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Abstract

In this paper, we evaluate the results of using inter and intra attention mechanisms
from two architectures, a Deep Attention Long Short-Term Memory-Network (LSTM-N)
(Cheng et al., 2016) and a Decomposable Attention model (Parikh et al., 2016), for
anaphora resolution, i.e. detecting coreference relations between a pronoun and a noun
(its antecedent). The models are adapted from an entailment task, to address the
pronominal coreference resolution task by comparing two pairs of sentences: one with
the original sentences containing the antecedent and the pronoun, and another one with
the pronoun replaced with a correct or an incorrect antecedent. The goal is thus to
detect the correct replacements, assuming the original sentence pair entails the one
with the correct replacement, but not one with an incorrect replacement. We use the
CoNLL-2012 English dataset (Pradhan et al., 2012) to train the models and evaluate
the ability to recognize correct and incorrect pronoun replacements in sentence pairs.
We find that the Decomposable Attention Model performs better, while using a much
simpler architecture. Furthermore, we focus on two previous studies that use intra- and
inter-attention mechanisms, discuss how they relate to each other, and examine how
these advances work to identify correct antecedent replacements.

1 Introduction

Coreference resolution, in which the entities discussed in a given text are linked to
all of the textual spans that refer to them, has been one of the key areas of NLP for
several decades. Major modeling breakthroughs have been achieved, not surprisingly,
following three successful shared tasks: MUC (Chinchor and Robinson, 1998), ACE
(Doddington et al., 2004) and, most recently, CoNLL (Pradhan et al., 2011, 2012).
Coreference resolution seeks to find and group the noun phrases in a text that refer to
the same real-world entity. In this context, such noun phrases are called mentions, or
anaphoric noun phrases. Mentions can be either nominal (including named entities)
or pronominal. In this paper, we focus on the pronominal anaphora resolution task,
which is an important and challenging part of the more general task of coreference
resolution. Correct resolution of the antecedents of pronouns is important for a variety of
other natural language processing tasks, including — but not limited to -– information
retrieval, neural machine translation, and text understanding in dialog systems.

Recent research has greatly improved the state-of-the-art and allowed models to
resolve coreference end-to-end and without hand-engineered features (Lee et al., 2017).

1Work done during an internship at the Idiap Research Institute, from March to August 2017.
Contact email: Jonathan.Pilault@gmail.com.
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While our approach is somewhat different from current trends in research, we build
on some of the same ideas developed in the last decade in coreference resolution, i.e.
a shift from rule-based, hand-crafted systems to statistical machine learning systems,
see Mitkov (2002) for an overview. Classification has been a common approach to
pronoun resolution, as seen for example in the work by Morton (2000) and Kehler (2004).
Since there would be too many classes if we treated each antecedent candidate for each
anaphor as a separate class, a binary classification approach can allow us to identify
coreferent noun phrases from non-coreferent ones. With many candidates considered
for each anaphor, the potential result of this approach is a set of candidates that are
identified as coreferent with the anaphor. Our approach does assume that mentions
have already been detected. Our models are fed during training hand-made pairs of
sentence-groups (one or more consecutive sentences) that have either incorrect or correct
pronoun replacements. Figure 1 is an example of such replacements.

Figure 1. Toy example of pronoun replacements. The mention his dog in blue
should replace it in gray. Sam in red is an incorrect substitution and his dog in green is
a correct substitution in the example shown. In the training data, the model is presented
with a label, the original sentences and either the incorrect or the correct substitution in
the target sentences.

We propose to train and test two models: a Deep Attention LSTM-N model (Cheng
et al., 2016) and a Decomposable Attention model (Parikh et al., 2016) on the pronominal
coreference resolution task. The first model extends the Long Short Term Memory
architecture by performing shallow reasoning with memory and attention. The second
one, which computes attention purely based on word embeddings, consists of feed-
forward networks that operate largely independently of word order. The interest of the
experiments is to determine whether or not we can correctly identify antecedents out of
a list of mentions that are candidate antecedents.

