to estimate P (i|sct) and ASR systems can be effectively developed.

The proposed approach paves path for further research and development. We enumerate and discuss
them briefly below.

1. noise robustness: as relevant features and classifier are automatically learned, a question
that arises is: whether such an approach is robust in noisy conditions? In the analysis
part, we have seen that the first convolution layer models envelop of sub-segmental speech
signal spectrum. In particular formant-like information, which can be considered as high
signal-to-noise ratio regions in the spectrum. Furthermore, subsequent processing through
max pooling could be seen as filtering of spurious temporal information present each fil-
ter output, while the second convolution layer filters could be interpreted along the lines
of modeling envelop modulations in piecewise manner and combining them. Thus, the
proposed approach could be expected to be robust. A preliminary investigation reported
in [13] indeed indicates that.

2. rapid adaptation of acoustic model: we have observed that the feature stage has consid-
erably fewer parameters than the classifier stage. This provides new means to adapt the
acoustic model. Specifically, one of the main challenge often faced in adapting the acous-
tic model to new domains is the amount of adaptation data available. The data may not
be sufficient to effectively adapt all the parameters in the acoustic model. In the proposed
approach, this challenge could be addressed by only adapting the feature stage. Such an
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approach would be analogous to maximum likelihood linear regression (MLLR) [60] adap-
tation approach where MLLR is used to transform the features as opposed to the models
(i.e. means and variances of the Gaussians). However, in comparison to that, adaptation
in the proposed framework would present two distinctive advantages. First, the adaptation
would by default be discriminative, i.e. learned by improving discrimination between the
phone classes. Second, upon availability of more adaptation data both the feature stage and
classifier stage can be adapted in a straight-forward manner.

3. End-to-end sequence prediction: in this article, we focused on an acoustic modeling ap-
proach where time local information P (i|sct) is estimated in end-to-end manner. A natural
step forward to that is end-to-end sequence prediction where the input is raw speech signal
and the output is sequence of phones or words. Alternately, the parameters of the sequence
prediction model, i.e. decoder are also jointly learned. In our recent works, we have shown
that the proposed approach can be extended using conditional random fields to perform
end-to-end phoneme sequence recognition [61]. However, performing full fledged speech
recognition through end-to-end sequence prediction is not trivial. One of the main reason
being that to search effectively and efficiently the word hypothesis the relationship between
words need to be learned or modeled. As evident from the present state-of-the-art HMM-
based approach, the textual data that is needed to learn the relationship between words is
very different than the textual data contained in the acoustic model training data. So, joint
optimization of the acoustic model and the decoder in end-to-end manner from scratch us-
ing a common data set is a highly challenging problem, and is an up-and-coming research
direction [62, 63, 51].
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