2 Data

The experiment used the CoNLL-2012 English dataset, which contains annotated
co-reference relations. The dataset is substantially small, with 1.3 million words and
2802 documents in total. We do not use world knowledge, such as WordNet, animacy
and gender lexicons, on which existing models have relied (Durrett and Klein, 2013).
However, we have experimented Word2Vec (Mikolov et al., 2013) to initialize the model’s
word embeddings.2

The CoNLL-2012 shared task data has a relatively complex data format. The first
and most time consuming step of this project has been to parse the data and reconstruct
sentence-group pairs (source and target ones, as defined below). Available resources to
extract coreference pairs are written in Java (Durrett and Klein, 2013; Lee et al., 2011;
Björkelund and Farkas, 2012). We implemented a system to parse sentences, find suitable
correct/incorrect replacements for pronouns. The parser would replace only one pronoun

2Word2Vec was pre-trained on the Google News corpus (3 billion words) to learn the word vector
model (3 million 300-dimension English word vectors).
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at a time. For example, if sentences contained two pronouns with antecedents, we would
generate at least four examples: examples with incorrect and correct substitutions for
the first pronoun, and examples with incorrect and correct substitutions for the second
one. If multiple correct and unique candidate noun phrases existed in the dataset, we
would create the same number of examples with correct substitution. For examples with
incorrect replacements, we chose a random noun phrase from within and from outside
of the scope of the sentences. Each line in our dataset contains a label, the original
example and the example with a replacement, as shown in Figure 2.3

Figure 2. Illustration of input data format. The format is similar to the one
found for Natural Language Inference (entailment task), i.e. label | source sentences |
target sentences (Bowman et al., 2015). Green noun-phrases are the correct antecedent
replacement. Red noun-phrases are the incorrect antecedent replacement. The underlined
replacement is in the document but not in the source sentence group.

The part-of-speech tags in the CoNLL-2012 dataset have allowed us to be mindful
of correct sentence structures and grammatical form when generating new examples
from sources sentences. We have used POS tags to catalog noun phrases, pronouns,
articles during pre-processing. The steps to generate training and testing examples are
the following ones:

1. For each article in the CoNLL-2012 dataset, noted documenti, we first loop through
each m words in documenti to store all possible noun-phrases NPi = {npj | j ∈
R : 1 6 j 6 m}i, where j is the position of the noun phrase in a documenti.

2. For each article, we then loop through each word in the document, searching for
pronouns POS tags with possible antecedents4 ANTi = {npk | k ∈ R : 1 6 k 6
m}i, where m is the number of words in the text.

3. When a pronoun and its position are found, we check if an antecedent exists in
the sentence where the pronoun is positioned or the sentence immediately before.
All words within the two sentences are said to be ”within scope”. All words
outside of the two sentences are said to be ”out of scope”. We can define the start
and end position of all words within scope as start ∈ R : 1 6 start < end and
end ∈ R : start < end 6 m.

4. If the antecedent in step 3 is found, we create three new target sentences:

(a) with the pronoun replaced by the correct antecedent antx ∈ ANTi.
(b) with the pronoun replaced by a random non-conreferent noun phrase npinx

within scope such that {npinx ∈ NPi & npinx /∈ ANTi | x ∈ R : start 6 x 6
end & x 6= k}, where start and end are defined in step 3.

3Additional examples are provided in the Appendix.
4Some pronouns may not have an antecedent; for example: ”It is nice out”.
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(c) with the pronoun replaced by a random non-coreferent noun phrase npoutx

out of scope such that {npoutx ∈ NPi & npoutx /∈ ANTi | x ∈ R : x <
start or x > end & x 6= k}, where start and end are defined in step 3.

In a preliminary experiment, we trained the models with a dataset that had only
out-of-scope incorrect replacements, i.e. coming only from npoutx . The resulting model
performed very well, but actually was trained to recognize when replacements were out-of-
scope and not if the replacement was correct or incorrect. This shows that replacements
npinx should be included in the training data, since this makes the classification task focus
on coreference. With a mix of data with both npinx and npoutx , the model may be able
learn to classify correct anaphoric mentions for in-scope and out-of scope replacements.
Unfortunately, npinx , as defined in step 4c above, was not always present. To avoid
throwing away examples with no npinx incorrect replacements, the dataset was populated
with only one incorrect pronoun replacement npoutx and one correct pronoun replacement
antx. This technique has allowed us to augment our dataset with more non-coreferent
examples. As a result, however, the resulting dataset is to some extent unbalanced. The
number of examples per category type is detailed in Table 1.

Table 1. Number of examples per type in training/validation/test data.

Category Total examples
train validation test

Correct replacement antx 19114 765 769
Incorrect replacement npinx 11468 470 463
Incorrect replacement npoutx 19113 765 768
Total 49695 2000 2000

The determiners of the noun phrases (mostly definite or indefinite articles) were also
integrated in our selection algorithm to make sure that candidate antecedents had the
correct grammatical structure. Pronouns without antecedent were unchanged and no
examples were created from such cases. Also, no examples with replacement were created
from first person possessive pronouns since such pronouns generally have antecedents
outside the scope of the text. For example, if a document is narrated in the first person,
the identity of the narrator may not be explicitly found in the text. Also, for possessive
pronouns in quotes or dialogue, we found that over 90% of antecedents were found
outside a two-sentence scope. Finally, it must be mentioned that we had to control the
total number of words in each example, to avoid using too much memory when training
the network. Our sentence-groups were therefore limited to a maximum of two sentences.
Our data contains 49,695 sentence-group pairs for training, 2,000 for validation and
2,000 for testing.

3 Architecture

3.1 Attention-based models under study

3.1.1 Long Short-Term Memory

The core of both models is a Long Short-Term Memory (LSTM) recurrent neural
network (Hochreiter and Schmidhuber, 1997) which processes a variable-length sequence
x = (x1, x2, . . . , xn) by incrementally adding new content into a single memory slot,
with gates controlling the extent to which new content should be memorized, old content
should be erased, and current content should be exposed. At time step t, the memory ct
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and the hidden state ht are updated with the following equations:
it
ft
ot
ĉt

 =


σ
σ
σ

tanh

W · [ht−1, xt] (1)

ct = ft � ct−1 + it � ĉt (2)

ht = ot � tanh(ct) (3)

where i, f , and o are gate activations. Compared to the standard RNN, the LSTM uses
additive memory updates and it separates the memory c from the hidden state h, which
interacts with the environment when making predictions.

3.1.2 Deep Attention LSTM Network

We will first describe Cheng et al.’s Deep Attention LSTM Network (LSTMN) (Cheng
et al., 2016). Cheng et al. changed the LSTM by adding a memory network in lieu of a
memory cell, to extend the ability to memorize sequences under recursive compression.
In a LSTM, the next state ht+1 is conditionally independent on states h1, ..., ht−1 and
tokens x1, ..., xt. In effect, ht+1 depends on ht as it is assumed that the current state
holds enough information about past states to predict the next state. Cheng et al. argue
that the assumption may not hold when the sequence is long, and propose to address this
potential limitation with an LSTMN, which may also model the structural relationship
between tokens instead of the sequential token-by-token relationship seen in LSTMs.
Similarly to Weston et al. (2014), the proposed Memory Network explicitly segregates
memory storage from the neural network computation. The model is trained end-to-end
with a memory addressing mechanism closely related to soft attention (Sukhbaatar et al.,
2015).

Figure 3. Long Short-Term Memory-Network. Color indicates degree of memory
activation. Figure taken from: “Long Short-Term Memory-Networks for Machine
Reading” (Cheng et al., 2016). The deep attention r gate is not shown in the figure.

The architecture of the LSTMN is shown in Figure 3. LSTMs maintain a hidden
vector and a memory vector, while Memory Networks (Weston et al., 2014) have an
array of key vectors to access a set of value vectors. The LSTMN uses a memory
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tape to store the contextual memory Ct−1 = (c̃1, . . . , c̃t−1) and the previous hidden
memory Ht−1 = (h̃1, . . . , h̃t−1) derived from the attention mechanism. At time step t,
the model computes the relation between xt and x1, . . . , xt−1 through h1, . . . , ht−1 with
an intra-attention layer:5

ati = vT tanh(Whhi +Wxxt +Wh̃h̃t−1) (4)

sti = softmax(ati) (5)

c̃t and h̃t are computed from the probability distribution sti as:[
h̃t
c̃t

]
=

t−1∑
i=1

sti ·
[
hi
xi

]
(6)

Similarly to Equation 1, the input, forget, output and context gates of the LSTMN are
then computed as follows: 

it
ft
ot
ĉt

 =


σ
σ
σ

tanh

W · [h̃t, xt] (7)

ct = ft � c̃t + it � ĉt (8)

ht = ot � tanh(ct) (9)

Now that we have described mathematically the LSTMN, we will see how it can be
used in an encoder-decoder architecture. Similarly to the architecture in Figure 5, the
encoder’s output will be one part of the decoder’s input. Cheng et al. (2016) define
two attention mechanisms. The first one, called “shallow attention fusion”, is similar to
the inter-attention introduced by Bahdanau et al. (2014). The other one, called “deep
attention fusion”, combines inter- and intra-attention, as shown in Figure 4.6

Figure 4. Encoder-Decoder LSTMN architecture with Deep Attention. From
“Long Short-Term Memory-Networks for Machine Reading” (Cheng et al., 2016).

5“Intra-attention” stands for attention within the source or target sentence groups.
6“Inter-attention” stands for attention between source and target sentence-groups.
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Given the encoder’s context memory Ct and hidden memory Ht of the source sequence,
we can compute the inter-attention between the source sequence and the target token yt
at time t in the decoder as follows:

bti = uT tanh(Wh̃h̃i +Wyyt +Wh̄h̄t−1) (10)

where yt is the target token at time step t.

pti = softmax(bti) (11)

The source’s m token representation of the encoder’s context memory and hidden memory
becomes: [

h̄t
c̄t

]
=

m∑
i=1

pti ·
[
h̃i
c̃i

]
(12)

We then add another gate to the ones found in Equation 7:

rintert = σ(Wr · [h̄t, yt]) (13)

The decoder’s context memory has an extra term from the inter-attention:

cdect = rintert � c̄dect + fdect � c̃dect + idect � ĉdect (14)

hdect = odect � tanh(cdect ) (15)

We can then predict the label using a softmax (similarly to Equation 29 below):

label = softmax(henc, hdec) (16)

3.1.3 Decomposable Attention with feed-forward networks

We will now describe the second model that we have experimented with, Parikh et
al.’s Decomposable Attention model (Parikh et al., 2016). The idea behind this model is
similar to the previous model, since it relies on inter- and intra-attention mechanisms to
make a prediction. The encoder-decoder networks are replaced entirely with feed-forward
networks.

This model caught our interest for two reasons. Firstly, it uses significantly fewer
parameters than the Deep Attention LSTMN model, while performing better on the
Natural Language Inference task (according to the authors and to our experiments). It
also operates largely independently of word order. Indeed, let us note s1 = (s11, . . . , s1m)
and s2 = (s21, . . . , s2n) the source and target sentences with m and n tokens respectively,
and cl = (cl1, . . . , clk) are the labels at the encoding stage and k the number of output
classes. We take F to be a feed-forward neural network with ReLU activations (Glorot
et al., 2011). We compute the intra-attention as follows:

fij = Fintra(ai)
TFintra(aj) (17)

where Fintra is a feed-forward network. We then create a self-alignment matrix:

a′i =

m∑
j=1

exp(fij)
m∑
l=1

exp(fik)
aj (18)

The input representation for subsequent steps is then defined as āi = [ai, a
′
i] and

analogously b̄i := [bi, b
′
i]. As for the inter-attention, unnormalized attention weights
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eij are computed using via a soft-alignment matrix, a variant of the neural attention
(Bahdanau et al., 2014):

eij = FTinter(āi)Finter(b̄j) (19)

where Finter is a feed-forward network similar to Fintra. The normalized attention
weights are as follows:

αj =

m∑
i=1

exp(eij)
m∑
l=1

exp(eik)
āi (20)

βi =

n∑
j=1

exp(eij)
n∑
l=1

exp(eik)
b̄j (21)

Again using a feed-forward network G, we compute the alignment vectors for both source
and target sentence-groups:

v1,i = G([āi, βi]) ∀i ∈ [1, . . . ,m] (22)

v1,j = G([b̄j , αj ]) ∀j ∈ [1, . . . , n] (23)

Before feeding the results through a final feed-forward network to classify target sentences,
we sum each alignment vector:

v1 =

m∑
j=1

v1,i (24)

v2 =

n∑
i=1

v1,j (25)

prediction = argmax(H([v1, v2])) (26)

The only drawback from this approach compared to the LSTMN is that the classifier
function H may need to be changed for other types of tasks, such as Language Modeling
or Machine Translation. The Decomposable Attention model does not make use of
Memory Networks as the Deep Attention LSTMN, but holds both source hidden state,
target hidden state and the alignments between sentence-groups respectively in a m×m,
a n× n and three m× n weight matrices.

3.2 Baseline models

3.2.1 Encoder-decoder with stacked LSTMs

We used for comparison an encoder-decoder architecture with stacked bi-directional
Long Short-Term Memory (LSTM) decoders on one side and stacked LSTMs on the
decoder side. This baseline model is illustrated in Figure 5. While not shown in the
figure, it is possible to connect the concatenated outputs of the bi-directional LSTM to
another bi-directional LSTM. The output at time step m of the second bi-directional
LSTM becomes the input of the second encoder layer.
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Figure 5. Stacked encoder-decoder bi-directional LSTM model used as a
baseline (not all stacked layers are shown).

In comparison with the attention mechanisms of the Deep Attention LSTMN and
the Decomposable Attention models, the encoder-decoder baseline model does not have
any sort of attention. The encoder-decoder is defined as follows:

Encoder:

hx(t) = biLSTM(
←
hx(t−1),

→
hx(t−1), xt−1) (27)

Decoder:
hŷ(t) = LSTM(hx(m), hŷ(t−1), ŷt−1) (28)

Prediction:
label = softmax(hx, hy) (29)

where hx(t) is the hidden state of the encoder layers at token position t, hy(t) is the
hidden state of the decoder layers at token position t, and ŷt is the prediction of token yt.
The stacked layers allows us build a model with similar capacity to the Deep Attention
LSTMN Network. Finally, we used word2vec to initialize the embeddings of both the
source sentences and target sentences with pronoun replacement.

3.2.2 Language model

In addition to deep neural networks, we also experimented with a language model by
using its perplexity to distinguish correct vs. incorrect replacements of a pronoun by
an antecedent. We used the SRILM Language Modeling toolkit (Stolcke, 2002) with a
trigram language model that was trained on the Europarl corpus (Koehn, 2002). Using
the trained language model on our test data allowed us to extract perplexity of each
sentence group with a replacement (i.e. target sentences).

To measure the probability of a sequence, we used the notion of perplexity the field
of information theory (Shannon, 1948). Language can be considered to be a discrete
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information source which is generating a sequence of words w1, w2, . . . , wm from a
vocabulary set, W. The probability of a symbol wi is dependent upon the previous
symbols w1, . . . , wi−1. The information source’s inherent per-word entropy H represents
the amount of non-redundant information provided by each new word on average, defined
in bits as (assuming ergodicity and a large enough m):

Ĥ = − 1

m
log2 P (w1, w2, . . . , wm) (30)

Perplexity is then defined as:

Perplexity = 2Ĥ (31)

As suggested by Popescu (2009), the relationship between the perplexity classes and
the prior coreference probability is straightforward. The lower the perplexity, the greater
the coreference probability. As we had previously mentioned, each source sentence will
have several corresponding target sentences with both correct and incorrect pronoun
replacements. To classify the target sentences, we compared the perplexity acroos
target sentences generated for each source sentences. Target sentences with the lowest
perplexity were labeled as correct replacements. The other targets were classified as
incorrect replacements.

Performing coreference resolution based on perplexity has three main limitations.

1. The first one is that perplexity will be higher when a pronoun is replaced by names
since the names in question may be out of vocabulary words for the Language
Model. When such cases arise, the model may assign a lower perplexity to a noun
phrase that it is closer to an example seen during training to the expense of the
correct pronoun replacement with the (proper) name of a person, animal or object.

2. The second limitation is that we need at least two generated examples to compare
perplexity, since we are labeling correct substitutions as lowest perplexity target
sentence. Source sentences with only one corresponding target sentences group
were therefore excluded from our final results.

3. The third limitation is that we can have several correct replacements within one
source sentence group. To make sure that we find all correct replacements, we
assumed that sentence groups within ± 5% of the minimum perplexity should also
be labeled as correct replacements.7

4 Experiments

In this section we present our experiments for evaluating the performance of a Deep
Attention LSTMN (Section 3.1.2) and a Decomposable Attention model (Section 3.1.3)
for coreference resolution, defined as distinguishing the replacement of a pronoun with
its correct antecedent vs. with a wrong one, leveraging entailment models between the
original and the “replaced” sentence groups. It is important to mention that we have
focused on the models with deep attention fusion in Equations 10 and 11, since Cheng
et al. (2016) reported higher performance on the Natural Language Inference task (i.e.
entailment).

7We found, through trial and error on the validation set, that a variance of 5% gave an optimal F1
score.
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4.1 Performance of the models: accuracy and kappa scores

Label classification accuracy along with model size and the number of epochs are
shown in Table 2. Due to resource and time constraints, we were not able to run the
Deep Attention LSTMN for more than 30 epochs (which took 2.5 days of training). We
observed, though, that when we train it over 100 epochs, the best validation performance
of the Decomposable Attention model occurs at epoch 72, with an accuracy of 72.2%,
substantially higher than the value of 66.8% appearing in Table 2. It should be noted
that randomly selecting between the binary classes would yield only 52.7% accuracy on
the test data.

When limiting all systems to training over 30 epochs, the Deep Attention LSTMN
performs best and achieves top validation accuracy at epoch 7. The Deep Attention
LSTMN appears to learn the relationship between pronouns and antecedents much more
quickly but also plateaus at 67.7% accuracy. To make sure that the model was not over
fitting, we added a 20% dropout term to non-recurrent connections in the LSTMN, a
technique which has proved to reduce over fitting in LSTMs in a variety of NLP tasks
(Zaremba et al., 2014).

Using 20% dropout in the Deep Attention LSTMN, the best test accuracy only reaches
64.3% within 30 epochs. The attention mechanism in place helps converge towards higher
accuracy. Without inter-attention and using LSTMs to encode and decode sentences, we
arrive at 64.0% accuracy. When comparing with other high-capacity models such as the
Bi-LSTM encoder-decoder, the test set accuracy decreases by 2.5 percentage points.

Table 2. Accuracy and model sizes. Classification accuracy results on the test set
of the coreference task.

Models Total Epoch Best Epoch H |Θ|M Acc.
SRILM — — — — 52.7%
Bi-LSTM encoder-decoder 30 19 450 3.2M 64.0%
Deep Attention LSTMN 30 7 450 3.4M 67.5%
Deep Attention LSTMN 30 26 450 3.4M 64.3%
(20% dropout)
Decomposable Attention 30 30 450 1.1M 66.8%
(20% dropout)

In Table 3 below, we present the performance on coreference resolution considered
as a binary classification task (‘correc’ vs. ’incorrect’) in terms of F1 and kappa (κ)
scores.8 The Decomposable Attention model has the highest F1 score, topping the Deep
Attention LSTMN by 0.1%.

Since the data is unbalanced, we also check if the results of the models surpass
random classification, using Cohen’s kappa metric (Zaremba et al., 2014). The language
model approach actually performs below chance, since the observed kappa is negative.
On the other hand, the Deep Attention LSTMN and the Decomposable Attention model
have similar observed kappa scores, close to 0.2, meaning above-chance classification
performance, though far from a reliable human (often required to be above 0.67 or
even 0.8). If we look at the True Negatives, we notice that the two models seem to
perform better at classifying incorrect pronominal replacements. This is evidenced by
the specificity of 68.4% and 68.3% vs. a precision of 31.4% and 32.2% for the Deep
Attention LSTMN and the Decomposable Attention model respectively. If we compare
models with and without inter-attention, the kappa scores are noticeably higher for
models with inter-attention. The Bi-LSTM encoder-decoder architecture has an F1 score

8These scores were calculated using http://onlineconfusionmatrix.com/.
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3.7 percentage points lower, and a kappa 0.06 points lower than the Deep Attention
LSTMN.

Table 3. Confusion matrix and kappa scores. Checking the statistical importance
of our results with F1 scores and Cohen’s Kappa.

Models TP TN FP FN F1 score κ
SRILM 209 844 407 540 30.6% -0.06
Bi-LSTM encoder-decoder 223 1057 194 526 38.2% 0.16
Deep Attention LSTMN 235 1114 137 514 41.9% 0.22
Decomposable Attention 241 1095 156 508 42.0% 0.22
(20% dropout)

4.2 Importance of attention weights

We now turn our analysis towards the importance of intra-attention and inter-attention
in the models under study.

First though, we observed that intra-attention did not provide much benefits to
model accuracy or training convergence speed. When we analyzed the intra-attention
scores on test source and target sentences, we were not able to recognize a pattern. This
observation was surprising, since the intuition was that the intra-attention would be able
to make links between the pronouns and the correct replacements in the source sentence.
During forward propagation, the attention layer ati is computed based on the input xt
and hidden states hi and h̃t−1. During back propagation, the weights in Equation 4,
namely Wx, Wh, and Wh̃, are updated with the gradient from the error signal from the
decoder. However, the error signal does not seem to push the intra-attention layer with
any useful updates in this coreference task. On the other hand, inter-attention between
the replacement in the target sentences and the words of the source sentences seemed to
be pointing towards the pronoun and the antecedent.

Figure 6. Examples of inter-attention on the source sentence. The correct
antecedent is in blue and the pronoun to be replaced is in red. Inter-attention scores
from the Deep Attention LSTM-N are found below each word.

From the two examples in Figure 6, we can see that the inter-attention score puts
more weight on the pronoun in the source sentence. Interestingly, it seems that attention
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identifies a link between the pronoun and the correct antecedent. If we compare inter-
attention scores pti (see Equation 11) for other words in the target sentences in Figure 7a
and with the incorrect replacement in Figure 7b, we can see that the inter-attention on
the source sentence pronoun is higher for the correct anaphoric mention.

(a) Inter-attention scores for a correct replacement.

(b) Inter-attention scores for an incorrect replacement.

Figure 7. Attention scores of correct (a) and incorrect (a) antecedent re-
placements. The correct antecedent in blue and the pronoun to be replaced in red.
Inter-attention scores pti in Equation 11 from the Deep Attention LSTM-N are found
below each word. The incorrect replacement noun phrase is in bold and black. Scores
should be read from left (target word) to right. The score of the words that replace the
pronoun in the target sentence is an average.

Figures 7a and 7b illustrate on two examples that the inter-attention scores are higher
on the source sentences pronoun for both correct and incorrect replacements in the target
sentences. On average over the test set, we can expect a 69% higher inter-attention
score pti when a correct replacement is inserted vs. a incorrect replacement, as shown
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in Figure 8. Also, the correct replacement noun phrase displays less score variation
with a coefficient of variation of 35%, which is 26% lower than the correct replacement
noun-phrase’s inter-attention score pti. We have noticed that the attention scores of
other words on the source sentence are close to three times lower than the score of the
correct replacement. This observation suggests that the inter-attention mechanism has
a preference for correct replacements and can contribute to identify such anaphoric
mentions.

Figure 8. Mean inter-attention of the LSTMN for the anaphoric pronouns
of the source sentences. Average values of the inter-attention scores at the position
of the noun-phrase replacements and for other words in the target sentences. Scores
were computed over the test set.

5 Conclusion

The models that were used in this study provided interesting insights into the links
that an inter-attention mechanism can create between a source sentence and target
sentence in the context of classifying correct antecedents in a pronominal coreference
resolution task. The reference to pronouns in the source sentence allowed the model
to classify incorrect and correct pronoun replacements in the target sentences. Higher
capacity models in general have performed better on the coreference tasks that we
have designed for this experiment. Clearly though, the dependencies learned go further
than the SRILM and the bi-LSTM encoder-decoder model since the inter-attention
scores allow the model to focus to a certain extent on the link between pronouns and
their antecedents. The experiment can be extended by studying the performance of
lower capacity models and rule-based models. Moreover, recalculating performance
using the MUC, B3 and CEAFφ4 measures designed specifically for coreference would
allow an explicit comparison with other coreference resolution systems. Applying these
measures would however require a substantial refactoring of the task from the entailment
format (adapted to models designed for Natural Language Inference) to the proper
coreference task. Finally, and since high capacity models typically perform better with
data training sets larger than 50k examples, adding more examples could potentially
increase performance.
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Appendices

A Implementation details

The starting point for this project was the model that Cheng et al. (2016) made
public, implemented using the Torch libraries. We chose to use Torch as well and created
clones of the LSTM-N encoders and decoders. The cloning process is memory intensive
and did not allow us to effectively increase the source and target sentences size. Higher
sentences size would allow us to create a larger dataset, with mention pairs that span
multiple sentences. To enable this, we have rebuilt the initial code base in PyTorch. The
PyTorch implementation did not yield the exact same results on the Language Modeling
and Natural Language Inference tasks found in the paper (Cheng et al., 2016). For that
reason, we continued using Torch for this experiment.

We also experimented with an application of the models to neural MT. For this
experiment, OpenNMT helped set up baselines in translation. However, we had to
develop our own implementation of beam search. Code will be available on Github at:
https://github.com/jpilaul.

B Other possible applications

The Deep Attention LSTM-N architecture can be transformed for a variety of
applications. For example, the encoder-decoders are natural fits for Neural Machine
Translation (NMT) Tasks. We designed NMT models and trained them using the WMT
2013 Spanish-English dataset Callison-Burch et al. (2011). At the time of writing of this
report, the models are still being trained. During the NMT experiments, we found that
the softmax operations over large vocabulary were major bottlenecks in training speed.
To increase training speed, we are currently integrating a hierarchical softmax operation.

C Supplemental data examples

The figure on the following page is an extract from the test data.
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Figure 9. Examples extracted from the test dataset.
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